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Abstract—Serverless computing promises to make cloud com-
puting cheaper and easier to use. However, serverless platforms
use coarse-grained scheduling which decreases efficiency and
application performance. We propose a fine-grained application
model for serverless applications, and use it to design a scheduler
to improve application performance and efficiency. We model
serverless applications as being composed of microtasks, each
with its own unique resource requirements. Microtasks are
easily identified via distinct application phases like initialize,
read, and process. We provide evidence for the existence of
microtasks by experimentally evaluating a serverless online game.
We design a scheduler that separates microtasks with different
CPU requirements into different queues so that the appropriate
amount of CPU cores could be allocated to each queue based
on the CPU requirements of the microtasks in that queue. We
implement and evaluate the design in an application-level proof-
of-concept microtask-based scheduler and compare it to task-
based scheduling commonly used by serverless platforms. For
a distributed sort application, the microtask-based scheduler
decreases application makespan by 37% and the duration of
I/O based application stages by 81%, compared to task-based
scheduling. Our work suggests that there is potential in extracting
and using microtask information from serverless applications.

Index Terms—cloud, serverless, performance, scheduling, game

I. INTRODUCTION

Cloud computing is widely used by society, with end-user
spending on the cloud predicted to reach over $500 billion [|1]].
Serverless computing promises to make the cloud cheaper and
easier to use [2]. But, serverless platforms still inefficiently
allocate resources in a coarse-grained manner for the whole
duration of the application task [3|]. Existing work tackles
this problem, but does not take into account the fine-grained
structure of serverless tasks. We investigate whether indeed
task resource requirements and allocated resource granularity
match in serverless computing and, after showcasing evidence
they do not, propose a finer-granularity scheduler.

Serverless computing promises to fulfill the pay-per-use
promise of cloud computing, whereby users pay only for
resources they use at a fine granularity [2]]. The community has
made much progress in making this possible as resources can
be leased for as little as 100 milliseconds. But, all popular
open-source serverless platforms come with the limitation
that the quantity of resources (CPU, RAM, and network
bandwidth) allocated to a serverless task is fixed for its whole
duration [4]-[6]. At best, they use simple oversubscription.
The fixed resource quantity violates the pay-per-use promise,
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Fig. 1. Exemplary result comparing the makespan of serverless sort imple-
mentation with microtask-based scheduling to one with task-based scheduling.
The microtask-scheduling based version finishes 37% earlier, by median
values.

as applications do not completely use the leased resources all
the time [3[]. This inefficiency also hurts the performance of
applications as resources are reserved for applications which
do not use them.

Do real-world serverless applications leave room for
better scheduling? Many current serverless applications are
based on relatively short tasks (100s of milliseconds to a few
seconds) [7]-[9]]. At this fine granularity, it is unclear if there
is room to improve resource utilization and reduce makespan
with better scheduling. Through an experimental evaluation,
we demonstrate that the fine-grained parts of the serverless
tasks which correspond to different resource demands can be
clearly seen in the structure of the application. We call these
clearly identifiable portions microtasks. We show the presence
of microtasks in two applications: sort, a popular benchmark
representative of the shuffle phase found in data analytics
applications [[10]], and a serverless online game [11].

Even after identifying the microtask-based structure of
applications, using it for better scheduling is challenging as
applications are not setup to expose their microtasks, and
the schedulers not setup to use that information. We propose
that programmers can communicate an application’s microtask
structure to the serverless runtime using annotations, for better
scheduling decisions. We present a scheduler design for one
resource, where microtasks with different CPU demands are
scheduled using different queues. CPU cores are allocated to
service each queue based on the intensity of the microtasks
that queue services.

Although appealing, the concept of microtasks has not
been evaluated in practice. In this work, we conduct early
experiments with microtask-based scheduling (§IV). We eval-
uate if exposing an application’s microtask-based structure
improves the performance of the application. We compare
the makespan, time elapsed from the start of the application
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Fig. 2. Tasks from two applications, sort and online game, represented with
a microtask-based model. Notice that different microtasks in each application
task have different resource utilization. Read, write, and 16 online users
require less resources and do not use all resources allocated to the application.
The other microtasks can make use of all the allocated resources. Also notice
that the microtasks correspond to easily identifiable parts of the applications.

to its completion, of the sort application implemented using
microtask-based scheduling to the sort application using task-
based scheduling. Figure [I] depicts an exemplary result that
captures the contribution of this work. Using our method
(§m) and experimental evaluation (§|I_V[), the median duration
of a serverless application can be reduced from 292 seconds
to 183 seconds when using microtasks (a 37% improvement),
and the rest of the statistical distribution of makespan shows
similar improvements.

Addressing the problem of efficiently improving the per-
formance of serverless applications, we make a three-fold
contribution:

1) We model serverless applications as being composed
of microtasks in We support our model with the
experimental evaluation of an online game.

2) We design a microtask-based scheduler that separates
microtasks with different CPU requirements into dif-
ferent queues in §III It then partitions the available
CPU cores across these queues based on the the CPU
requirements on the microtasks the queue serves.

3) We evaluate the microtask-based scheduler design by
implementing and comparing it to the task-based sched-
uler design used in popular open-source serverless plat-

forms in

II. REAL-WORLD SERVERLESS TASK-STRUCTURE LEAVES
ROOM FOR BETTER SCHEDULING

In this section, we present an application model based on
microtasks, and experimental evidence to support that model.

A. Microtask-based Model of Serverless Applications

We depict the microtask-based execution model of two
applications, sort [[10] and serverless online game [12], and
their constituent microtasks in Figure [2] Distributed serverless
applications like sort and the online game are composed
of many tasks. Each task performs a specific function like
processing a piece of data, or simulating a potion of the online
game. These tasks are further divided into microtasks, each of
which has specific resource requirements and can be easily
identified in the structure of the application.
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Fig. 3. Breakdown of startup time by process step, for several resource

configuration, for a serverless online game. Notice the decrease in startup
time as the amount of resources increases.
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Fig. 4. The distribution of the duration of simulation ticks, when 16 players
execute a standard benchmark, for several resource configurations. Notice the
lack of change after 1 vCPU. At 0.5 vCPU, there are many outliers which is
not desirable for a game. Therefore, going higher up to 1 vCPU is beneficial.
Anymore resources than 1 vCPU are redundant.

The serverless sort application takes as input files filled
with unsorted 100 byte records. The application works in
two stages. First, the unsorted records are partitioned into
categories according to the first byte and the outputs written to
storage. In the second stage, the categories output by the first
stage are sorted. Figure 2] depicts a single function execution
during the first stage. The function execution is split into
3 microtasks: read, partition, and write. The read and write
microtasks use little CPU compared to the partition microtask.
But, the function needs to be configured with the high amount
of CPU necessary for the partition microtask.

The serverless online game application is composed of a
single stage. The application function is initialized, and can
then simulate the environment for the connected players. The
function execution is simplistically split into 3 microtasks:
initialization, 16 users online, and 40 users online. The 16
users online microtask consumes little CPU compare to the
initialization or the 40 users online microtasks. But, the
function needs to be configured with the resources necessary
for the larger microtasks.

In both the aforementioned applications, the applications
are configured with a fixed amount of resources irrespective
of how many resources the microtask executing at that time
actually needs. In our model, the read/write stages in the sort
application and the 16 online users stage in the game have low
CPU utilization. But, a high amount of CPU are reserved for
the whole application based on the highest resource utilization
microtasks. We will validate this model for the serverless

online game in §lI-B|
B. Experimental Evidence for the Microtask-based Model

To support our claim about the existence of microtasks
with different resource demands, we design an experiment
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Fig. 5. Design of the microtask-based scheduler.

to evaluate the performance of microtasks as the resources
allocated to them change. We perform this evaluation with one
of the two modeled application, the serverless online game.

Figure 3| depicts the initialization time of a game function
under different resource allocations. Notice the 80% drop
in initialization time from 63 seconds to 12 seconds when
we allocate 4 vCPUs instead of 0.5 vCPUs. Hence, the
initialization microtask can make use of a large amount of
allocated resources for better performance.

Figure [] depicts the latency experienced by users as more
resources are allocated to the function. The number of outliers
decreases going from 0.5 vCPU to 1 vCPU, which is important
for game. Beyond 1 vCPU, there is no drop in latency. Hence,
the game simulation microtask responsible for users does not
perform better as more resources are allocated. An efficient
scheduler would just allocate the 1 vCPU the simulation
microtask requires to perform well.

Therefore, we demonstrate that some microtasks of the same
function are more resource hungry than others.

III. BETTER SCHEDULING USING MICROTASKS

Our design goal is to make it possible for the serverless
runtime system to allocate the exact amount of resource
required by a microtask. This has the potential of users
paying for exactly the resources they use. We explore several
alternative approaches for this, and explain how microtask-
based scheduling achieves our goal.

A. Design Alternatives

Existing operational techniques for efficient resource allo-
cation use statistical properties of applications to schedule
multiple applications together. The scheduling is done such
that resource left unused by one application are used by
others. Three major categories of operational techniques exist
classified based on the kind of performance isolation they
provide.

Oversubscription: All resources on a machine are available
to all applications scheduled onto that machine. The applica-
tions to co-locate are chosen such that even if the combined
resource requirements are greater than the capacity of the
machine, the statistically expected resource usage is less than
the resources available. The statistical nature of the co-location

means that there exist some periods when the resource usage
could be higher than available resources. This can lead to
increased tail latency.

Vertical autoscaling: Only resources allocated by the
autoscaler are available to each application. The autoscaler
dynamically decides the amount of resources allocated to each
application based on prediction techniques such as ML [13]],
moving average [14]], or other models. The models have to
predict the time of resource requirements change, and the
magnitude of the change. These predictions are subject to
availability of data and can have significant error.

Batching: Multiple tasks of an individual application can
be batched and processed together to amortize costs [15].
Batching also allows inter-task scheduling whereby microtasks
can be combined together across tasks for better resource
efficiency. But, batching introduces additional latency whereby
the runtime of the fastest task in the batch is bound by the
slowest task in the batch.

B. Design of a Microtask-aware Scheduler

Microtask-based scheduling takes advantage of the fact that
application tasks are composed of microtasks with their own
resource requirements. Application developers can easily find
out the resource requirements of the microtasks by manual or
automated profiling. But, current serverless platforms lack the
ability to obtain this information from the developer and take
advantage of it.

Our design enables application developers to inform the
serverless runtime of the microtasks in an application and their
resource requirement. The developers communicate this infor-
mation using annotations on the functions that correspond to
microtask boundaries. The runtime makes efficient scheduling
and resource management decisions based on the information
received from all microtasks running on a machine.

Figure [5] depicts the design of the microtask-based CPU
scheduler. First, the application is profiled, either manually by
the developer, or using automated tools to extract the resource
requirements of the individual microtasks it is composed of.
The microtask start locations and the resource requirements
are then embedded in the application. When the application
is executed, the resource requirements are supplied to the
scheduler so that the microtask can be classified and the
application enqueued into the appropriate queue based on its
resource requirements. All microtasks which belong to the
same resource requirement class, hence have the same resource
requirements, are serviced by the same queue. A microtask
is considered complete when the application is descheduled,
or the start of a different microtask is encountered. The old
microtask is then retired and the application is placed in a new
queue based on the requirements of the new microtask.

Each queue schedules a variable number of microtasks on
a CPU based on the CPU fraction specified by the resource
requirements class it services. Each queue is assigned a
specific number of CPU cores that are used to service the
tasks in that queue. Several queues exist, each for different
sized microtasks, on a single machine reminiscent of slab
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memory allocation. The exact number of CPU cores per queue
is decided dynamically based on the relative lengths of queues
an their resource requirements. For the evaluation in this paper,
we use static allocations. But, we expect that in a fully realized
system, the allocations are dynamic as the workload serviced
by a machine changes over time.

It possible to implement microtask-based scheduling both
at the application level and at the operating system level. Ap-
plication level schedulers are common in complex workflow-
based [16], pilot-based [17]], or other complex applications.
Operating system level schedulers are commonly used for
single task, even monolithic applications. One advantage of
operating system level scheduling is that it allows microtask-
based scheduling across different applications written in mul-
tiple programming language. Application level schedulers are
limited to the tasks of that single application. In this work,
to evaluate our idea, we focus on application level schedulers
due to ease of implementation.

Figure [6] contrasts microtask-based scheduling with task-
based scheduling. Task-based scheduling is commonly used
in open-source serverless platforms [4]-[6]. In this work, we
only consider one resource, the CPU, but the resource model
can be extended to include other resources such as I/O and
memory. In task-based scheduling, application tasks enter the
queue to be serviced. They are scheduled onto an available
free CPU. In the figure, we have tasks from two applications.
Each task occupies a whole CPU core for it’s full duration.
In microtask-based scheduling, the constituent microtasks of
a task are assigned to different queues. The scheduler knows
the the resource requirements of the microtasks in a queue.
If a microtask uses less than the full CPU core, multiple
microtasks are scheduled onto that core. In the figure, notice
that multiple green microtasks are serviced at the same time
when using microtask-based scheduling. When using task-
based scheduling, the part of the CPU not used is left idle
when the green microtask is running.

IV. EVALUATION OF MICROTASK-BASED SCHEDULING
USING THE SORT APPLICATION

We experimentally evaluate the microtask-based scheduler
introduced in §III-B| by implementing it as a proof-of-concept

application level scheduler in the sort application. We compare
it to a task-based scheduler each task in the sort application
gets its own CPU core. Task-based scheduling is used in
popular open-source serverless platforms [4]-[6].

We chose an experimental evaluation as precise require-
ments of the microtasks are not yet characterized enough for
a theoretical evaluation. Existing evidence, while hinting their
existence [3]], does not evaluate using them as a scheduling
block. We use sort, as it is a representative workload, who
performance is predictive of the performance of the shuffle
stage of data analytics applications. It has also been used in
prior work evaluating the suitability of serverless computing
for data analytics [[18].

We use the microtask-based scheduler design from §III-B]
configured with 3 queues: for read, process, and write micro-
tasks each with different resource requirements. The number
of CPU cores allocated for each queue in the microtask-based
scheduler were 6, 10, and 8 respectively in the stage 1, and
14, 6, and 4 in stage 2. We configure the sort application to
sort a 100GB dataset. The experiments were run in a cluster
environment using 22 servers, each with 24 cores and 128GB
RAM, for executing the application. The input data was read
from a NVMe SSD accessed over a 100Gbps network inter-
face, using MinlO, an S3-compatible object storage system.
Each experiment is repeated 10 times.

A. Evaluation of Makespan and Individual Stages of the
Distributed Sort

We compare the performance of the distributed sort appli-
cation using the microtask-based scheduling approach to one
using the task-based scheduling approach. Figure [7] depicts
the ECDFs of 3 application metrics for both approaches: the
makespan, which is the total time elapsed between the start
of the application and the end; the duration of the sub-stages
that write categorized partitions at the end of the categorize
records stage; and the duration of the sub-stages that sort the
category after all parts of the category have been retrieved in
the sort category stage.

Sort 37% faster when using microtask-based scheduling
compared to task-based scheduling: We observe that the me-
dian makespan when using microtask-based scheduling, 183
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by microtask-based scheduling.

seconds, is 37% lower than the median makespan when using
task-based scheduling, 292 seconds. The maximum makespan
when using microtask-based scheduling, 192 seconds, is 40%
shorter than that of task-based scheduling, 320 seconds. This
difference in performance on the same hardware suggests
that microtask-based scheduling utilizes the available CPU
resources more efficiently than task-based scheduling. The I/O
is not saturated in this work under any configuration and we
leave further analysis of task based scheduling considering I/O
as future work.

Performance of I/0O intensive stages improves up to 81%,
while performance CPU intensive stages decreases by up to
27%: We further analyze which sub-stage benefited most from
microtask-based scheduling, and which benefited the least.
We depict the ECDF of two sub-stages which gain (Write
Categorized Partitions) and lose (Sort Category) performance
due to microtask-based scheduling. The median duration of the
Write Categorized Partitions sub-stage improved 81%, from
59 seconds to 11 seconds, when we move from task-based
scheduling to microtask-based scheduling. The 99th percentile
performance of Write Categorized Partitions sub-stage im-
proved 74%, from 92 seconds to 24 seconds, when we move
from task-based scheduling to microtask-based scheduling.

The median duration of the Sort Category sub-stage deterio-
rated 15%, from 6.1 seconds to 7 seconds, when we move from
task-based scheduling to microtask-based scheduling. The 99th
percentile performance of Sort Category sub-stage deteriorated
27%, from 7.5 seconds to 9.5 seconds, when we move from
task-based scheduling to microtask-based scheduling.

Cause of the performance difference: The sub-stages
whose performance improved, such as Write Categorized
Partitions, were the ones which were performing I/O and were
not fully utilizing the CPU when a whole core is allocated to
them. In microtask-based scheduling, when resources could be
customized for different sub-stages, more of these CPU-light

sub-stages could be run concurrently. Hence, the improved
performance.

The sub-stages whose performance worsened, such as Sort
Category, were the ones which were fully utilizing the allo-
cated CPU core. In microtask-based scheduling, the increased
scheduling overhead did not result in any improved resource
utilization for these tasks. Hence, the decreased performance.

Comparison to related results: Vertical autoscaling by
Autopilot [[14] reduces the number of unused resource by
50%. Adaptive batching [15]] also reduces the application
runtime cost by up to 50%, albeit limited to ML inference
applications. While we do not directly measure the reduction
in unused resources, we can reasonably assume that the
performance improvement is the lower bound on the number
of unused resources, as all the improved performance comes
from improved scheduling. Hence, microtask-based scheduling
has the potential to reduce the number of unused resources by
at least 37%.

V. DISCUSSION

We address the challenges to the validity of the work, and
discuss the problems that need to be solved before before a
system that utilizes the design of this work is fully realized.

Quantitative comparison to other techniques: This paper
does not quantitatively compare microtasks to other techniques
like vertical scaling and oversubscription. We expect to de-
velop a framework for comparing these different techniques
in the follow up work.

Dynamic CPU allocation: We allocate a fixed number of
CPUs to each type of microtasks. In a production workload,
the workload is continuously changing and the allocation
needs to change along with that. While we expect a basic
greedy allocator which allocates more CPUs to a type when
there is more demand to work, it needs to be evaluated.

Extending the microtask model to other resources: We
apply microtask-based scheduling only to the CPU in this



work. Complex applications, such as multiplayer games, use
multiple resources at the same time. The game could be
simulating player actions and communicating with client as
the same time. This requires that microtask-based resource
management system to consider multiple resource type, net-
work in this case.

Application vs. OS level scheduling: History has shown
that both classes of schedulers are important. (1) OS level
schedulers acquire key generic features of app-level sched-
ulers, in time. (2) Application level schedulers allow applica-
tion specific performance improvements to reach users faster,
with the limitation of not being usable across applications.
While our application level scheduler demonstrates the poten-
tial of microtask-based scheduling, an OS level implementa-
tion would bring its benefits to many more applications.

VI. RELATED WORK

Closest to our work is monotasks [19]. Monotasks is a
model for big data applications whereby tasks can only request
one kind of resource. The single resource monotasks help
with performance clarity. Our work demonstrates that a wider
variety of apps than just big data apps can benefit from fine-
grained scheduling and resource management. Our work also
demonstrates the performance benefit of fine-grained resource
management in the serverless context.

Autopilot [14]] and tiny autoscalers [[13|] both use vertical
scaling, and use moving average estimates to predict resource
demand. We argue that for certain classes of applications,
online interactive and big data, live prediction is not necessary.
The applications have fixed structure, and can inform the
resource manager of the current microtask they are executing.

Sizeless [20] predicts the optimal resource allocation for
serverless tasks, but the predictions are coarse grained for
the whole duration of the task. Nightcore [21] uses fine-
grained scheduling to achieve better latency and utilization
for microsecond scale tasks. But, it requires applications to
use a custom I/O stack and runtime.

Batch [15] dynamically batches multiple ML inference
requests together to amortize costs and fully make use of
allocated resources. But, not all workloads all amenable to
batching. Latency sensitive workloads like interactive applica-
tions are particularly impacted by the additional latency.

Function fusion [22], [23] and decomposition [23|] have
been proposed to improve serverless application performance.
Applications that are I/O light but have compute intensive
parts were decomposed for better scheduling. Applications
bottlenecked on I/O were fused to reduce I/O overhead.
Microtask-based scheduling can be used in both scenarios to
improve resource utilization in a single machine.

Existing characterizations of serverless applications [3]] in-
dicate the existence of application parts with different resource
demands. We demonstrate that the different resource demands
can be used to improve the performance and efficiency of
serverless applications.

VII. CONCLUSION

Serverless computing continues to make cloud computing
cheaper and more accessible. Towards addressing the problem
of efficiently improving the performance of serverless applica-
tions, we make a three-fold contribution. We model serverless
applications as being composed of microtasks, and support
our model with experimental evaluation of an online game.
We design a microtask-based scheduler which uses different
queues for microtasks with different CPU requirements. We
evaluate the microtask-based scheduler design by comparing
to task-based scheduler designs found in popular open-source
serverless platforms. Finally, we discuss the shortcomings of
this and propose promising directions for improvement so that
a microtask-based schedulers can benefit more applications.
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