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ABSTRACT

As we move towards hyper-converged cloud solutions, the effi-

ciency and overheads of distributed file systems at the cloud tenant

side (i.e., client) become of paramount importance. Often, the client-

side driver of a cloud file system is complex and CPU intensive,

deeply coupled with the backend implementation, and requires

optimizing multiple intrusive knobs. In this work, we propose to

decouple the file system client from its backend implementation by

virtualizing it with an off-the-shelf DPU using the Linux virtio-fs
software stack. The decoupling allows us to offload the file system

client execution to a DPU, which is managed and optimized by

the cloud provider, while freeing the host CPU cycles. DPFS, our

proposed framework, is 4.4× more host CPU efficient per I/O, de-

livers comparable performance to a tenant with zero-configuration

and without modification of their host software stack, while al-

lowing workload and hardware specific backend optimizations.

The DPFS framework and its artifacts are publically available at

https://github.com/IBM/DPFS.

CCS CONCEPTS

• Networks → Network File System (NFS) protocol; • Software

and its engineering → File systems management; • Informa-

tion systems→ Cloud based storage; • Hardware → Networking

hardware.
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1 INTRODUCTION

File systems are a popular choice for cloud data storage with offer-

ings such as traditional distributed file systems (HadoopFS, Ceph,

GlusterFS), and cloud-native file systems (CNFS) services like Ama-

zon EFS [3], AliBaba Pangu [10] or Azure Files [27]. With the recent

push for hyper-converged infrastructure [13], there is a need for an

efficient, scalable and high-performance cloud-native file system

service.

Building a high-performance, scalable cloud-native file system

for applications is a challenging task. First, the raw performance of

storage and networking devices are constantly increasing, while the
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ext4 ext4 + NVMe-oF XFS Btrfs

I/O operations 5.2 13.7 3 4.6

Total Bytes (in KiB) 44.7 46.8 12 125.3

Amplification 11.2x 11.7x 3x 16x

Table 1: Analysis of storage (block) or network (packets with

NVMoF) operations for a single 4KiB file write.

CPU performance improvements have stalled [29, 44]. As a result,

delivering the full speed of I/O devices in a disaggregated storage

setting takes a considerable amount of CPU resources [17, 43]. For

example, Alibaba reports 12 CPU cores are required to deliver 200

Gbps of block-level traffic [26]. At the file system level, LineFS

reports that with Ceph a single fully-utilized CPU only delivers

~10 Gbps bandwidth on a 100 Gbps link [16]. The question of CPU

efficiency is also important for bare-metal machines, which have

become popular in clouds recently [6, 34, 48]. Second, client-side

CNFS logic can be complex and bloated, as it has to implement

logic for communication and coordination with metadata and data

servers, client-side buffer and connection management, caches,

etc. As a result, it is not uncommon for distributed file system

clients to consume GBs of DRAM and a significant amount of

CPU cycles, thus limiting how many concurrent tenants (VMs,

containers) can be packed on a server [2, 21]. Lastly, the close

coupling of the file system API and its implementation makes it

difficult to deploy new extensions or optimizations. For example, a

bare-metal tenant using Ceph can not easily switch to HopsFS [30]

or InfiniFS [25] without significant disruptions if it experiences

metadata scalability challenges. Furthermore, many of these CNFS

come with hundreds of performance knobs and features, which

requires explicit deployment and optimizations from the tenant

side to extract the best possible performance.

To address the aforementioned challenges, we propose to virtu-

alize the access to a file system by offloading the file system client to a

DPU to offer a tenant-transparent, light-weight, high-performance

file system service. Such a design has multiple advantages: First,

virtualization decouples the file system API from its backend imple-

mentation, which enables us to optimize the backends to support

multiple workload needs such as multiple APIs [22], scalable meta-

data lookups with KV stores, decoupling of data from metadata

management [19]. A limited form of such decoupling is currently

offered by cloud providers in the form of an NFS gateway to the

CNFS client [3, 12, 27]. We argue this approach gives away control

of the file system client from the cloud provider, and demonstrate

that the Linux kernel NFS client has high overheads (§3.4). Second,

by offloading (and leveraging the hardware acceleration of the DPU)

the file system implementation, we free host CPU resources for

the tenant. One can argue that offloading capabilities can also be

leveraged by the host either at the block, or application level. A

block-level offloading allows a fully offloadable I/O stack [20, 28],

https://github.com/IBM/DPFS
https://doi.org/10.1145/3579370.3594769


SYSTOR ’23, June 5–7, 2023, Haifa, Israel Peter-Jan Gootzen, Jonas Pfefferle, Radu Stoica, and Animesh Trivedi

however, it suffers from significant I/O amplifications. We quantify

this amplification [24] in Table 1, where we report the number

of block-level or network-level operations (packets for NVMe-oF

storage disaggregation) generated in response to a single 4 KiB file

write operation. Depending on the file system, the amplification

can be as high as 3-16×, thus requiring proportional gains from

hardware offloading. Furthermore, in comparison to local block

I/O, NVMe-oF also amplifies the average number of I/O operations

needed (5.2 vs. 13.7). On the other hand, with file system-level vir-

tualization, this will be a single offloadable file operation from the

host to the DPU and then from the DPU to the file system backend.

An application-level solution requires rewriting the application

to benefit from offloading capabilities of the DPU, which are non-

trivial and non-standardized (except for RDMA and NVMe-oF style

offloading). Lastly, a DPU-powered design does not require any

fine-tuning or configuration from the tenant side. All CNFS-related

configuration and optimizations can be consolidated on the DPU,

under the cloud provider’s purview, freeing the host CPU for ten-

ants. The physical separation of the DPU (which runs the cloud

provider logic) from the tenant (on the host) also discourages any

resource-sharing based side-channel attacks [6], thereby improving

tenant isolation and security.

In this paper, we present DPFS, a DPU-Powered File System

virtualization framework for cloud environments. DPFS leverages

the virtio-fs protocol to communicate between the host and the

DPU. The DPU and host communicate via PCIe memory-mapped

virtio [38] queues using the FUSE file I/O command set. As

virtio-fs is standardized [46] and included in the Linux ker-

nel [37] (no installation required), this design enables DPFS to

avoid the need for running a custom CNFS client on the host. The

de-coupling of the front-end (a standard file system API) from its

backend implementation (i.e., the CNFS) with a bump-in-the-write

architecture on the DPU [9] allows the cloud provider to do a variety

of network and storage optimizations (scheduling, caching, quotas,

QoS), without having the tenant perform any code installation or

change any configuration. To prove DPFS’s flexibility, we have im-

plemented three file system backends: (i) DPFS-null, a no-op DPU

client useful for development and benchmarking; (ii) DPFS-NFS, a
NFS backend that runs on the DPU and translates the virtio-fs
requests into equivalent NFS commands and communicates with

a remote NFS server using libnfs with Nvidia XLIO (partial TCP

offloading) [33]; (iii) DPFS-KV, a RAMCloud-based backend that

implements low-latency I/O operations on small files, a suitable fit

for KV stores [35].

Our primary contributions in this work include:

• We make a case for transparent file system access virtualiza-

tion for cloud-native file systems using DPUs.

• We present the design and implementation ofDPFS, an open-

source file system virtualization framework with support for

the Nvidia BlueField-2 DPU [32] (https://github.com/IBM/

DPFS).

• Evaluation of DPFS that demonstrates that it (i) is light-

weight; (ii) delivers equal and better performance than a

host NFS client; and (iii) is customizable and modular with

multiple file system backend implementations.

Application

Kernel

Userspace

NFS
TCP/IP

NIC driver

A

C

DPU HW accelerated 
virtio-fs queues

virtio-fs over PCIe

NFS Server

CPU

DPFS-HAL

RAMCloud KV

Userspace
polling

RDMATCP offloaded sockets

DPFS-FUSE

DP
U

 li
br

ar
y

4

5

VFS
B

D

Host
Application

Kernel

Userspace

FUSE
Virtio-FS

1

3

VFS
2

DPFS Backends
Null

Host

NFS KV
6

NFS Server

Figure 1: The architecture of DPFS compared to a host NFS

client. Green boxes are the standard in-kernel code, and or-

ange boxes are our contributions.

2 DPFS DESIGN AND IMPLEMENTATION

To accelerate the development of DPU-powered file systems, we

implemented the DPFS framework. The framework is composed of

three layers, each serving a different purpose, as shown in orange in

Figure 1. The first layer, (DPFS-HAL) provides a Hardware Abstrac-
tion Layer (HAL) for the vendor-specific DPU functionality and

the host-DPU optimizations. Its role is to reduce the DPU-specific

knowledge required to develop a file system backend, to simplify

code maintenance, and to allow a faster transitioning to a new type

or new model of a DPU. The second layer implements a FUSE-like

API (i.e., libfuse [1]) on top of the raw virtio-fs protocol buffers
(DPFS-FUSE §2.2). The third layer contains the file system backend

implementation (i.e., the DPU logic that allows connecting to the

remote file system). Here we provide three implementations. The

first client is DPFS-null, which implements a no-op backend that

immediately replies to any request. This back-end is used for opti-

mizing and benchmarking of the host-DPU communication, i.e., the

DPFS-HAL and DPFS-FUSE layers. The second client is DPFS-NFS
(§2.3), an optimized userspace NFS client that allows connecting

to existing cloud NFS-based file system services. Using this client,

a cloud provider would not have to perform any changes to exist-

ing file system back-ends to employ DPU virtualization. The third

client is a key-value client (DPFS-KV §2.4) that connects to a RAM-

Cloud [35] back-end and leverages RDMA to access files stored in

the KV store. Past research has demonstrated that KV stores can

be a better fit for file system implementations [18].

2.1 The DPFS I/O Path

In the host NFS client configuration (see Figure 1, left side), the

application submits a file-related syscall (e.g., a read() call), that

context switches to the kernel. The request traverses the VFS A

and NFS B layers, then the TCP/IP stack C , and is finally sent

https://github.com/IBM/DPFS
https://github.com/IBM/DPFS
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to the NIC driver D . The NIC communicates with the file system

backend. Upon receiving a response, the reversed path is initiated

by an interrupt.

On the other hand, the DPFS I/O path (see Figure 1, right side) is

much more lightweight on the host, without requiring application

or kernel modifications. The request first passes through the VFS

layer 1 and is then forwarded to the lightweight FUSE layer 2

that transforms the VFS operation into a FUSE request message.

The FUSE request is then passed to the virtio-fs layer 3 . It

encapsulates and transports the message over PCIe, through virtual

functions to the appropriate host tenant and virtio queue on the

DPU. On the DPU, a DPFS-HAL thread retrieves the message from

the queue 4 , then passes it to DPFS-FUSE 5 . DPFS-FUSE extracts

the original FUSE request and forwards it to the file system backend

6 .

The complexity of the code path can be roughly quantified

through lines of code in the Linux kernel (v6.2). Steps B - C con-

tain 181k lines of source code (assuming IPv4), while steps 2 - 3

contain 13k lines of source code. On the DPU, the clients operate

in userspace, thus no context switching is required. Furthermore,

file system backends on the DPU can use hardware acceleration

such as RDMA and TCP offload. Overall, the code path and the

CPU overhead per operation on the host are significantly reduced,

as we show in §3.4.

We emphasize that virtio-fs uses FUSE in such a manner that

its traditionally large overheads are not incurred. The virtio-fs
protocol uses FUSE for its standardized encoding of Linux Virtual

File System (VFS) operations into the FUSE-ABI. Traditional FUSE

encodes VFS operations and sends them back to userspace to be

handled by a userspace file system implementation, incurring two

extra context switches and significant overhead [47]. Where-as

virtio-fs encodes the VFS operations using FUSE and sends them

to the virtio-fs PCIe device (i.e. the DPU) directly from kernel

space, thus incurring no extra context switches.

2.2 DPFS-HAL & DPFS-FUSE Implementation

One of the two main challenges when implementing a file system

on top of the virtio-fs functionality of the DPU is to transparently

handle the DPU’s software stack. This includes configuring the soft-

ware stack, the virtio-fs queues, implementing efficient polling

and scheduling. For our DPU (the Nvidia BlueField-2), the firmware

exposes the virtio-fs device in userspace as a RDMA device

through InfiniBand verbs. Nvidia provides a library (Nvidia SNAP)

to setup and configure virtio devices and to expose the virtio-fs
functionality. However, DPFS-HAL (Hardware Abstraction Layer)

hides such complexities by exposing only the virtio-fs relevant

configuration parameters of the DPU’s software stack. DPFS-HAL’s
C-API allows the virtio-fs implementation to register a han-

dle_request callback, poll on the virtio queues (in a thread man-

aged by DPFS-HAL or manually) and complete virtio-fs requests

in an asynchronous fashion.

Developing a file system backend using the virtio-fs protocol

that DPFS-HAL exposes is cumbersome, as the file system developer

must consume the raw FUSE-ABI that the Linux kernel exposes

over the virtio-fs protocol. The FUSE-ABI has limited documen-

tation as it is meant to be consumed through the popular libfuse

library [1], which acts as the reference implementation and API for

CPU 2x Intel Xeon E5-2630 v3, 2.4GHz, 8 cores/socket, C-

states disabled during latency experiments

DRAM 128 GiB, DDR4 1,866 MT/s

DPU and

network

Nvidia BlueField-2 with 2.75 GHz x 8 ARMv8 A72 64-bit

cores, 16 GiB DRAM (max bandwidth: 18 GiB/s), con-

nected via PCI 3.0, 100 Gbps link to a remote server, run-

ning BlueField DPU OS 3.9.3 with a prototype firmware

to enable virtio-fs support

Host and re-

mote server SW

Ubuntu 22.04 with kernel 6.2, fio 3.28, NFS (v4.2, NFS

server params "async, no_subtree_check", NFS client

params: "async")

Table 2: Benchmarking hardware and software setup.

the ABI. DPFS-FUSE exposes a C-API that is similar to that of the

libfuse API. By exposing a well-known and commonly used API, we

report increased virtio-fs file system development speed. A file

system developer could use userspace FUSE as a first step during

development and transition to a DPU environment when available.

Our DPFS-FUSE API builds on top of libfuse with added support for

asynchronous operations and optimized function calls to decrease

the number of data copies and allocations.

2.3 DPFS-NFS: Hardware-accelerated NFS

Backend

The DPFS-NFS backend implementation leverages the accelerated

socket API of Nvidia XLIO [33] and the libnfs library [39]. Nvidia

XLIO is a shared library that overloads the socket C-API to lever-

age the network offloading capabilities in the BlueField-2 hardware

with reduced data copies (not fully zero-copy). This implementation

showcases the possibility to leverage hardware acceleration through

the DPU without any changes to the host file system client and

the remote file system provider. Our experiments show the perfor-

mance benefits of implementing an userspace hardware-accelerated

NFS client. The standard Linux kernel NFS client (running on the

DPU), when using io_uring, incurs 100.5 𝜇sec read and 101.9 𝜇sec

write latencies for 4 KiB accesses. The software-only libnfs attains

76.0 𝜇sec and 74.2 𝜇sec respectively. Adding Nvidia XLIO to libnfs

further reduces latency to 52.9 𝜇sec and 52.2 𝜇sec, respectively.

On the DPFS-HAL queue poller thread, the DPFS-NFS file system

implementation translates the FUSE request into NFS v4.1 [31] and

sends the NFS request to the remote storage backend using libnfs

and Nvidia XLIO. A second thread polls on the Nvidia XLIO socket

using libnfs, translates NFS v4.1 responses back into FUSE, and

messages the DPFS-HAL poller thread to complete the virtio-fs
request.

2.4 DPFS-KV: RAMCloud KV store Backend

The file system transparency of DPFS allows one to consume a

specialized file system without the need to make changes to the

host. We demonstrate this by implementing a DPFS backend for

RAMCloud, a distributed, in-memory KV store that provides low-

latency access by leveraging RDMA [35]. DPFS-KVmaps file system

operations from DPFS-FUSE to KV operations by exposing a set of

key-value pairs through the file system’s root directory, where each

file represents a key-value pair. Two tables are stored in RAMCloud,

the first to store data (file contents) and the second to store metadata

(attributes, name, etc.). To index into the metadata table, the file
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name is hashed and used as the key. In the metadata table, a unique

inode identifier is stored, which acts as the file’s key for the data

table. To support listing the contents of the flat file system directory

(i.e. readdir()), the file name itself is stored in the metadata table.

3 EVALUATION

In this section, we evaluate the performance and efficiency of DPFS

through the DPFS-null, DPFS-NFS and DPFS-KV backends. Table 2

shows our experimental setup. All workloads are generated using

fio with the io_uring I/O engine [7]. To generate a consistent load

on the system, we use two fio threads.

3.1 Virtualization Overheads

We first measure the throughput of the DPFS-null backend for

random read and write workloads (10 seconds warm up, followed

by a 60 seconds run). The results of this experiment demonstrate

the upper bound on the performance DPFS can deliver.

Figure 2a shows throughput of the null-DPU backend (y-axis, in

GiB/s) vs. the I/O (queue) depth. We report throughput for 4 KiB,

16 KiB, and 64 KiB block sizes for both read and write operations.

Throughput scales for both read andwrite operations as we increase

the I/O depth. It plateaus when using a 64 KiB block size at queue

depth between 16-32 at 5.87 GiB/s for read and 4.32 GiB/s for write

operations. For a 4 KiB block size, a common I/O size in the kernel,

the peak read throughput is 1,278 MiB/s and write throughput is 938

MiB/s, equivalent to 327K and 240K random 4 KiB IOPS respectively.

At an I/O depth of 1, we measure a read throughput of 193 MiB/s

and a write throughput of 168 MiB/s, which translates to a 38.6 𝜇s

and 43.3 𝜇s latency baseline DPFS overhead respectively.

3.2 DPFS-NFS Performance

Having established the virtualization overheads (via the peak per-

formance), we now evaluate the complete I/O path to a remote

NFS server from the host versus from the DPU (steps 1 - 6 vs.

A - D in Figure 1) when using 4 KiB block sizes (10 seconds warm

up, followed by a 60 seconds run). We select 4 KiB as it is one of

the most common block sizes, and is the I/O request size that also

matches the granularity of the system memory pages. 4 KiB I/O

sizes further stresses the software overheads (memory allocation,

scheduling costs), hence, highlighting any inefficiencies.

Figure 2b shows the throughput (y-axis in MiB/s) vs. the I/O

depth (x-axis). A host NFS client (path A - B ) delivers better (11%-

21%) read and write throughput up to an I/O depth of 3. However,

above an I/O depth of 4, DPFS benefits from having a partially

offloaded networking stack, and delivers better throughput (12%-

32%) than the host NFS. However, all configurations do not scale

beyond I/O depth of 16 (see limitations §3.5).

We further analyze the latency of 4 KiB I/O operations in Fig-

ure 2c. As discussed above, at an I/O depth of 1, the host NFS is

faster than DPFS-NFS. For DPFS-NFS, we break down the overhead

into two parts, the DPU induced latency (shown at the bottom

bars, 38.6-43.3 𝜇sec) and the software latency (the upper part, 52.9-

52.2 𝜇sec). We expect the former latency to improve with the newer

generation of DPUs. Furthermore, we use libnfs with Nvidia XLIO

that emulates socket semantics. We expect, a native libnfs imple-

mentation using RDMA would be able to also lower the userspace

NFS overheads. The userspace NFS latency (the latency of NFS from

NFS DPFS-KV

Read 71.2𝜇s (𝜎 : 10𝜇s) 62.6𝜇s (𝜎 : 19.4𝜇s)

Write 79𝜇s (𝜎 : 12.7𝜇s) 70.79𝜇s (𝜎 : 21.2𝜇s)

Table 3: Host NFS vs. DPFS-KV 4 KiB file I/O latencies.

NFS DPFS-NFS +/-

Instructions/op 88,453 32,907 -62.80%

IPC 0.57 0.94 +64.21%

Branch miss rate 2.02 1.06 -47.42%

L1 dCache miss rate 8.82 3.82 -56.65%

dTLB miss rate 0.14 0.15 +7.14%

Savings in CPU cycles/op 4.4×
Table 4: The microarchitectural profile of the host CPU.

the DPU, the top parts) is 26.7%-33% lower than the host NFS latency

due to the hardware offloaded network stack used by DPFS-NFS.

3.3 DPFS-KV Performance

Lastly, we demonstrate that by specializing the file storage backend

with RAMCloud, DPFS can deliver performance optimizations to

workload-specific deployments. Table 3 shows our results of access-

ing complete 4 KiB files which are stored in NFS and RAMCloud

(5 seconds warm up, followed by a 10 second run). These files are

accessed in their entirety (i.e. a single I/O operation). In comparison

to host NFS, DPFS-KV offers 7-12% latency gains over read and write

operations.

3.4 Host microarchitectural analysis

To explain the efficiency gains with DPFS, we conduct a

low-level microarchitectural analysis. We measure the instruc-

tions/operations (quantifies the software overheads in the I/O path),

IPC (quantifies the code path efficiency), branch missprediction

rates (quantifies how predictable the code path is), L1 dCache miss

rate (quantifies data fetch rates), and lastly, dTLB miss rates (quan-

tifies memory management related overheads). All events are mea-

sured using perf with the –kernel-only flag on the host CPU,

hence, comparing the cost of in-kernel host NFS with DPFS-NFS.
We first measure an idle machine for 10 minutes (5 runs, averaged),

and then with a random 4 KiB read/write (50/50 distribution) using

an I/O depth of 128 workload for 10 minutes (5 runs, averaged).

By subtracting the two, we quantify the cost of the host file sys-

tem client implementations of host NFS and DPFS (i.e. virtio-fs,
DPFS-NFS on the DPU).

Table 4 shows that (1) DPFS-NFS is light-weight compared to the

host NFS, requiring 62.80% less instructions to complete a random 4

KiB operation; (2) it has better IPC, partially due to the smaller code

path, but also due to the polling nature of the DPFS-NFS request

dispatching and processing; (3) DPFS-NFS has lower branch and L1

dCache miss rate, implying a simplified execution profile. It has

marginally higher dTLB miss rates, which we attribute to the inef-

ficient page usage of virtio-fs (see §3.5). Overall, by combining

the instructions per I/O and IPC, we find that the DPFS host I/O path

(steps 1-6) is 4.4× more efficient than host NFS (steps A-D).

3.5 Limitations and Future Work

The current work is limited by a few restrictions, whichwe expect to

be improved as the usage of virtio-fs becomes prevalent. Firstly,
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Figure 2: DPFS performance analysis

the current implementation of virtio-fs in the kernel does not

support multi-queue [37], hence, DPFS currently only supports a

single virtio queue per tenant. Because of an implementation

limitation in DPFS we can only leverage a single DPU thread to

process the single virtio queue, limiting the throughput achieved

in Figure 2a and Figure 2b. A single queue only limits the available

throughput per tenant, not the number of tenants supported. We

are currently working on adding support for multi-tenancy through

SR-IOV [8] on the Nvidia BlueField-2 to DPFS.

Secondly, the FUSE headers use an excessive amount of pages

(3 pages for a read I/O, 4 pages for a write I/O) to store their head-

ers [37]. Due to a memory bottleneck of Nvidia XLIO (tight inte-

gration with hardware, huge pages, memory pinning) when using

large amounts of memory, DPFS-NFS can only configure the virtio
queue size with a maximum of 64 pages in the DPU. With at least

four pages overhead in a virtio-fs operation, DPFS-NFS is there-

fore restricted to a queue depth of only 16 (64/4).

Thirdly, since virtio-fs file system operations flow through

the DPU’s SoC complex, the comparably weak hardware found in

the Nvidia BlueField-2 (ARM A72 cores, single-channel DDR3) [32]

poses a significant bottleneck. This bottleneck can be seen in the

throughput difference of DPFS-null (Figure 2a) and DPFS-NFS (Fig-
ure 2b). Where DPFS-NFS is only able to achieve ~20% of the 4 KiB

throughput of DPFS-null because of TCP processing and the sev-

eral extra data copies it incurs.

We expect that the next iterations of the hardware/software stack

will help alleviate these limitations, and that tightly integrating the

file system implementation with the hardware to prevent memory

copies will speed up large block size workloads.

4 RELATEDWORK

All cloud providers offer high-performance, scalable file-system ser-

vices designed for large scale, multi-tenancy, and high availability.

However, today, the typical way of accessing cloud file-system ser-

vices is either through an NFS client (standard in-kernel) [3, 12, 27]

or by running a cloud-provider’s file system client code on the ten-

ant machine [10, 11, 36]. Such an approach provides poor isolation

between cloud tenants and providers, while consuming signifi-

cant tenant resources (CPU, RAM). With improving DPU capabili-

ties [4, 5], many projects in both academia and industry explored

leveraging them for virtualizing and accelerating various cloud

services. Examples include for networking functions [9, 41, 42, 49],

for block storage [14, 15, 26, 28], for key-value and object stor-

age [23, 40, 45]. Our work follows in this direction by focusing on

offloading and abstracting file-system services, an area overlooked

until recently.

The closest works to our paper are (1) LineFS [16], which pro-

vides a persistent memory distributed file system that leverages

the DPU for offloading noisy background tasks, and (2) FISC [21],

which is a cloud-native file system that offloads the complete file

system to an FPGA-based DPU and remote servers through a cus-

tom Virtio-Fisc device interface. DPFS differs from these works in

two manners. Firstly, DPFS and FISC utilize DPU-offloading for

virtualization, by decoupling the file system client from the file

system implementation, the burden on the host CPU is decreased

and the control the Cloud provider has over the file system stack

is increased. Whereas LineFS utilizes DPU-offloading for perfor-

mance improvements. Secondly, DPFS differs from FISC in that it

offloads the file system implementation to an off-the-shelf CPU-

based DPU (e.g. Nvidia BlueField-2) with the existing virtio-fs
host software-stack and provides an open API for implementing

different file system backends.

5 CONCLUSIONS

To address the challenges of providing a light-weight client for

distributed file systems, we propose to virtualize and decouple the

file system API from its implementation using DPUs. We leverage

the Linux virtio-fs software stack to pass file operations to a

DPU, where various optimized network/storage backends can be

implemented by a cloud provider. In our evaluation we demonstrate

that DPFS, our framework, is light-weight (40 𝜇sec base latency,

4.4× lower host CPU overhead), has competitive performance, and

requires zero configuration or modifications on the host.
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