
Understanding Modern Storage APIs:
A systematic study of libaio, SPDK, and io_uring

Diego Didona, Jonas Pfefferle
Nikolas Ioannou, Bernard Metzler

IBM Research Europe
Zurich, Switzerland

{ddi,jpf,nio,bmt}@ibm.zurich.com

Animesh Trivedi
VU Amsterdam

Amsterdam, Netherlands
a.trivedi@vu.nl

ABSTRACT
Recent high-performance storage devices have exposed soft-
ware inefficiencies in existing storage stacks, leading to a
new breed of I/O stacks. The newest storage API of the Linux
kernel is io_uring. We perform one of the first in-depth
studies of io_uring, and compare its performance and dis-
/advantages with the established libaio and SPDK APIs. Our
key findings reveal that (i) polling design significantly im-
pacts performance; (ii) with enough CPU cores io_uring
can deliver performance close to that of SPDK; and (iii) per-
formance scalability over multiple CPU cores and devices
requires careful consideration and necessitates a hybrid ap-
proach. Last, we provide design guidelines for developers of
storage intensive applications.
ACM Reference Format:
Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler
and Animesh Trivedi. 2022. Understanding Modern Storage APIs:
A systematic study of libaio, SPDK, and io_uring. In The 15th
ACM International Systems and Storage Conference (SYSTOR ’22),
June 13–15, 2022, Haifa, Israel. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3534056.3534945

1 INTRODUCTION
Modern non-volatile memory (NVM) storage technologies,
like Flash and Optane SSDs, can support down to single
digit 𝜇second latencies, and up to multi GB/s bandwidth
with millions of I/O operations per second (IOPS). CPU per-
formance improvements have stalled over the past years
due to various manufacturing and technical limitations [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’22, June 13–15, 2022, Haifa, Israel
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9380-5/22/06. . . $15.00
https://doi.org/10.1145/3534056.3534945

As a result, researchers have put considerable effort into
identifying new CPU-efficient storage APIs, abstractions, de-
signs, and optimizations [2, 3, 11, 13, 15, 19, 22, 25, 26, 30, 31].
One specific API, io_uring, has drawn much attention from
the community due to its versatile and high performance
interface [5, 15, 16, 18, 27, 34]. io_uring was introduced
in 2019 and has been merged in Linux v5.1. It brings to-
gether many well established ideas from the high perfor-
mance storage and networking communities, such as asyn-
chronous I/O, shared memory-mapped queues, and polling
(Section 2) [9, 10, 31, 32].

With the addition of io_uring, Linux now has multi-
ple ways of accessing a storage device. In this paper, we
look at Linux Asynchronous I/O (libaio) [6, 24], the Storage
Performance Development Kit (SPDK) from Intel® [13], and
io_uring [15, 17, 18]. These APIs have different parameters,
deployment models, and characteristics, which make under-
standing their performance and limitations a challenging
task. The use of the io_uring API and its performance has
been the focus of recent studies [7, 28, 33, 36]. However, to the
best of our knowledge, there is no systematic study of these
APIs that provides design guidelines for the developers of I/O
intensive applications. There has also been an extensive body
of work in studying system call overhead [29], implementing
better interrupt management for I/O devices [30], leveraging
polling for fast storage devices [38], using I/O speculation
for 𝜇second-scale devices such as NVMe drives [35], and
improving the performance of the Linux block layer in gen-
eral [3, 39, 40]. These works are orthogonal to ours, since
they explore designing new storage stacks, while we focus
on the performance characteristics of state-of-the-art APIs
that are readily available in Linux.
Our main contributions include (i) a systematic compar-

ison of libaio, io_uring, and SPDK, that evaluates their
latency, IOPS, and scalability behaviors; (ii) a first-of-its-kind
detailed evaluation of the different io_uring configurations;
and (iii) design guidelines for high-performance applications
using modern storage APIs. Our key findings reveal that:

120

https://doi.org/10.1145/3534056.3534945
https://doi.org/10.1145/3534056.3534945

SYSTOR ’22, June 13–15, 2022, Haifa, Israel D. Didona et al.

Figure 1: io_uring I/O modes considered in this paper.

• Not all polling methods are created equal.We evalu-
ate different polling mechanisms. SPDK offers a single user-
space polling mechanism for both submission and comple-
tion, while io_uring offers two options that can be enabled
independently: polling for completion, and kernel-thread
polling for submission. We observe that polling can be both
the key to achieving high performance and the cause of
order-of-magnitude performance losses (Section 3.1).
• io_uring is close to SPDK. io_uringwith kernel polling
can deliver performance close to SPDK (within 10%), thanks
to the elimination of system calls from the I/O path. However,
this performance needs twice as many CPU cores as SPDK
(Section 3.2).
• Performance scalability warrants careful considera-
tions.When not enough CPU cores are available, io_uring
with kernel polling can lead to a collapse of performance.
Hence, a hybrid and scale-aware approach needs to be taken
for the selection of the API and its parameters (Section 3.3).

2 LIBAIO, SPDK, IO_URING: A PRIMER
libaio. The Linux asynchronous API allows applications
to interact with any block device (HDD, SATA SSDs, and
NVMe SSDs) in an asynchronous fashion [6, 24]. The main
benefits of libaio are its ease of use, flexibility, and high
performance compared to the traditional blocking I/O APIs.
The design of libaio revolves around two main system
calls: io_submit to submit I/O requests to the kernel, and
io_getevents to retrieve the completed I/O requests. The
main limitation of libaio is its per I/O performance over-
head [20, 33], which stems from relying on two system calls
per I/O operation, using interrupt-based completion notifica-
tions, and copyingmeta-data [15, 33]. Moreover, libaio only
supports unbuffered accesses (i.e., with O_DIRECT) [15, 18].
SPDK. Introduced by Intel in 2010, SPDK [13] is the de facto
high-performance API in Linux, used by many projects [14,
20, 23, 37, 41]. SPDK implements a zero-interrupt, zero-copy,
poll-driven NVMe driver in user space. PCIe registers are
mapped to user space to configure submission (SQs) and
completion (CQs) queues shared between a device and an
application. I/O requests are submitted to the SQs and com-
pletions are polled from the CQs without the need for inter-
rupts or system calls. The downsides of SPDK are its increased

CPU 2x Intel® Xeon® E5-2630, 2.2GHz, 10 cores/socket, hyper-
threading disabled, with Spectre and Meltdown patches, in-
tel_pstate=disable, intel_idle.max_cstate=1

DRAM 128 GiB, DDR4

Storage 20 Intel® DC P3600 400GB NVMe SSDs (10x2 on 2 NUMA nodes),
spec: 320KIOPS (randread), 30KIOPS (randwrite), preconditioned
as in [4]

Software Ubuntu20, kernel 5.13.0-051300-generic, fio 3.28, SPDK commit
af31c4c

Table 1: Benchmarking environment.

complexity and reduced scope of usability with respect to
libaio: SPDK does not support Linux file system integration,
and cannot benefit from many kernel storage services such
as access control, QoS, scheduling, and quota management.
io_uring. io_uring aims to bridge the gap between the ease
of use and flexibility of libaio and the high performance of
SPDK. io_uring (i) implements a shared memory-mapped,
queue-driven request/response processing framework; (ii)
supports POSIX asynchronous data accesses both on direct
and buffered I/O; (iii) works with different block devices
(e.g., HDDs, SATA SSDs and NVME SSDs) and with any file
system (and files). io_uring achieves low meta-data copy
and system call overhead by implementing two ring data
structures that are mapped into user space and shared with
the kernel. The submission ring contains the I/O request
posted by the application. The completion ring contains the
results of completed I/O requests. The application can insert
and retrieve I/O entries by updating the head/tail pointers
of the rings atomically, without using system calls.

io_uring can perform I/O in different ways. Figure 1 pro-
vides a visual representation of the different io_uring I/O
modes, which we describe below and evaluate in Section 3.
By default, the application notifies the kernel about new re-
quests in the submission ring using the io_uring_enter
system call. As the completion ring is mapped in user space,
the application can check for completed I/O by polling,
without issuing any system calls. Alternatively, the same
io_uring_enter system call can be used to wait for com-
pleted I/O requests. io_uring_enter supports both an
interrupt-driven (Figure 1a) and a polling-based (Figure 1b)
I/O completion. The io_uring_enter system call can be
used to submit new I/O requests and at the same time wait
for completed I/O requests. This allows reducing the num-
ber of system calls per I/O. io_uring further supports an
operational mode that requires no system calls. In this mode,
io_uring spawns a kernel thread (one per io_uring con-
text) that continuously polls the submission ring for new I/O
requests (Figure 1c).

121

Understanding Modern Storage APIs:
A systematic study of libaio, SPDK, and io_uring SYSTOR ’22, June 13–15, 2022, Haifa, Israel

 0

 100

 200

 300

1 4 16 64 128

K
IO

P
S

Queue depth

aio
5

.8

2
3

.1

7
2

.6 1
3

3
.6

1
4

4
.9

iou
5

.9

2
3

.7

7
8

.9

1
7

1
.5

1
6

1
.2

iou+p
1

0
.3 3
9

.4

1
2

6
.4 1
7

3
.0

1
7
1

.6

iou+k

0
.1

0
.4

1
.7 6
.9

1
3
.7

spdk

1
0
.4 4
0

.6

1
3

2
.9

2
7
4

.6

3
0

5
.9

(a) Queue depth vs. IOPS, one core (x-axis in log scale).

 0

 100

 200

 300

1 4 16 64 128

K
IO

P
S

Queue depth

aio

6
.0

2
4

.2

7
6

.9

1
5

0
.0

1
5

1
.0

iou

6
.1

2
4

.7

8
1

.9

1
7

7
.9

1
8

2
.5

iou+p

1
0

.9 4
1

.6

1
3

3
.1 1

8
4

.4

1
7

8
.8

iou+k

1
0

.5 3
9

.9

1
2

8
.5

2
5

4
.2

2
6

1
.4

spdk

1
0

.9 4
1

.6

1
3

6
.7

2
8

1
.6

3
1

3
.6

(b) Queue depth vs. IOPS, two cores (x-axis in log scale).

 64

 128

 256

 512

 1024

 0 50 100 150 200 250 300

~8ms

M
e
d
ia

n
 l
a
t.

 (
µ

s
)

KIOPS

(c) IOPS vs. median latency, one core (y-axis in log scale).

 64

 128

 256

 512

 1024

 0 50 100 150 200 250 300

M
e
d
ia

n
 l
a
t.

 (
µ

s
)

KIOPS

(d) IOPS vs. median latency, two cores (y-axis in log scale).

Figure 2: IOPS (top) and median latency (bottom) achieved by a single fio job accessing one drive with one core
(left) or two cores (right). In the latency plots, the different IOPS values are obtained using the queue depth as
independent variable, which can lead to curves with the shape of a ‘hook’ (more details are provided in Section 3.1).

3 PERFORMANCE EVALUATION
In this section, we compare the performance of libaio,
io_uring, and SPDK, using fio [1] as the workload gen-
erator. We used fio because of (i) its flexibility in generating
I/O workloads; (ii) its low-overhead I/O path; and (iii) its full
support for SPDK and different io_uring configurations. We
configured fio to perform random data reads at the gran-
ularity of 4KiB using unbuffered I/O. We chose a read-only
workload because it allows higher IOPS on our drives with
respect to a mixed workload or a write-only one [12]. The
higher IOPS allowed a better evaluation of the scalability
trends of the different APIs and of the effects of the overhead
per I/O operation (e.g., system calls). We used the default
values for the workload generation parameters. We also used
the default configuration parameters for each API, except
for io_uring, which we evaluated under three different con-
figurations: (i) iou: uses io_uring_enter to submit new
I/O, and uses io_uring_enter with interrupts to wait for
completed requests if none are available upon submission

(default in fio, Figure 1a); (ii) iou+p: same as iou except
that it uses polling instead of interrupts in io_uring_enter
(hipri parameter in fio, Figure 1b); (iii) iou+k: uses the
kernel poller thread for I/O submission, and uses polling to
become aware of completed I/O (sqthread_poll parameter
in fio, Figure 1c) – iou+k has zero system call overhead per
I/O. Table 1 describes our benchmarking setup.

3.1 Understanding Polling
We first measured the performance of the three libraries
when running a single fio job that targets a single NVMe
drive, using multiple queue depths (from 1 to 128). We ran
this experiment in two variants, with one or two CPU cores,1
placed on the same NUMA node as the drive. Figure 2a and
Figure 2b report the IOPS obtained for different queue depth
values with one core and two cores, respectively. Figure 2c
and Figure 2d report the median latencies corresponding to

1Other cores disabled using /sys/devices/system/cpu/cpuN/online

122

SYSTOR ’22, June 13–15, 2022, Haifa, Israel D. Didona et al.

 0

 1

 2

1 4

1
6

6
4

1
2
8

A
v
g
 #

 s
y
s
c
a
lls

/I
O

Queue depth

aio
2

.0
0

2
.0

0

2
.0

0

2
.0

0

2
.0

0

iou

2
.0

0

1
.2

6

1
.0

7

1
.0

1

1
.0

1

iou+p

2
.0

0

1
.8

5

1
.3

2

1
.0

1

1
.0

1

io
u

+
k
 a

n
d

 s
p

d
k
=

0

io
u

+
k
 a

n
d

 s
p

d
k
=

0

io
u

+
k
 a

n
d

 s
p

d
k
=

0

io
u

+
k
 a

n
d

 s
p

d
k
=

0

io
u

+
k
 a

n
d

 s
p

d
k
=

0

Figure 3: Average #syscalls per I/O (x-axis in log scale).

the IOPS values obtained on one core and two cores, respec-
tively. We also ran the tests on three cores without observing
any significant difference.We note that some libraries exhibit
latency functions with the shape of a ‘hook’. This is due to
the fact that, for these libraries, increasing the queue depth
past the saturation point leads to a latency increase and a
slight decrease in IOPS, due to increased overhead. Figure 3
reports the average number of system calls per I/O operation
(which is the same on one and two cores). The results lead
to three primary observations.

First, with a single core, iou+k suffers a catastrophic per-
formance loss delivering only 13 KIOPS, i.e., one order of
magnitude less than the other APIs. In this configuration,
the fio thread and the kernel poller thread share the sin-
gle CPU in mutual exclusion. The kernel thread takes up a
significant share of the CPU cycles (50% according to our
perf tracing), which leads to delays in processing the I/O
requests in fio. The median latency of iou+k is 8 msec, i.e.,
one or two orders of magnitude worse than that of the other
two APIs. The median latency of iou+k does not vary with
throughput, because it is determined by the interleaving dy-
namics described earlier, rather than by queueing effects as
it is the case for the other libraries. With two cores (one for
fio and one for kernel thread), the performance of iou+k
recovers completely, being second only to that of SPDK: the
maximum throughput of iou+k is 18% lower than SPDK’s,
and the median latency of iou+k is, up to 200 KIOPS, equal
or within 10% of SPDK.

Second, SPDK delivers the best performance in every con-
figuration. With just one core, SPDK achieves 305 KIOPS
versus the 171 KIOPS and 145 KIOPS of the best io_uring
alternative and libaio, respectively. With two cores, SPDK
achieves 313 KIOPS, vs the 260 KIOPS and 150 KIOPS of
iou+k and libaio, respectively.Moreover, SPDK is the only li-
brary capable of saturating the bandwidth of the drive, while
all other approaches are CPU-bound. Part of this efficiency

 0

 500

 1000

 1500

 2000

a
io

io
u

io
u
+

p

io
u
+

k

s
p
d
k

K
IO

P
S

C=J

7
5

5 8
8

3

8
9

6

3
1

5

1
5

8
7

C=J+1

7
5

4 8
9

8

9
2

0

4
7

2

1
5

9
3

C=J+2

7
6

1 8
9

9

9
1

9

6
3

0

1
5

9
5

C=2J

7
6

0 9
0

2

8
5

7

1
3

6
4 1
5

9
8

Figure 4: Throughput varying #cores (C) with 5 jobs (J).

can be traced down to SPDK’s optimized software stack with
zero system call overhead, zero-copy and polling-based I/O
(see Figure 3). Despite embracing the same polling-based ap-
proSPDK’sach, iou+k cannot achieve the same performance
as SPDK. iou+k, in fact, runs polling on two threads, the ap-
plication one and the kernel one, both accessing the same
shared variables and data structures, which incur overhead
from atomic accesses, memory fences and cache invalida-
tions. SPDK, instead, implements polling with the application
in the same thread, allowing higher resource efficiency. As an
example, on two cores and with a queue depth of 16 (where
iou+p and SPDK have similar throughput), iou+p experiences
a cache miss rate of 5% versus 0.6% for SPDK (cache-misses
counter in perf).
Third, regardless of the number of cores, iou+p achieves

performance that is comparable with SPDK for low tomedium
throughput values (up to ≈ 150 KIOPS). This result is ex-
plained by the fact that, at low queue depths, the system call
overhead in iou+p is not yet so high as to be a bottleneck,
and hence the polling implemented by iou+p is as effec-
tive as the polling implemented by SPDK. At higher queue
depths, however, the system call overhead becomes the bot-
tleneck for iou+p, leading to performance that is worse than
SPDK’s. A similar dynamic can also be observed with iou
and libaio. Up to a queue depth of 16, they achieve very
similar throughput (79 KIOPS and 72 KIOPS, respectively)
and median latency (185 𝜇sec and 190 𝜇sec, respectively).
However, as the depth increases (> 16 in Figure 2a and Fig-
ure 2b), the higher CPU efficiency of iou, which incurs fewer
system calls per I/O operation than libaio, helps to deliver
better performance (182 KIOPS of peak throughput versus
151 KIOPS on two cores).

Interestingly, up to queue depth=16 iou incurs fewer sys-
tem calls per I/O on average than iou+p, despite achieving
worse latency than iou+p. This happens because, at low
queue depths, there is a higher probability that after submit-
ting all the I/O requests, fio has to wait for at least one I/O

123

Understanding Modern Storage APIs:
A systematic study of libaio, SPDK, and io_uring SYSTOR ’22, June 13–15, 2022, Haifa, Israel

 0

 1000

 2000

 3000

 4000

1 2 4 8 10 12 14 16 18 20

K
IO

P
S

drives

aio

1
4

8 3
0

5 6
0

6

1
2

2
5

1
4

4
9

1
7

2
4

1
7

9
0

1
9

9
0

2
1

4
6

2
3

2
4

iou

1
7

9 3
5

9 7
2

1

1
4

3
9

1
6

6
8

1
8

7
4

2
0

5
8

2
2

5
0

2
4

1
8

2
5

7
3

iou+p

1
8

5 3
6

1 7
2

4

1
4

5
9

1
7

3
3

1
9

0
1

2
0

6
5

2
2

3
0 2
5

2
0

2
6

2
8iou+k

2
6

1 5
3

5 1
0

2
3

1
8

7
5 2
1

7
5

1
9

3
8

1
6

9
0

1
4

5
1

1
3

2
7

1
2

3
5

spdk
3

1
3 6

3
5

1
2

7
6

2
0

6
8 2
3

8
5 2
7

0
1 3
0

1
2 3
3

2
4 3
6

9
7

3
8

9
6

Figure 5: Performance scalability over multiple NVMe devices and cores (1 fio job per device, 20 core system).

request to be completed. Then, the delay caused by the inter-
rupt handler in iou allows for processing more completions
at once, at the expense of latency. iou+p, instead, reaps a
completed request as soon as it is available, thus potentially
missing out on opportunities to batch. As the queue depth
increases, both approaches converge to an average of one
system call per I/O operation, and iou+p achieves an higher
throughput by eschewing the interrupt handling overhead.

We note that the results that we have reported differ from
other experimental results reported online with a single phys-
ical core [16]. This discrepancy is due to the fact that such
previous results have been obtained with more powerful
SSDs and CPUs, an optimized benchmarking tool, and an
experimental Linux kernel version [21].

3.2 Different CPU-to-drive ratios
In light of the results discussed so far, we studied the perfor-
mance of the APIs using more than one drive. In particular,
we aimed to observe how many CPUs per drive iou+k needs,
in the general case, to obtain the best performance and avoid
the performance degradation of the one core scenario de-
scribed earlier. We ran a test in which fio runs 𝐽 = 5 jobs,
each accessing a distinct drive, with a queue depth of 128,
and we enabled a different number of cores𝐶 on the machine.
We set𝐶 = 𝐽 , 𝐽 + 1, 𝐽 + 2, 𝐽 ∗ 2. We used 𝐽 = 5 because it cor-
responds to the largest setting such that all the experiments
could run in a single NUMA domain (10 cores per domain).
We remark that iou+k spawns one kernel poller thread per
fio job. Figure 4 reports the results of our experiments.
The results indicate that iou+k is the only library that

benefits significantly from higher CPU-to-drive ratios. The
other libraries only marginally benefit from additional avail-
able CPUs. iou+k, in particular, needs twice as many CPUs

as drives to achieve the highest throughput, indicating that
each polling kernel thread needs a dedicated CPU to achieve
the best performance. When iou+k can run with a dedicated
core per kernel polling thread, it achieves throughput that is
only ≈ 15% lower than SPDK, ≈ 45% higher than iou+p and
iou, and ≈ 80% higher than libaio. These values suggest
that iou+k can achieve remarkable performance without
needing a complete rewrite of an application, as is the case
with SPDK. iou+k, however, can be the worst-performing so-
lution if the number of extra cores is not optimal. In our case
with 5 jobs, allocating just two extra cores to iou+k leads to
throughput that is ≈ 20% lower than libaio, and allocating
no extra cores leads iou+k’s throughput to plummet to less
than half the throughput of libaio.

These results shed light on the inherent provisioning costs
incurred by iou+k to achieve high performance, which were
overlooked by previous experimental results that did not
take into account the CPU-to-drive ratio when analyzing the
performance achievable by iou+k [16].

3.3 Scalability
We now present the results obtained when running the dif-
ferent libraries on a number of drives varying from 1 to 20 to
study their scalability. We configured fio to run 𝐽 jobs, with
𝐽 ranging from 1 to 20, each accessing a different drive. In
light of the results presented so far, we ran the experiments
with 𝐶 = 2𝐽 cores (up to a maximum of 𝐶 = 20, which is
the number of physical cores available on our machine). We
uniformly spread the drives and cores across the two NUMA
domains of the machine when 𝐽 > 1. We ran the tests with a
queue depth of 128 to measure close to the peak throughput
achievable by the APIs. Figure 5 reports the results of the
experiments.

124

SYSTOR ’22, June 13–15, 2022, Haifa, Israel D. Didona et al.

The results showcase the implications for scalability of the
dynamics that we have described in the previous sections.
SPDK achieves the best performance across the board, and
the second best performing library depends on the number
of fio jobs executing and the number of cores available.
As long as 𝐽 ≤ 10, iou+k can allocate a separate core to

each kernel polling thread, achieving linear scalability and
throughput that is between 9% and 16% lower than SPDK’s,
between 27% and 45% higher than iou and iou+p (which
perform very similarly), and between 50% and 76% higher
than libaio. As soon as the number of jobs 𝐽 is such that
2𝐽 > 20, however, the kernel polling threads and the applica-
tion threads start to interleave their executions on the limited
number of cores, leading to a gradual performance degra-
dation of iou+k. In our setting, 𝐽 = 12 is the point where
the performance of iou+k crosses those of iou+p and iou.
With 𝐽 = 14, iou+k becomes the worst performing library,
with throughput that is 44% lower than SPDK’s, 18% lower
than iou’s and iou+p’s, and even 5% lower than libaio’s.
When 𝐽 = 20, iou+k’s throughput is less than one third of
that achieved by SPDK, and roughly half of that achieved by
libaio and the other two iou variants.
In contrast, libaio, iou and iou+p maintain a rather

steady scalability trend, and the latter two achieve near iden-
tical performance, as already discussed in the previous sec-
tions. From 𝐽 = 14 to 𝐽 = 20, iou and iou+p are the second
best libraries, with throughput that is 33% lower than SPDK’s.
For those cases, notably, libaio achieves throughput that is
only 10% lower than iou+p and iou.

4 LESSONS AND FUTURE DIRECTIONS
Lesson 1: Not all polling methods are created equal.
The unified user space polling of SPDK achieves the highest
performance across all APIs, by eliminating data copies and
system call overhead, but also by performing all I/O oper-
ations through a single thread context. iou+k also uses no
system calls and minimizes data copies, but can suffer from
catastrophic performance loss if not enough extra cores are
available for the kernel poller threads (Figure 2). iou+p uses
a system call-aided polling scheme and eschews the need for
such extra cores. iou+p can achieve similar latencies as SPDK
at low throughput (Figure 2b), but cannot match the SPDK’s
peak performance due to its higher system call overhead
(Figure 3).
Lesson 2: io_uring can get close to SPDK. The perfor-
mance and scalability of iou+k can be similar to SPDK’s,
with the crucial caveat that more cores than drives must
be available on the machine to efficiently support kernel
space polling. Our results recommend using twice as many
CPU cores as the number of drives (Figure 4). iou+p can
achieve latencies similar to SPDK under low to medium load

(Figure 2b), but ultimately it cannot match the throughput
and scalability of SPDK (Figure 5). Finally, iou is consistently
the worst-performing configuration of io_uring, suggest-
ing that polling is one of the key ingredients to unleashing
the full potential of io_uring.
Lesson 3: Performance scalability needs careful con-
siderations. In our largest experiment (20 drives), SPDK out-
performs the second best approach (iou+p) in throughput
by as much as 50%. The price to pay for these higher perfor-
mance is giving up out-of-the-box Linux file support, as well
as writing application logic amenable to SPDK’s polling API.
If support for a file system is necessary, which is the case
for most applications, then iou+k can deliver performance
within 90% of SPDK, but it utilizes twice as many cores (20
vs 10). For better performance scalability when not enough
cores are available, developers can use iou+p, which can
match the SPDK performance at low to medium queue depths
(Figure 2b).
Research directions. Our study has focused on the perfor-
mance of the fiomicrobenchmark on raw block devices. An
interesting research direction is assessing the implications
of different storage APIs on the end-to-end performance
of more realistic I/O-intensive applications, like databases.
Such applications are often built on top of file systems, in-
cur extra overhead (e.g., synchronization) that can mask I/O
path bottlenecks, and use optimizations such as I/O batching.
Another open research avenue is identifying more efficient
application designs with iou+k, for example, by means of a
better interleaving between the application and kernel poller
threads, or by sharing kernel poller threads across applica-
tion threads. Finally, we note that io_uring supports I/O
over sockets as well, hence its performance should be studied
also in the context of networked applications.

5 CONCLUSIONS
We present the first systematic study and comparison be-
tween SPDK, libaio and the emerging io_uring storage
APIs on top of raw block devices. Our main findings are
that polling and a low system call overhead are crucial to
performance, and that io_uring can achieve performance
that is close to SPDK’s, but obtaining io_uring’s best per-
formance requires understanding its design and applying
careful tuning.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their feedback. Spe-
cial thanks to our shepherd, Geoff Kuennig, for his careful
reading and his many insightful comments and suggestions,
which greatly improved the paper. Animesh Trivedi is sup-
ported by the NWO grant number OCENW.XS3.030, Project
Zero: Imagining a Brave CPU-free World!

125

Understanding Modern Storage APIs:
A systematic study of libaio, SPDK, and io_uring SYSTOR ’22, June 13–15, 2022, Haifa, Israel

REFERENCES
[1] Jens Axboe. Accessed: 2021-12-20. The Flexible I/O tester. https:

//fio.readthedocs.io/.
[2] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,

Damien Le Moal, Gregory R. Ganger, and George Amvrosiadis. 2021.
ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. InUSENIX
Annual Technical Conference (USENIX ATC 21). USENIX Association,
689–703.

[3] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. 2013.
Linux Block IO: Introducing Multi-Queue SSD Access on Multi-Core
Systems. In 6th International Systems and Storage Conference (SYSTOR
13). ACM, Article 22, 10 pages.

[4] Diego Didona, Nikolas Ioannou, Radu Stoica, and Kornilios Kourtis.
2020. Toward a Better Understanding and Evaluation of Tree Structures
on Flash SSDs. Proc. VLDB Endow. 14, 3 (2020), 364–377.

[5] Rust docs. Accessed: 2021-12-20. Crate io_uring. https://docs.rs/io-
uring/latest/io_uring/.

[6] Daniel Ehrenberg. Accessed: 2021-12-20. The Asynchronous In-
put/Output (AIO) interface. https://github.com/littledan/linux-aio.

[7] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploit-
ing Directly-Attached NVMe Arrays in DBMS. In 10th Conference on
Innovative Data Systems Research (CIDR 20). www.cidrdb.org, Online
Proceedings. http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf

[8] John L. Hennessy and David A. Patterson. 2019. A New Golden Age
for Computer Architecture. Commun. ACM 62, 2 (Jan 2019), 48–60.

[9] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry.
2018. PASTE: ANetwork Programming Interface for Non-VolatileMain
Memory. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). USENIX Association, 17–33.

[10] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP
== RDMA: CPU-efficient Remote Storage Access with i10. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, 127–140.

[11] JaehyunHwang,Midhul Vuppalapati, Simon Peter, and Rachit Agarwal.
2021. Rearchitecting Linux Storage Stack for Microsecond Latency and
High Throughput. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21). USENIX Association, 113–128.

[12] Intel(R). Accessed: 2022-05-02. Intel® SSD DC P3600 400GB NVMe
SSDs. https://ark.intel.com/content/www/us/en/ark/products/80997/
intel-ssd-dc-p3600-series-400gb-2-5in-pcie-3-0-20nm-mlc.html.

[13] Intel®. Accessed: 2021-12-20. The Storage Performance Development
Kit (SPDK). https://spdk.io/.

[14] Intel®. Accessed:2022-04-26. SPDK In The News. https://spdk.io/
news/.

[15] Jens Axboe. Accessed: 2021-12-20. Efficient IO with io_uring, . https:
//kernel.dk/io_uring.pdf.

[16] Jens Axboe. Accessed: 2021-12-20. That’s it. 10M IOPS, one physical
core. https://twitter.com/axboe/status/1452689372395053062.

[17] Jonathan Corbet. Accessed: 2021-12-20. Ringing in a new asynchro-
nous I/O API. https://lwn.net/Articles/776703/.

[18] Jonathan Corbet. Accessed: 2021-12-20. The rapid growth of io_uring.
https://lwn.net/Articles/810414/.

[19] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho.
2014. The Multi-streamed Solid-State Drive. In 6th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 14). USENIX
Association.

[20] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. 2019. Reap-
ing the performance of fast NVM storage with uDepot. In 17th USENIX
Conference on File and Storage Technologies (FAST 19). USENIX Associ-
ation, 1–15.

[21] Michael Larabel. Accessed: 2022-05-02. Axboe Achieves 8M IOPS Per-
CoreWith Newest Linux Optimization Patches. https://www.phoronix.
com/scan.php?page=news_item&px=8M-IOPS-Per-Core-Linux.

[22] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee, and
Jinkyu Jeong. 2019. Asynchronous I/O Stack: A Low-Latency Kernel
I/O Stack for Ultra-Low Latency SSDs. In USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, 603–616.

[23] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye, Sudarsun Kannan,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2021. Scale
and Performance in a Filesystem Semi-Microkernel. In 28th Symposium
on Operating Systems Principles (SOSP 21). ACM, 819–835.

[24] Linux Programmer’s Manual. Accessed: 2021-12-20. io_submit - submit
asynchronous I/O blocks for processing. https://man7.org/linux/man-
pages/man2/io_submit.2.html.

[25] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and
Yuanzheng Wang. 2014. SDF: Software-Defined Flash for Web-Scale
Internet Storage Systems. SIGPLAN Not. 49, 4 (Feb 2014), 471–484.

[26] Anastasios Papagiannis, Giorgos Saloustros, Manolis Marazakis, and
Angelos Bilas. 2017. Iris: An Optimized I/O Stack for Low-Latency
Storage Devices. SIGOPS Oper. Syst. Rev. 50, 2 (Jan 2017), 3–11.

[27] PingCAP-Hackthon2019-Team17. Accessed: 2021-12-20. IO-uring
speed the RocksDB&TiKV. http://openinx.github.io/ppt/io-uring.pdf.

[28] Ruslan Savchenko. 2021. Reading from External Memory.
arXiv:cs.DC/2102.11198

[29] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call
Scheduling with Exception-Less System Calls. In 9th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 10).
USENIX Association, 33–46.

[30] Amy Tai, Igor Smolyar, Michael Wei, and Dan Tsafrir. 2021. Optimiz-
ing Storage Performance with Calibrated Interrupts. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21). USENIX Association, 129–145.

[31] Animesh Trivedi, Nikolas Ioannou, Bernard Metzler, Patrick Stuedi,
Jonas Pfefferle, Kornilios Kourtis, Ioannis Koltsidas, and Thomas R.
Gross. 2018. FlashNet: Flash/Network Stack Co-Design. ACM Trans.
Storage 14, 4, Article 30 (Dec 2018), 29 pages.

[32] Animesh Trivedi, Patrick Stuedi, Bernard Metzler, Roman Pletka,
Blake G. Fitch, and Thomas R. Gross. 2013. Unified High-Performance
I/O: One Stack to Rule Them All. In 14th Workshop on Hot Topics in
Operating Systems (HotOS 14). USENIX Association.

[33] Vishal Verma, John Kariuki. Accessed: 2021-12-20. Improved
Storage Performance Using the New Linux Kernel I/O Inter-
face. https://www.snia.org/educational-library/improved-storage-
performance-using-new-linux-kernel-io-interface-2019.

[34] Wander Hillen. Accessed: 2021-12-20. Preliminary benchmarking
results for a Haskell I/O manager backend based on io_uring. http:
//wjwh.eu/posts/2020-07-26-haskell-iouring-manager.html.

[35] Michael Wei, Matias Bjørling, Philippe Bonnet, and Steven Swanson.
2014. I/O Speculation for the Microsecond Era. In USENIX Annual
Technical Conference (USENIX ATC 14). USENIX Association, 475–481.

[36] WiredTiger. Accessed: 2021-12-20. Implement asynchronous IO using
io_uring API. https://jira.mongodb.org/browse/WT-6833.

[37] Shuai Xue, Shang Zhao, Quan Chen, Gang Deng, Zheng Liu, Jie Zhang,
Zhuo Song, Tao Ma, Yong Yang, Yanbo Zhou, Keqiang Niu, Sijie Sun,
and Minyi Guo. 2020. Spool: Reliable Virtualized NVMe Storage Pool
in Public Cloud Infrastructure. In USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 97–110.

[38] Jisoo Yang, Dave B. Minturn, and Frank Hady. 2012. When Poll Is
Better than Interrupt. In 10th USENIX Conference on File and Storage
Technologies (FAST 12). USENIX Association.

[39] Young Jin Yu, Dong In Shin, Woong Shin, Nae Young Song, Jae Woo
Choi, Hyeong Seog Kim, Hyeonsang Eom, and Heon Young Yeom.

126

https://fio.readthedocs.io/
https://fio.readthedocs.io/
https://docs.rs/io-uring/latest/io_uring/
https://docs.rs/io-uring/latest/io_uring/
https://github.com/littledan/linux-aio
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
https://ark.intel.com/content/www/us/en/ark/products/80997/intel-ssd-dc-p3600-series-400gb-2-5in-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/80997/intel-ssd-dc-p3600-series-400gb-2-5in-pcie-3-0-20nm-mlc.html
https://spdk.io/
https://spdk.io/news/
https://spdk.io/news/
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://twitter.com/axboe/status/1452689372395053062
https://lwn.net/Articles/776703/
https://lwn.net/Articles/810414/
https://www.phoronix.com/scan.php?page=news_item&px=8M-IOPS-Per-Core-Linux
https://www.phoronix.com/scan.php?page=news_item&px=8M-IOPS-Per-Core-Linux
https://man7.org/linux/man-pages/man2/io_submit.2.html
https://man7.org/linux/man-pages/man2/io_submit.2.html
http://openinx.github.io/ppt/io-uring.pdf
https://arxiv.org/abs/cs.DC/2102.11198
https://www.snia.org/educational-library/improved-storage-performance-using-new-linux-kernel-io-interface-2019
https://www.snia.org/educational-library/improved-storage-performance-using-new-linux-kernel-io-interface-2019
http://wjwh.eu/posts/2020-07-26-haskell-iouring-manager.html
http://wjwh.eu/posts/2020-07-26-haskell-iouring-manager.html
https://jira.mongodb.org/browse/WT-6833

SYSTOR ’22, June 13–15, 2022, Haifa, Israel D. Didona et al.

2014. Optimizing the Block I/O Subsystem for Fast Storage Devices.
ACM Trans. Comput. Syst. 32, 2, Article 6 (Jun 2014), 48 pages.

[40] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon Koh, Changlim
Lee, Mohammad Alian, Myoungjun Chun, Mahmut Taylan Kandemir,
Nam Sung Kim, Jihong Kim, and Myoungsoo Jung. 2018. FlashShare:
Punching Through Server Storage Stack from Kernel to Firmware for
Ultra-Low Latency SSDs. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association,
477–492.

[41] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang, Yibin Shen, and
Xin Long. 2020. High-density Multi-tenant Bare-metal Cloud. In 25th
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS 20). ACM, 483–495.
Notes: IBM is a trademark of International Business Ma-
chines Corporation, registered in many jurisdictions world-
wide. Intel and Intel Xeon are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United
States and other countries. The registered trademark Linux®
is used pursuant to a sublicense from the Linux Foundation,
the exclusive licensee of Linus Torvalds, owner of the mark
on a worldwide basis. Other products and service names
might be trademarks of IBM or other companies.

127

	Abstract
	1 Introduction
	2 libaio, SPDK, io_uring: a primer
	3 Performance Evaluation
	3.1 Understanding Polling
	3.2 Different CPU-to-drive ratios
	3.3 Scalability

	4 Lessons and Future Directions
	5 Conclusions
	References

