
10

Healthor: Heterogeneity-aware Flow Control in DLTs to

Increase Performance and Decentralization

JONAS THEIS, Vrije Universiteit Amsterdam and IOTA Foundation

LUIGI VIGNERI, IOTA Foundation

LIN WANG and ANIMESH TRIVEDI, Vrije Universiteit Amsterdam

Permissionless reputation-based distributed ledger technologies (DLTs) have been proposed to overcome blockchains’ short-

comings in terms of performance and scalability, and to enable feeless messages to power the machine-to-machine economy.

These DLTs allow machines with widely heterogeneous capabilities to actively participate in message generation and con-

sensus. However, the open nature of such DLTs can lead to the centralization of decision-making power, thus defeating the

purpose of building a decentralized network.

In this article, we introduce Healthor, a novel heterogeneity-aware flow-control mechanism for permissionless reputation-

based DLTs. Healthor formalizes node heterogeneity by defining a health value as a function of its incoming message queue

occupancy. We show that health signals can be used effectively by neighboring nodes to dynamically flow control messages

while maintaining high decentralization. We perform extensive simulations, and show a 23% increase in throughput, a 76%

decrease in latency and four times increased node participation in consensus compared to state-of-the-art. To the best of our

knowledge, Healthor is the first system to systematically explore the ramifications of heterogeneity on DLTs and proposes a

dynamic, heterogeneity-aware flow control. Healthor’s source code (https://github.com/jonastheis/healthor) and simulation

result data set (https://zenodo.org/record/4573698) are both publicly available.

CCS Concepts: • Networks→ Peer-to-peer protocols;

Additional Key Words and Phrases: Application-layer protocols, network architecture, flow control, blockchain, distributed

ledger technologies

ACM Reference format:

Jonas Theis, Luigi Vigneri, Lin Wang, and Animesh Trivedi. 2022. Healthor: Heterogeneity-aware Flow Control in DLTs to

Increase Performance and Decentralization. Distrib. Ledger Technol.: Res. Pract. 1, 2, Article 10 (December 2022), 27 pages.

https://doi.org/10.1145/3555676

1 INTRODUCTION

With its inception in 2008, Bitcoin has sparked a whole new world of distributed ledger technologies

(DLTs) [48, 61]. DLTs are gaining popularity ever since, especially for trustless money transactions and code

execution1 enabling the recent trend towards decentralized finance with stablecoins, decentralized exchanges,

and decentralized lending [33].

1Trustless code execution is usually referred to as smart contracts and enables decentralized applications to be built.

Authors’ addresses: J. Theis, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands and IOTA Foundation,

Pappelallee 78/79, 10437 Berlin, Germany; L. Vigneri, IOTA Foundation, Pappelallee 78/79, 10437 Berlin, Germany; L. Wang and A. Trivedi,

Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions

from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2769-6472/2022/12-ART10 $15.00

https://doi.org/10.1145/3555676

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

https://orcid.org/0000-0003-4866-8299
https://orcid.org/0000-0002-2922-3748
https://orcid.org/0000-0001-7181-6128
https://orcid.org/0000-0003-3586-7168
https://github.com/jonastheis/healthor
https://zenodo.org/record/4573698
https://doi.org/10.1145/3555676
mailto:permissions@acm.org
https://doi.org/10.1145/3555676

10:2 • J. Theis et al.

Fig. 1. Comparison of nodes participating in consensus and ledger only in proof of work based DLTs (left) and reputation-

based DLTs (right). In proof of work based DLTs practically only high-end nodes and specialized hardware can participate in

consensus whereas in reputation-based every node because participation in consensus is not dependent on processing capa-

bilities. Connections between nodes are not pictured out of brevity. The size of nodes describes their processing capabilities.

Conceptually, a distributed ledger is an immutable, replicated, and shared data structure that keeps track of

ledger state entries, e.g., monetary transactions, in a distributed system without the need for a centralized author-

ity but instead utilizes a distributed consensus mechanism [22, 61]. Ledger state updates are disseminated using

a peer-to-peer (P2P) network between ledger participating nodes [24, 51, 59]. Theoretically, a permissionless

DLT is open for anyone to join and keep track of the ledger and participate in consensus [59].

However, in practice traditional DLTs present limitations in terms of not only decentralization but also scal-

ability, performance, and energy efficiency [27, 28, 57]. Hence, a number of alternatives have been proposed in

the last few years [25, 29, 67].

1.1 Heterogeneity in Permissionless DLTs

In this article, we focus on permissionless reputation-based DLTs [7, 34, 50, 51, 54, 63], which achieve consensus

through voting instead of expensive mining races. Reputation-based DLTs can enable a wide range of new appli-

cation domains, such as the machine-to-machine economy for the Internet of Things or public transparent supply

chains [7, 50, 51], by overcoming Bitcoin’s limitations: network throughput is not constrained at the protocol

level, feeless messages are possible, low-power devices can participate in the consensus, and so on. This class of

DLTs adds design complexity to the original Bitcoin’s blockchain, and faces a number of challenges which we

describe and address throughout the article.

One of the primary challenges in the Bitcoin network is the centralization of power. Miners typically use

specialized hardware to compute a cryptographic puzzle faster than other nodes and add messages into the

blockchain. This mechanism creates a costly filter formed by an elitist network (Figure 1 (left)) [57]. Conversely,

the permissionless nature of the DLTs considered in this article allows nodes with widely heterogeneous capabil-

ities to participate in consensus and message generation (Figure 1 (right)). Such heterogeneity can be manifold:

— Bandwidth, latency, availability, and processing capabilities can vary between multiple orders of magni-

tude, as in traditional P2P networks [55].

— Unsteady processing rates of a node due to competing tenant applications and performance variability,

especially in the public cloud environment [23, 40, 65].

— Protocols, geographical locations, node freshness, and software versions can differ widely in DLTs [37].

1.2 Challenges

Heterogeneity is a key feature of permissionless reputation-based DLTs, but also introduces multiple chal-

lenges [7, 51]. First, who can vote? In order to start the voting procedure, a supermajority of nodes must have

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:3

received the most recent messages necessary to construct and verify the ledger state. In these DLTs, a score

(reputation) is assigned to each node to determine nodes’ reserved throughput shares and weights used during

voting. Many DLTs assign reputation by linking it to a constrained resource, such as stake (e.g., Proof-of-Stake

(PoS) DLTs [26, 54] or IOTA’s Mana [51]); more sophisticated technologies try to evaluate whether nodes are

well-behaving and contributing to the security of the network [63]. A good reputation system should prevent

Sybil attacks, where colluding nodes can gain disproportionate influence to manipulate the ledger state.

Second, unlike in Bitcoin, reputation-based DLTs require an explicit distributed flow-control mechanism. If

powerful nodes issue new messages too fast without any flow control, then only high-end nodes will be able to

keep up with the message processing and with the latest ledger updates. Hence, only a few nodes, the ones with

an updated ledger, can vote, thus increasing undesired DLT centralization.

Lastly, maintaining maximum decentralization with high performance. In DLTs, nodes are required to process

all messages generated. Hence, to avoid any loss of synchronization or message drop, the network must operate

at the speed of the slowest node, which can lead to low throughput. An additional challenge is given by the fact

that the node’s processing speed is not static as it varies based on the operating environment and performance

fluctuations [23, 40, 65].

Though efforts have been put to tackle the issue of voting [26, 51, 54], limited attention has been paid to

tackling decentralization and performance due to heterogeneity in DLTs. Such heterogeneity-related challenges

are reminiscing of the early 2000s research in P2P content distribution systems [3, 13, 14, 39, 55], but the need

for quality of service, and node reachability requirements sets modern DLTs apart from their P2P predecessors.

We take inspiration from these works and recent networking research [47], and make a case for a dynamic

flow-control protocol to react to the changing heterogeneity (i.e., computational capabilities) for maximizing

throughput without sacrificing DLT decentralization.

1.3 Our Contributions

In this article, we present Healthor,2 a novel heterogeneity-aware, lightweight flow-control mechanism for per-

missionless reputation-based DLT networks. Healthor captures heterogeneity by defining a node’s health as a

function of its processing power and the current network activity. The health updates of neighboring nodes are

then used to calculate the message forwarding rates, thus dynamically adjusting the flow control per node. This

basic mechanism allows high-end nodes to buffer messages for unhealthy nodes, thus protecting weaker nodes

from being overwhelmed with wasted processing and rapidly adapting network load and bursts. With such a

flow-control design more nodes are able to keep up with the ledger updates and participate in DLT consensus,

thus increasing decentralization and network performances. Unlike protocol-level solutions such as TCP, which

operate independently of the applications, in this work we target an application level flow-control protocol.

Our key contributions in this work include:

— We identify challenges (high centralization, poor performance, security) due to a lack of heterogeneity-

aware flow control in permissionless reputation-based DLTs (Section 3).

— We propose Healthor, a lightweight distributed flow-control mechanism that leverages a node’s health as a

proxy of its heterogeneity and processing capabilities. We present its design choices, implementation, and

trade-offs. In comparison to other DLTs, which use leader election or fixed computation, we are among

the first to introduce networking concepts and optimizations to DLTs (Section 4). Healthor’s source code

is publicly available on GitHub (https://github.com/jonastheis/healthor).

— We evaluate Healthor in OMNeT++ simulations for up to 5,000 nodes. Our results demonstrate that

Healthor increases the degree of decentralization by 78%, improves throughput by 23%, and 95 percentile

2Union of the word health and the Germanic god Thor who is amongst other things associated with great strength and the protection of

mankind.

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

https://github.com/jonastheis/healthor

10:4 • J. Theis et al.

Fig. 2. Permissionless DLTs comprise three main components: a P2P overlay network (left), an immutable data structure

(center), and a consensus mechanism (right) are deeply fused via game-theoretic and economic incentives.

message latency by 76% while staying resilient against attacks (Section 5 and 6). The simulation result data

set is publicly available on Zenodo (https://zenodo.org/record/4573698).

2 BACKGROUND: A SHORT INTRODUCTION TO DLTS

In 2008 the inconspicuous Bitcoin article [48] written by the anonymous entity Satoshi Nakamoto sparked a

revolution and ignited distributed ledger technologies. Though the underlying technologies were not novel [12, 18,

21, 32, 46], Bitcoin combined them in an ingenious way and created something that had been deemed impossible:

a consensus of replicated, shared, and synchronized data without a central entity in a permissionless and trustless

setting where anyone can join and participate [48, 59]. Since then many flavors of DLTs have emerged, not only

to enable monetary transactions but more so to enable trustless code execution and thus paving the way for many

more use cases and a distributed, trustless Internet, enabling parties to interact without trusting anyone [22, 35].

DLTs broadly can be distinguished into permissioned, i.e., a central authority grants permission to participants,

or permissionless, i.e., open access to anyone where participants do not know each other but cooperate through

game-theoretical incentives [44]. The latter systems pose more challenges due to their open nature. In this article,

we focus on permissionless DLTs.

Generally, a DLT integrates three main components joining them together via its protocol and deeply in-

grained game-theoretic and economic incentives as depicted in Figure 2. First, a P2P overlay network is utilized

to disseminate state updates (Section 2.1). Second, every node keeps track of a shared, replicated, and immutable

data structure (also called ledger) which is based on cryptographic primitives (Section 2.2). Lastly, nodes use a

consensus mechanism to agree on a state in a distributed manner (Section 2.3).

2.1 P2P Overlay Network

Most DLTs build an unstructured decentralized P2P overlay network, either with manual peering, i.e., node

owners are required to exchange connection details, or some form of automatic peer discovery and peer selection.

Ledger state updates are disseminated in the form of messages (also called transactions) via epidemic broadcast

so that every node eventually receives all ledger state updates [24, 51, 59].

2.2 Data Structure

The ledger state in a DLT is derived from an immutable data structure, that can be compared with an append-only

log. Every node in the network has a copy of the ledger state and can thus verify the validity of new updates

locally. Newly joining nodes can bootstrap by simply downloading the ledger from their neighbors, and then

make sure that the ledger state is valid locally [7, 22, 50, 59, 61].

Blockchain. A blockchain is a linked list of blocks where each new block contains a cryptographic hash of

its predecessor’s content as shown in Figure 3 (left). A block mainly consists of a number of state updates, e.g.,

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

https://zenodo.org/record/4573698

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:5

Fig. 3. Data structures in DLTs. A blockchain groups messages into blocks and links blocks together (left). The Tangle consists

of messages that reference 2 other messages (right), thus forming a DAG.

in the case of Bitcoin monetary transactions. This essentially creates an immutable chain of blocks where any

change to a block invalidates all future blocks as well. The longer the chain, the harder it is to change any content

because all future blocks would be invalidated, hence it is tamperproof. A blockchain is totally ordered: blocks

are issued, e.g., with a consensus on the longest chain, at regular intervals and state updates within a block are

deterministic [22, 59, 61].

Directed Acyclic Graph (DAG). A DAG is a graph without directed cycles, i.e., it grows in one direction.

IOTA’s Tangle [50] is a DAG where messages are linked together via their cryptographic hashes instead of

being grouped into blocks. Figure 3 (right) shows this data structure. Similar to a blockchain, linking messages

together via their cryptographic hashes makes the data structure immutable and tamperproof. The Tangle is not

totally ordered as messages can be attached simultaneously by multiple users which promises better scalability

compared to blockchains. However, there is added complexity for nodes to verify the ledger state and come to

consensus. For example, before a message can be verified it needs to be solid, i.e., its entire history needs to be

known to the node. In case a node is missing a message it can ask its neighbors via solidification request [22, 50].

2.3 Consensus Mechanism

The consensus mechanism is at the core of every permissionless DLT. It is a set of rules that combines the P2P

overlay network, data structure as well as some form of leader election, e.g., to select a block producer, and

(virtual) voting with game-theoretical incentives and bakes the results into the immutable ledger. In this way,

the data structure does not only serve as an immutable ledger database but also as a verifiable instrument of

consensus. It enables a Byzantine Fault Tolerant P2P network of anonymous nodes that are free to join and leave

at will [10, 64].

3 HETEROGENEITY IN DLTS: CHALLENGES AND OPPORTUNITIES

With the basic working model explained in Section 2 in mind, we now discuss what is the extent of the het-

erogeneity in contemporary DLT networks, what happens if heterogeneity is ignored, and what opportunities

present if we can leverage it.

3.1 The Nature of DLT Heterogeneity

To get an estimation of the level of heterogeneity and its impact, we analyzed recently published literature on

DLT deployments and decentralization [27, 37, 43]. Our analysis shows that (Table 1) a significant amount of

nodes in DLT networks run on only a few big cloud hosting providers. For example, 62% of publicly reachable

Ethereum nodes are running on cloud hosting providers. In the IOTA network, this is even more extreme with

69% of publicly reachable nodes running in the cloud.

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

10:6 • J. Theis et al.

Table 1. DLT Network Size (Publicly Reachable) and Distribution of

Nodes Running on Cloud Hosting Providers

Name Date Size Hosting Top Providers

Bitcoin
(Bitnodes [66])

21/11/2020 11,122 4,195 (38%)

Tor Network: 2,827 (25%)†
Hetzner: 1,049 (9%)
Amazon: 803 (7%)
OVH: 490 (4%)
DigitalOcean: 455 (4%)
Google: 360 (3%)

Bitcoin
(Mariem et al. [43])

07/05/2019 9,476 6,159 (65%)

Hetzner: 1,042 (11%)
Amazon: 805 (8.5%)
DigitalOcean: 616 (6.5%)
OVH: 550 (5.8%)
Comcast: 351 (3.7%)

Ethereum
(ethernodes.org [9])

21/11/2020 9,517 5,855 (62%)

Amazon: 1,778 (19%)
Alibaba: 1,106 (12%)
Hetzner: 541 (6%)
Google: 385 (4%)
DigitalOcean: 326 (3%)

Ethereum
(Kim et al. [37])

08/05/2018 8,309 3,722 (44.8%)∗

Amazon
Alibaba
DigitalOcean
OVH
Hetzner
Google

IOTA
(thetangle.org [58])

21/11/2020 302 202 (69%)

Contabo: 66 (22%)
Hetzner: 63 (21%)
Netcup: 37 (12%)
Amazon: 10 (3%)
DigitalOcean: 6 (2%)

∗ Only top 8 ASes, no exact values published in [37].

† Not included in Hosting due to unknown service provider.

Though, on the surface cloud hosting seems to offer a more homogeneous environment, but it is not the case

in practice. First, cloud providers offer a bewildering array of choices in terms of configurations, capabilities,

and cost of systems resources like virtual machines (VMs), which has lead to a series of work in workload

optimizations for heterogeneous cloud resources [20, 38, 42, 52]. Such heterogeneous choices imply that there is

no single ideal VM that DLTs can choose to deploy. Moreover, even with the choice of a VM, there is significant

performance fluctuation over time [23, 40, 60, 65]. For example, we took cloud performance traces from [23],

which has collected the performance of CPU-intensive benchmarks (comparable with cryptographic signature

verification widely used in DLTs [59]) over a period of 30 days from three cloud providers (AWS, Azure, and Di-

mension Data), and normalized the performance to the mean value in the performance. We plot the performance

variation time series (on the y-axis) with respect to time (on the x-axis) in Figure 4. The key observation from

the figure is that there exists more than an order of magnitude performance variability in hosted cloud providers.

It is this variability that leads to processing heterogeneity even for cloud-hosted DLTs.

3.2 What If We Disregard Heterogeneity in DLT Processing?

Disregarding heterogeneity leads to the centralization of the voting power. To quantify the impact of heterogene-

ity on centralization, we run an experiment with 100 nodes in OMNeT++. In the experiment, the incoming rate

of new messages is set to 200 messages per second (MPS). The 100 nodes are modeled with a mean processing

rate between 90–350 MPS with their message processing rate modeled (Section 5.1 for details) after the traces

from Figure 4. During the experiment, we measure a metric called centralization value, which is calculated as a

ratio of nodes that are left behind and can not vote (due to their inability to process high rates of new ledger

update messages) and the total number of nodes (Section 5.2 for details). Hence, the lower the score, the higher

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:7

Fig. 4. Processing variability in cloud providers. Data from [23] were measured hourly over a period of 30 days. Normalized

(mean = 1) to show relative performance variability on a single cloud provider.

Fig. 5. Comparison of aided and unaided heterogeneity in voting-based DLTs in a heterogeneous network with 100 nodes.

(a) Mean throughput (processed messages) of all nodes. Higher is better. (b) Centralization value (Section 5.2). A lower score

indicates a higher degree of decentralization (desired).

the participation in voting, thus, higher DLT decentralization (desired). We further investigate two network

scenarios: aided and unaided. In the aided setup, a DLT can enforce a fixed throughput rate (i.e., flow control)

which is calculated keeping the slowest node(s) in mind (e.g., with a minimum DLT joining requirement), thus

ensuring a certain level of decentralization at the expense of resource utilization. The current IOTA 2.0 solution

proposes this [51]. In the unaided setup, there is no network-level support for heterogeneity.

Figure 5 shows our results for aided and unaided cases. First, we look at the throughput (the y-axis) with time

(on the x-axis) of both cases as shown in Figure 5(a). As expected, the aided case leads to a stable throughput of

100 MPS while underutilizing the remaining processing capability of the network. In comparison, in the unaided

case the throughput increases until around 200 MPS (the orange line), thus proving that the network has spare,

underutilized capacity. However, when we analyze the centralization values of aided and unaided configurations

we observe an opposite picture (Figure 5(b)). As the unaided configuration delivers higher performance, it leaves

a large chunk of slow nodes out of sync (up to 40% by the time 30 seconds), i.e., the incoming rate of new

messages is greater than the processing capabilities of a node. These out-of-sync nodes can not participate in

voting, thus, allowing only faster nodes to have fully control of the consensus procedure. In contrast, the fixed-

rate aided DLT only leaves less than 10% of nodes out of sync, though at the cost of a poor, underutilized DLT

networks.

However, both previously shown scenarios are not optimal as they either statically trade throughput for decen-

tralization or decentralization for throughput. A desirable solution should deliver high throughput at all times

while guaranteeing a high degree of decentralization, and this is exactly what we propose with our Healthor.

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

10:8 • J. Theis et al.

Fig. 6. Model of a nodem and its neighbors Nm .

4 DESIGN OF HEALTHOR

Healthor is a distributed flow-control protocol to improve the decentralization and performance in a heteroge-

neous DLT network. Before we introduce the details of the Healthor protocol, we first briefly present the network

model and our assumptions in the following section.

4.1 Network Model and Assumptions

We denote the set of all nodes participating in the network asM, where each nodem ∈ M has a set of inbound

and outbound neighbors denoted by Nm ⊂ M. Figure 6 shows a node model and its neighbors. A node and

each of its neighbors are connected via bidirectional channels over which they exchange messages. A message

contains data, e.g., monetary transactions, and a hashed reference to a previous message as its parent, building

an immutable directed acyclic graph.

Network membership management and bootstrapping. Permissionless network membership implicitly

emerges through a multi-tiered bootstrapping process. First, the P2P overlay network needs to be established

so that nodes are able to communicate. We assume this to happen via reciprocal manual peering, meaning that

node owners exchange address information about their nodes offline and configure their nodes to connect to

each other. An alternative to manual peering is a Kademlia-like [45] peering mechanism where initially trusted,

so-called entry nodes are contacted to provide a list of known nodes of the network. In that way, nodes can

discover themselves automatically. Second, once the P2P overlay network is established, nodes need to agree on

the initial ledger state. Generally, this is done via a trusted genesis which contains all the necessary information

for a DLT to bootstrap. The genesis is decided upon by social consensus by the developers, community members,

and participants of a DLT before it is started. After this step, nodes can then start exchanging messages. It is

important to note that the above items refer to any permissionless DLT. Conversely, Healthor does not need to

be bootstrapped specifically: due to the local nature of operations such as health propagation and flow-control

decision-making, only depending on a node’s direct neighbors, and the periodical, adaptive mechanism, a special

bootstrap procedure is not necessary.

Node operations. A node can perform various operations, namely issuing, receiving, processing, and for-

warding messages. We assume that a node can issue new messages at a recommended rate which is enforced

by the network congestion mechanisms [17]. In this work, we focus only on the end-host flow-control mecha-

nism. On receipt of a message, the node filters out duplicates, thus preventing replay attacks, and pushes unseen

messages to its inbox, a buffer with limited size. Based on the message’s cryptographic signature, the node can

identify if it has processed all parent messages for a new message. In the case of missing parent messages, it

requests the missing messages from its neighbors via an implementation-specific synchronization mechanism

like pull-action in Gossip-based networks [56]. For any other message for which the node has all parent mes-

sages (i.e, entire history), the message is scheduled for the processing which includes cryptographic signature

verification, and then writing ledger updates to persistent storage. After processing, the message is forwarded

to the neighbors.

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:9

Fig. 7. High-level design of Healthor. Nodes periodically send their health to their neighbors (left). A adjusts its rate accord-

ing to a neighbor’s health and buffers messages in an outbox per neighbor (right).

Network modes. We distinguish between two different operating modes of a network, aided and unaided

heterogeneity. In the aided case, we assume that an overall processing rate νnet (messages per second (MPS))

of the network is defined. This is the message rate at which the network as a whole should operate (we will

discuss more about it in Section 5.4). Let νm be the variable message processing rate of a nodem. Hence, nodem
would be able to process and forward messages at rate min(νnet ,νm). Ideally, νm = νnet at any time, meaning that

a nodem is able to operate at the overall network rate. However, operating conditions may lead to performance

fluctuation, thus leading to accumulating messages in the inbox. In case the inbox runs full a tail drop policy is

used, i.e., new messages that would cause the buffer to overflow are dropped. In the unaided case, a nodem is free

to forward messages at its rate νm . The current Healthor protocol design is for the aided case, but in Section 8

we discuss how we can relax knowing about νnet and what implications it has.

4.2 Workings of Healthor

The basic idea behind the protocol is to rate-limit message forwarding in a DLT network based on neighbor’s

message processing capacity, termed as its health. Intuitively, the notion of health captures the dynamic hetero-

geneity of the DLT network, which might be changing over time. Figure 7 presents an example showing the

intuition behind the Healthor’s design at a high level. The figure shows a DLT network with 3 nodes (A, B, and

C). Node A has new messages to forward to nodes B and C. Before A calculates the forwarding rate, it receives

the health updates (0.5 for B, 1.0 for C), and then calculates the rate based on the updates. In this example, node

C gets all the messages, whereas B only gets half, while the other half is buffered by node A on behalf of node

B. This basic mechanism is the key insight in our flow-control protocol where more capable nodes can buffer

messages to accommodate performance fluctuations in weaker nodes.

Healthor operates at the application layer and maintains connections to neighbors in a group communication

setup. It is inefficient to rely on existing mechanisms such as TCP-based backpressure because (1) TCP-based

backpressure runs independently of the application level, and would need modifications to the TCP implemen-

tation which is not feasible in public DLTs; and (2) TCP is a point-to-point protocol which cannot efficiently

handle group communication dynamics.

Figure 8 depicts an updated model of a nodem with the new components from Healthor highlighted. Healthor

is a framework encompassing four separate engines, inspired by TIMELY [47], that uses local queue building and

health updates as a signal. Additionally, a node m has an Outboxn for every neighbor n ∈ Nm where references

to messages for n are stored before forwarding. In the following section, we introduce these new engines and

associated design decisions.

4.3 Health Measurement Engine

The Health Measurement Engine is at the heart of the mechanism. By introducing the notion of healthhm ∈ [0,∞),
a node m can express its fitness regarding processing the maximum number of messages as defined by the

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

10:10 • J. Theis et al.

Fig. 8. Model of a nodem with Healthor. New components compared to Figure 6 are highlighted in gray.

expected network’s processing rate νnet (in the aided case). A node periodically calculates its health based on its

inbox occupation lm
def
= len(Inboxm) as following

hm =
⎧⎪⎨
⎪
⎩

νm

νnet
if lm < νnet (per second),

1 − lm

lcapacity
otherwise.

(1)

where lcapacity is the maximum size of the inbox, configured on startup of nodem. In Equation (1) we can compare

lm (number of messages) with νnet (messages per second) because health measurements are done every second,

thus, making νnet the expected number of messages. However, if a different interval is used the calculation needs

to be adjusted according to the number of messages in this duration.

Choosing a signal. It is not trivial to find a reliable signal for rate control in a distributed, permissionless

DLT setting. Relying on special hardware support such as Explicit Congestion Notification or changes to the

operating system stack is infeasible in a public DLT. Due to the ever-changing nature of available computing

resources an initial announcement of capabilities is also not practical. Therefore, the solution must come from

the end-host’s application level and not from the protocol-level like TCP.

Recall that in a DLT all messages are delivered to all nodes eventually. If every node keeps track of received

messages in relation to νnet , every node knows the current health level of the network. Therefore, the inbox

occupation gives a reasonable assessment of how much a node is in sync, i.e., whether it is able to receive and

process state updates in a consistent and timely manner. A low inbox occupation signals a node being able

to process at the network’s pace, and being healthy. Conversely, a high inbox occupation conveys that it is

struggling to keep up with network activities. Thus, the node is unhealthy.

Different means to compute health. As health is such a central component of the mechanism, we experi-

mented with several approaches before concluding on the one described in Equation (1). Firstly, only using the

second branch of Equation (1) leads to hm ∈ [0, 1] and a nodem always being slightly unhealthy as soon as there

is any message in the inbox. Our initial simulation results showed consistently poorer performance than the

ideal aided case (i.e., νm = νnet) as the ideal case represents the achievable theoretical maximum. By introducing

the condition lm < νnet a node can still be seen as healthy if its inbox is occupied with a few messages as long as

they remain less than the maximum messages expected at the network rate, the performance was equal to the

aided case. Lastly, allowing a health rate greater than 1 enables nodes to temporarily go faster than νnet , which

we adopted as our final way to compute hm .

Health messages. A health message is very lightweight, containing simply the health of the node m as a

double precision floating point number. It, therefore, is only 64 bits of data. Additionally, in a real system, like

any message, it should contain a node signature to verify a valid origin of a message. If a health message is lost

for any reason, a neighbor n simply continues forwarding at its last known rate for a node m until it receives a

new health message.

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:11

Fig. 9. Drop policies of outboxes.

4.4 Rate Computation Engine

On receipt of a neighbor n’s health data the node’s Rate Computation Engine calculates the message forwarding

rate for this neighbor n as shown in

rn = νnet · hn . (2)

The node computes the forwarding rate rn linearly according to the neighbor’s health hn . Therefore, it can even

go faster than the target network rate νnet if its neighbors can process messages at the forwarding rate of rn .

Nevertheless, a node can only forward as much as there is network activity (new messages are issued), and it is

able to process itself.

4.5 Outboxes

As in Figure 8 illustrated, a node m has an Outboxn for every neighbor n ∈ Nm . When a message is processed,

a reference to it is added to every outbox. The original message is stored in the node’s local ledger. The Pacing

Engine takes care of forwarding messages to neighbors at their respective rates.

Drop policy. Similar to the inbox, an outbox is a buffer of limited size, defined on node startup. In case

an outbox runs full, a tail drop policy is used (Figure 9 top), i.e., new messages that would cause the buffer

to overflow are dropped while message requests are prioritized as shown. We also experimented with random

(Figure 9 bottom) and head drop (Figure 9 center) policies. However, these turned out to be unfavorable due to

the fact that messages are generally forwarded in order. If messages from the beginning of the buffer are dropped,

the receiver needs this already dropped a message to process later messages. It, therefore, needs to request these

dropped messages adding even more overhead.

4.6 Pacing Engine

The Pacing Engine fetches messages from an Outboxn for a neighbor n and forwards them at the rate calculated

by the Rate Computation Engine. It essentially controls each flow of messages to every neighbor to achieve the

given forwarding rate rn . A possible implementation in a real-world system could make use of one thread per

Outboxn that pulls messages from the outbox and forwards them while inserting delays to match rn .

4.7 Defense Engine

It is essential to protect nodes against exploitation and adversarial behavior in a permissionless DLT setting.

Therefore, the Defense Engine locally monitors a node’s neighbors behavior and initiates appropriate actions if

a protocol violation is suspected. Fundamentally, it provides incentives, hardens the flow-control mechanism,

and makes nodes resilient against attacks. There are two main attack vectors on Healthor, namely exceeding the

allowed forwarding rate and manipulation of health updates.

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

10:12 • J. Theis et al.

Exceeding the allowed forwarding rate. The basic idea is that, in the aided case, the expected network

rate νnet is known to all the nodes in the network. Hence, a node’s neighbor n calculates the forwarding rate as

defined in Equation (2) and its pacing engine forwards out messages at this rate (i.e., the allowed rate). However, a

neighbor may diverge from this rate because of being unhealthy itself, connection issues, or adversarial behavior.

In any case, an extremely large divergence of the allowed rate cannot be tolerated. Therefore, every nodem keeps

track of the rates of every neighborn by simply counting the received messages per neighbor. The Defense Engine

of a node m periodically creates a moving average of the allowed rate within the time window tw as well as a

moving average within the same window for every neighbor’s receive rate. If a neighbor exceeds the allowed

rate β-times in a row, the neighbor is dropped. Likewise, if a neighbor falls below the rate β-times.

Manipulation of health updates. A node m sends the same health update to all its neighbors. Therefore,

health updates can be absent or manipulated by an adversary. If no health updates are received, a node m sim-

ply uses the known previous health of a neighbor n. At startup, every node considers all its neighbors to be

healthy, i.e., hn = 1,∀n ∈ Nm . Generally, an adversary can only influence its own view of the network traffic by

manipulating its health. For example, if she lies and sends different health messages to distinct neighbors, each

neighbor will send at different rates according to the protocol. However, this does not have any influence on the

neighbors.

On the other hand, an adversary could try to inflate outboxes of neighbors and to slow them down by pre-

tending to be unhealthy. Inflation of outboxes, however, is not possible due to their limited size and drop policy.

Nonetheless, a neighbor should not waste resources and therefore the Defense Engine implements a similar strat-

egy to the forwarding rate. A node m keeps track of the health of every neighbor n by simply recording the

outbox occupation. Recall that a node buffers messages for unhealthy neighbors. The unhealthier a neighbor n
the higher the occupation will be. If a neighbor n is unhealthy for too long,Outboxn will run full and eventually,

the neighbor has dropped after β measurements.

5 EVALUATION

We evaluate Healthor at two different scales. First, we explore node properties such as throughput, latency, and

individual load at a small scale. These microbenchmarks are conducted by simulating a network of 10 nodes such

that tunable parameters of Healthor can be separately investigated. Second, we examine global network properties.

In macrobenchmarks, we shift focus on the overall performance of the network and study decentralization,

throughput, and tail latencies. Along with this evaluation, we discuss the following questions:

— Does Healthor take load away from unhealthy nodes and allow nodes to stay (longer) in sync? Our findings

in Section 5.3 suggest that Healthor reduces load on low-end nodes and allows nodes to stay in sync when

they could not with aided heterogeneity.

— What is the influence of processing heterogeneity on decentralization and throughput? We observe in Sec-

tion 5.3 that some nodes that fulfill the network requirements nominally, i.e., νm is greater than νnet , fall

out of sync because of heterogeneity, thus increasing centralization.

— Can Healthor improve decentralization, throughput and/or latency? Our results in Section 5.4 demonstrate

that, indeed, Healthor can improve all three properties.

— Does Healthor provide the above improvements while staying resilient against attacks? We show in Section 6

that nodes can detect protocol violations and protect themselves against attacks reliably.

5.1 Setup

We built a discrete-event simulator using OMNeT++ to simulate the permissionless, voting-based DLT modeled

in Section 4.1 and test our mechanism. In our experiments, we employ small-world networks of various sizes

|M| where each node has between 2–4 random neighbors to model the properties of real-world networks as such

random pairing is done in applications that adopt a Kademlia-like [45] peering mechanism such as Ethereum [24],

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:13

IPFS [8], BitTorrent [16], and Storj [62]. The distance between two randomly chosen nodes is in the order of

log |M| [45]. If a node gets out-of-sync, it goes offline and its neighbors repeer with other random nodes that

have less than four neighbors.

Why simulation? Design and development of a DLT needs a careful analysis of the nature of decentraliza-

tion, performance, and node heterogeneity. Among a variety of potential consensus mechanisms available [36],

voting-based, public-permissionless is now gaining traction, but large-scale deployments (>1,000 nodes) are not

yet available [58, 68]. In this work, we use system simulation to evaluate Healthor. The use of simulation al-

lows us to explore the bounds of our design systematically, and perform in-detail sensitivity analysis on specific

configuration parameters. Nonetheless, we are aware of the limitation of such simulation studies. A practical

deployment has additional challenges such as bootstrapping overheads, monitoring data collection, and connec-

tivity issues, which we have not addressed in this study. As a next step, we will perform validation of our results

on a small-scale deployment to increase confidence in our results.

Parameters. We adopt a Poisson process as the network processing rate νnet = 100 MPS for our experiments

with aided heterogeneity and Healthor. Theoretically, νnet is not defined for unaided. However, for simplicity we

assume νnet = 200 MPS for our experiments in this case. A random subset of nodes issues messages following a

Poisson distribution with parameter λm , so that
∑

m λm = νnet . Channels are assumed to have a delay between

50 ms and 150 ms uniformly at random to simulate real network conditions [27, 37].

The variable processing rate νm of a node m is modeled according to the cloud performance traces shown in

Figure 4. As a conservative approximation of real-world DLT P2P networks [9, 27, 37, 43, 66], we adopt a distri-

bution of 50% constant, 25% AWS, 15% Azure, and 10% Dimension Data. Every νm is randomly scaled between

0.9νnet and 3.5νnet (in the case of unaided, the original νnet value with which is compared is used). For example,

if a nodem is of type AWS with 1.5νnet its mean processing capabilities are ν̄m = 150 MPS but vary over time as

pictured in Figure 4 where the x-axis is randomly shifted.

Every node’s Health Measurement Engine computes its health hm and sends it to its neighbors every 1 second.

Since we do not consider message priorities, a node’s scheduler operates according to FIFO. A node’s Defense

Engine calculates allowed rates at an interval of 1 second and creates moving averages over a time window tw =
3 seconds. A neighbor is dropped after violating the protocol β = 5 times in a row.

5.2 Metrics

Centralization score: quantifying (de)centralization. In P2P networks, decentralization is the property

of not relying on any centralized component. DLTs work, by definition, in a decentralized way. However, while

in theory, no centralized components are present, to prevent Sybil attacks nodes have different influences on

consensus. Hence, if a node assumes too much power (e.g., hashing power in Bitcoin [59], concentration on major

cloud hosting providers [27, 37, 43]), we can conclude it has exceeding control of the network. Decentralization

is a fundamental property of DLTs, and with the centralization score we introduce an easy way to compare the

degree of decentralization in a voting-based DLT with the ratio of nodes being able to participate in voting.

The centralization value is the number of nodes that are not able to process all messages within a defined time

window d normalized by the total number of nodes and is defined as

cvalue (t) =

∑
m∈M unsyncm (t)

|M| , (3)

where

unsyncm (t) =
⎧⎪⎨
⎪
⎩

1 ifm processed all messages in [t , t + d],

0 otherwise.

As such, a lower value is better because more nodes in the network are able to participate in consensus. In our

evaluation we adopt a time window d = 5 seconds, i.e., a node is considered not being able to participate in

consensus if at least one message has been received by the node later than 5 seconds from the time the message

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

10:14 • J. Theis et al.

Fig. 10. Processing rates νm in a network with 10 nodes. A node’s mean processing rate νm ≥ νnet .

has been issued, also taking into account network delays. Considering that voting usually takes place in rounds

it is reasonable to assume that a node being a bit behind is still able to participate. In case of the IOTA 2.0 protocol

voting rounds are initiated every 10 seconds [51]. Recent PoS DLTs like Polkadot [63] adopt block times of around

5 seconds. Also in these systems a node needs to be able to receive and process a transaction within this bounded

time window in order to be able to produce or validate a block, thus taking part in consensus.

To show the evolution of centralization we plot the centralization value over time, which in simulation can be

easily determined and in real-world scenarios can be inferred by the voting participation of nodes. Accordingly,

the centralization score is the mean of the centralization value over a given duration D and expresses the degree

of decentralization in a single number. It is defined as

cscor e (D) =

∑D
t=0 cvalue (t)

D
. (4)

Throughput: measuring network performance. We measure the processing time of messages on a node

and aggregate it by the granularity of one second. This constitutes the throughput of a particular node at a given

time. To evaluate the network’s mean throughput we sum up the throughput of all nodes divided by the count

of nodes. This calculation excludes out-of-sync nodes, i.e., only participating nodes contribute to the network’s

throughput.

Latency: assessing delays. Delays are important in every network where small delays correspond to quick

response times. In voting-based DLTs a small latency is crucial for nodes to be able to participate in consensus. We

measure latency of any given nodem as the duration between message issuance time and processing time on node

m. When assessing latency as global network property, we consider the 95 percentile latency of all in-sync nodes.

5.3 Microbenchmarks

We compare aided and Healthor in a network with 10 nodes. Figure 10 depicts that each node’s mean processing

rate νm is larger than or equal to νnet . It can be seen that node[2] (ν̄2 = 170 MPS), node[4] (ν̄4 = 130 MPS), and

node[6] (ν̄6 = 170 MPS) sometimes fall below the network processing rate νnet = 100 MPS. Therefore, these

nodes are of special interest. Due to the limiting nature of aided the actual processing rates used are min(νnet ,νm)
and higher rates can not be leveraged.

Comparison of aided and Healthor. Figure 11(a) details the throughput of aided (top) and Healthor (bot-

tom). The x-axis shows the throughput in messages per second, and the y-axis the time in seconds. Each node’s

throughput can be directly related to its available processing rate as depicted in Figure 10. For aided, the through-

put is capped at a maximum rate νnet (mean = 97.51 MPS), while Healthor temporarily allows higher throughput

(mean = 99.86 MPS) which fluctuates around—instead of being limited by—the value νnet . In aided, node[4]’s

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:15

Fig. 11. Experiment results in a network with 10 nodes with aided heterogeneity (left) and Healthor (right).

throughput drops to 0 around second 55. Similarly, node[6]’s throughput falls to 0 at 120 seconds. This indicates

that both nodes are out-of-sync, i.e., their inboxes are filled up with too many messages without their known

history, so that no newly received message can be scheduled. node[4] and node[6] go offline from this point in

time and cannot participate in consensus anymore until a heavy re-sync operation is performed. In practice this

could mean manual intervention and restart with a trusted, previously downloaded ledger state snapshot.

Figure 11(c) shows the CDFs of the latencies for aided and Healthor, respectively. In aided, node[2] and

node[6] have by far the largest latency, exceeding 5 seconds at the tail. Recalling the definition of centralization

score in Section 5.2, this indicates that these nodes are too far behind to participate in consensus for some

messages. Indeed, as shown in Figure 11(a), node[4] and node[6] run out-of-sync. However, node[4]’s latency

does not exceed 5 seconds which implies that it got out-of-sync quickly. With Healthor, the network latency is

significantly lower by 73% compared to aided. Especially node[2]’s and node[6]’s 95 percentile latencies stand

out with an improvement of 91% and 89%, respectively.

A closer look at inbox sizes. Figure 11(b) shows the number of messages stored at each node’s inbox over

time, i.e., inbox occupation. Every node can store up to 250 messages. Generally, we observe that buffers have a

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

10:16 • J. Theis et al.

Table 2. Different Inbox Sizes with Aided and Healthor

Inbox
cscor e MI node[4] MI node[6]

aided Healthor aided Healthor aided Healthor

100 0.14 0 100 100 100 90

250 0.11 0 250 120 250 98

500 0.08 0 500 120 400 115

1,000 0.08 0 920 120 400 115

2,000 0.08 0 920 120 400 110

MI = maximum measured inbox occupation.

higher occupation in aided, which leads to higher latencies and indicates a higher memory load. Messages reside

longer in the inbox before they can be scheduled because of the enforced processing rate limit. node[4]’s and

node[6]’s inboxes run fully around second 40 and 90, respectively. Once this happens for too long the node is

nonrecoverable out-of-sync and, simultaneously, its throughput drops to 0, hence it goes offline. Temporarily,

also node[2]’s inbox runs full at ∼120 seconds, but it does not go out-of-sync. Instead, it is able to recover via

pull action, and its inbox occupation drops towards the end of the simulation. Inbox occupation with Healthor

follows a different pattern: none of the nodes’ inbox runs full, thus all nodes stay in sync. Furthermore, the inbox

fills and empties in a zigzag pattern reacting to health changes. Recall that a node gets unhealthier when its

inbox grows, and its neighbors forward at slower rate until the node gets healthier again.

Table 2 shows the centralization score and the maximum inbox occupation of node[4] and node[6] for various

inbox sizes. The centralization score captures when a node is not able to participate in consensus. Therefore, it

is a reasonable tool to assess the effect of various inbox sizes. On the one hand, a too small inbox can be easily

fulfilled. Hence, new messages are dropped with a high probability up to the point where the node falls out-of-

sync. On the other hand, a too big inbox size might consume too much memory while only increasing delays.

Either way, a node is not able to vote.

We observe that node[4] and node[6] get out-of-sync in the aided case when the inbox size is 100, because

both nodes’ inboxes run full. With Healthor, the centralization score is 0 which signals that no nodes got out-of-

sync, even though node[4]’s inbox reached 100. In this case, node[4] could recover via a pull action and with

the help of its neighbor’s buffering while it is unhealthy. Larger inbox sizes seem to improve the centralization

score slightly for aided but the fundamental problem of node[4] and node[6] getting out-of-sync remains. With

Healthor this problem is already alleviated with an inbox size of 100, where every node can stay in sync. However,

node[4]’s inbox is at its maximum capacity, and the node needed to recover via pull actions. Inbox sizes larger

than 250 only let nodes look healthier, but cannot improve the centralization score (which is already 0). Therefore,

the maximum inbox occupation measured is slightly higher. Henceforth, we adopt an inbox size of 250 for all of

our experiments as a reasonable tradeoff between memory consumption and storing capacity.

A closer look at outbox sizes with Healthor. Recall that a node m has an Outboxn for every n ∈ Nm . It is

therefore important to establish a fitting outbox size, so that enough messages can be stored, but no unnecessary

overhead is created. Table 3 shows the centralization score, maximum inbox occupation of node[4] and

node[6] as well as maximum outbox occupation of both nodes’ neighbors. Larger outboxes indicate less

pressure on an unhealthy node up to an outbox size of 250, as is evident by the higher inbox occupation of

node[4] with an outbox size of 100. However, this trend can only be observed until an outbox size of 250, where

the outbox occupation at node[4]’s neighbors and its inbox occupation stabilize. An outbox size of 250 seems

to offer a good tradeoff between decreasing load on an unhealthy node and creating overhead on its neighbors.

We therefore adopt an outbox size of 250 for our experiments.

Additional Scenario. The previous analysis was done with the same network and node heterogeneity setup.

To gain a better intuition of Healthor’s behavior for different networks, we now take a look at the same set

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:17

Table 3. Outbox Sizes with Healthor

Outbox cscor e MI node[4] MON node[4] MI node[6] MON node[6]

100 0 160 100 98 100

250 0 120 200 98 100

500 0 120 200 98 100

1000 0 120 200 98 100

2000 0 120 200 98 100

MI = maximum measured inbox occupation, MON = maximum outbox occupation at

neighbor node.

Fig. 12. Processing rates νm in a network with 10 nodes (additional scenario). A node’s mean processing rate νm ≥ νnet .

of figures (Figure 13) for throughput, inbox occupation, and latencies for a different 10 node network setup.

Figure 12 shows the nodes’ processing rates νm , where each node’s mean processing rate νm is larger than or

equal to νnet . The network’s parameter are as described in Section 5.1. We observe that the mean of vm for

node[1], node[2], and node[4] are equal to the network processing rate νnet = 100 MPS. Hence, these nodes

are of special interest.

Figure 13(a) details the throughput of aided (left) and Healthor (right). We show, for the former, the throughput

is capped at a maximum rate vnet , while the latter, temporarily allows higher throughput, which fluctuates

around—instead of being limited by—the value vnet . In aided, node[2]’s throughput drops to 0 around second

45 which means that the node is out of sync and offline from this point in time and cannot participate in consensus

anymore.

In Figure 13(b) the inbox occupation is displayed. At the same time, we observed node[2]’s throughput

dropping to 0, i.e., getting out of sync, we can see its inbox becoming full for the aided case (left). Comparing

to Healthor (right), node[2]’s inbox does not grow larger than 145 and follows the zigzag pattern reacting to

health changes, as we have seen for the first scenario already. Overall, inboxes do not grow as full with Healthor

as in aided.

The CDFs of the latencies for aided (left) and Healthor (right) are shown in Figure 13(c). In aided, node[2]’s

latency exceeds the 5 seconds mark and indicates, once again, that this node is getting out of sync. With Healthor

the latency for node[2] is lower and this is not the case. For all other nodes especially tail latencies are large in

aided whereas this is not the case with Healthor.

Overheads. In our evaluation, we configure Healthor to exchange health messages every 1 second. Naturally,

this adds message overheads compared to aided. The theoretical maximum overhead of a node for a simulation

of length T time can be calculated as omax (m) = |Nm |T . Assuming that a node has |Nm | = 4 neighbors during

a simulation of 180 seconds results in omax = 720 health messages sent and received. In a flooding-based P2P

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

10:18 • J. Theis et al.

Fig. 13. Experiment results in a network with 10 nodes (additional scenario) with aided heterogeneity (left) and Healthor

(right).

network with νnet = 100 MPS and the same configuration the maximum number of sent and received messages

is 72,000. It follows that, Healthor incurs a maximum overhead of 1% in the deployed configuration. However,

we are aware that the overhead is a function of message rate and can be high with low throughput.

Discussion. In two different scenarios, we have shown that Healthor enables lower latencies and reduces

the load on low-end nodes compared to aided mainly by allowing temporarily higher throughput. It, therefore,

unlocks enormous potential: nodes can make use of resources when they are available, irrespective of network

activity. However, the mechanism does not come without overheads as our calculations show.

5.4 Macrobenchmarks

In the previous section we investigated Healthor closely and established sensible default parameters for inbox

and outbox sizes. Following, we compare aided, unaided, and Healthor at a larger scale. We present overall

network-level results for heterogeneous networks with up to 5,000 nodes in line with the description provided

in Section 5.1.

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:19

Fig. 14. Experiment results in a network with 2,000 nodes.

Decentralization vs. throughput. Figure 14(a) shows the centralization value for aided, unaided, and

Healthor in a network with 2,000 nodes. Clearly, unaided is the least decentralized whereas aided is signifi-

cantly more decentralized and Healthor even more so. Figure 14(b) shows the throughput. As expected, aided is

limited at νnet = 100, Healthor permits temporarily higher throughput around νnet , and unaided is only limited

by demand (here at νnet = 200). In Figure 14(c), the CDF of 95th percentile delay of in-sync nodes details how

delays are much higher in aided than in unaided (∼2x higher) and Healthor (∼3x higher). Messages in aided stay

much longer in a buffer before being able to be processed and forwarded due to the limited rate. It is interesting

to see that while Healthor slightly increases throughput and makes the network significantly more decentralized

compared to aided, it still provides comparable latencies to unaided.

A similar trend can be observed in Table 4. In various network settings, unaided allows the highest through-

put and has low latency, but it is also the least decentralized. Aided guarantees a fair decentralization but has

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

10:20 • J. Theis et al.

Table 4. Decentralization vs. Throughput Experiment Results

|M| aided unaided Healthor

cscor e L T cscor e L T cscor e L T

100 0.04 1.93 98.24 0.40 0.83 198.38 0.02 0.73 101.10

500 0.09 4.24 97.15 0.38 1.17 196.20 0.02 0.95 100.81

1,000 0.07 4.47 97.82 0.38 1.45 195.20 0.03 0.99 100.12

2,000 0.06 3.17 97.79 0.41 1.61 196.98 0.03 1.06 100.82

5,000 0.07 4.26 97.00 0.40 1.73 197.21 0.03 1.19 100.60

L = 95 percentile latency, T = mean throughput.

Fig. 15. Sensitivity analysis of unaided compared to Healthor in a network with 100 nodes.

poor latency and a maximum fixed throughput. Healthor offers the best out of both worlds: almost complete

decentralization (78% improvement compared to aided), a slightly better throughput than aided and its latency

is on par with unaided.

Sensitivity analysis. Looking closer at the behavior of aided and Healthor with the same degree of decentral-

ization can reveal in which settings our mechanism improves throughput and latency. This is shown in Figure 15,

where throughput (Figure 15(a)) and latency (Figure 15(b)) are plotted on the y-axis and centralization score on

the x-axis. As expected, the throughput of aided converges towards νnet and cannot exceed it with increasing

centralization scores. We basically observe the system breaking down, because there are more messages issued

than the fixed throughput νnet . With Healthor it looks decidedly different: the throughput correlates almost lin-

early with the centralization score, hence is not limited at a fixed rate (desired). The network remains functional,

however, it is in a similar elitist mode as unaided, where only high-end nodes can continue to participate. In

Figure 15(b) we observe a correlation between rising latency and increasing centralization score in aided (un-

desired). Conversely, with Healthor we see a flat latency, hovering around 1 second, regardless of increasing

centralization scores.

Table 5 shows how much Healthor improves latency and throughput compared to aided with the same degree

of decentralization for networks of various sizes. Again, we can observe much higher latencies with aided and a

significant improvement of up to 76% with Healthor. Similarly, Healthor improves the throughout by up to 23%

compared to aided in a network with 500 nodes.

Discussion. Aided shows one side of the extreme and limits throughput to increase decentralization. In

light of processing heterogeneity, however, this is not very effective as our experiments have shown. The prob-

lem is that nodes may experience temporary slowdowns below the network processing rate νnet . As long as

the throughput is close to νnet , these nodes lag behind further and further as they experience slowdowns

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:21

Table 5. Comparing throughput and Latency in Aided and Healthor with

Same Degree of Decentralization

|M| cscor e
Latency Throughput

aided Healthor Dec. (↓) aided Healthor Inc. (↑)

100 0.04 1.93 0.76 61% 98.24 105.45 7%

500 0.09 4.24 1.06 75% 97.15 119.51 23%

1,000 0.07 4.47 1.08 76% 97.82 115.10 18%

2,000 0.06 3.17 1.12 65% 97.79 108.96 11%

creating higher latency. On the other hand, the limit on throughput prevents these nodes from falling out-of-

sync completely and therefore provides decentralization.

With unaided nodes can simply operate at their own speed at all times. This clearly offers lower latency, but it

creates an elite-network where only the strongest high-end nodes can participate, thus reduces decentralization.

Since throughput is only limited by demand, it is practically only limited by the processing capabilities of the

fastest participant(s) at the cost of excluding slower devices and becoming more centralized.

Healthor provides the best out of both worlds by embracing heterogeneity. It allows nodes to temporarily go

faster than νnet and hence offers low latencies comparable to unaided, higher throughput than aided, and most

importantly improves decentralization even more than aided.

6 ATTACK ANALYSIS

Permissionless P2P systems are required to face challenges posed by adversarial behavior. In the case of DLTs this

is exacerbated through financial motives. Therefore, protocols in permissionless DLTs should be tamperproof and

resilient against exploitation. Healthor employs several inherent defense mechanisms as described in Section 4.7.

We evaluate how the Defense Engine operates in targeted attacks.

Attack model. In the presented attacks, we assume an omniscient adversary. Hence, the adversary is aware

of every node’s health, and can intercept both messages and health messages. She is able to tamper with the

aspects of Healthor’s protocol. Attacks on the network topology, such as eclipse attacks, and the underlying

ledger are out of the scope of this article. We use the same 10 nodes network and parameters of Section 5.3 for

the attacks shown in this section.

6.1 Manipulation of Health Updates

Not sending health updates. Recall that a node assumes a neighbor n to be healthy hn = 1 when connecting

to each other. Further, it uses the last known health status if a neighbor does not report any health. Therefore,

an adversary cannot cause any harm by withholding health updates.

Lying about health. Since health is computed locally and then sent to the neighbors a node can lie about its

health and even send different health status to distinct neighbors. From the viewpoint of a neighbor n of such an

adversarial nodema , nodema behaves normally as long as no other protocol violations, such as being unhealthy

for too long, exceeding the allowed sending rate, or sending too little, are detected. In essence, an adversary has

only very limited capabilities which only affect itself.

Pretending to be unhealthy. An adversary could try to inflate outboxes on its neighbors by pretending to

be unhealthy. Healthor intrinsically averts this by employing limited lengths for buffers. However, an adversary

could make its neighbors waste resources up to this limited amount which is not favorable. The Defense Engine

implements a mechanism to detect whether a node is unhealthy for too long indirectly via its outbox occupation.

If the outbox of a neighbor n is full for too long, it is dropped. Figure 16 shows this scenario where node[1]
attacks node[3]. Outboxnode[1] grows rapidly up to the maximum capacity of 250. Eventually, node[3] drops

node[1] because the outbox has been full for too long. It can now repeer with another node.

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

10:22 • J. Theis et al.

Fig. 16. Node[3]’s outbox occupation. Node[1] attacks node[3] by pretending to be unhealthy.

6.2 Manipulation of Forwarding Rate

Forwarding more than allowed rate to neighbor. An adversary can choose to diverge from the allocated

forwarding rate by sending more and trying to overload a victim. This is displayed in Figure 17(a) where node[7]
attacks node[2] without Defense Engine. The figure shows the forwarding rates of node[2]’s neighbors as

recorded on receipt by node[2]. The blue line on top indicates the maximum allowed forwarding rate for any

neighbor. It is clear that node[7] exceeds this rate starting around second 15. As node[7] continues to send at a

high rate, node[2] gets unhealthier. Thus, the maximum allowed forwarding rate drops, and other neighbors of

node[2] reduce their rate accordingly. As a result, we can see that without the Defense Engine an attacker can

overload a node by forwarding above the allowed rate.

Figure 17(b) shows the same attack but with the Defense Engine enabled. Node[2] quickly detects node[7]
divergence and drops the connection to it around second 20. This results in node[2] staying healthy and being

able to process messages by other nodes until the end of the simulation.

Forwarding too little to neighbor. A node might receive none or very little messages from a specific neigh-

bor. This could be due to a neighbor being very unhealthy or a targeted attack to slow down and exclude the

node from participating. Exactly this attack is pictured in Figure 17(c). At the second 40 node[7] slows down its

forwarding rate to node[2] to 10 MPS which is shortly after detected by node[2]. The connection is dropped

and node[2] can peer with another node.

7 RELATED WORK

Flow control in the permissionless DLT setting builds on many topics from networking research such as P2P

systems, network security, and distributed flow control. However, to the best of our knowledge, Healthor is the

first system to systematically combine a health-based, heterogeneity-aware distributed flow-control protocol in

permissionless DLTs.

Congestion and flow control in traditional networks and data centers is a deeply studied topic [1, 4, 11, 31, 47].

Generally, mostly end-to-end communication settings rather than group communication is considered. However,

with Healthor we focus on application-level message flow control in a group communication setting. Conges-

tion control protocols employ specific signals such as delay measurements or packet loss to detect congestion.

Some of these require switch support [1], NIC support [47], or are software-based [4, 11, 31]. In Healthor we

use explicit health messages from neighbors as a flow-control signal without needing any hardware assistance.

Its architecture converting health to per-neighbor forwarding rates is inspired by TIMELY [47] (in contrast to

window-based TCP variants [1, 31]).

P2P systems and specifically content distribution systems such as Gnutella, KaZaA, and BitTorrent were stud-

ied widely in the early 2000s [3, 14, 39]. Similar to modern DLTs, these systems are highly heterogeneous [55] and

faced challenges with scalability and performance [3]. In [13, 41] Gia, a scaling approach for the Gnutella network,

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:23

Fig. 17. Receiving rates of node[2]’s neighbors, measured locally. Node[7] attacks node[2].

is proposed that leverages heterogeneity. It dynamically changes the network topology and puts high-capacity

nodes within short reach of most nodes. Additionally, an active flow-control mechanism based on available ca-

pacity is used to avoid overloaded hot-spots. Gia is similar to Healthor in spirit as both mechanisms leverage

heterogeneity to increase utilization. However, the way Gia is designed is unsuitable for permissionless DLTs as

topology changes can lead to cliques construction of powerful nodes, thus defeating the aim of decentralization

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

10:24 • J. Theis et al.

in DLTs. Also, in Gnutella, it is not essential for nodes to retrieve every search query whereas in DLTs state

updates need to be propagated to every node eventually.

More recent research on DLTs [5, 6] focuses more on the aspects of consensus [30, 59], decentralization [27,

37, 43], and scalability [15], the networking aspect of DLTs has received only a little attention [19]. As such, to

the best of our knowledge, there is no flow-control mechanism for DLTs similar to Healthor.

Scalability research in DLTs is mainly concerned with scaling consensus instead of the network layer [68].

There are some proposals to improve transaction and block dissemination such as Kadcast [53] and Erlay [49].

However, heterogeneity is often not considered at all and merely considered a by product caused by the perfor-

mance variability of cloud providers [23, 40, 65]. With Healthor we provide a solution to this emerging problem.

As an alternative to the permissionless public DLTs, there are also permissioned DLT designs [2] that can poten-

tially give more control over participants and their network activities.

8 CONCLUSION AND ON-GOING WORK

In this article, we have presented Healthor, one of the first distributed flow-control mechanisms to leverage

node heterogeneity to dynamically improve performance and decentralization in a permissionless DLT network.

Healthor achieves this by rate-controlling message forwarding rates based on a node’s health. Health is defined as

a function of a node’s message inbox occupancy. With the extensive simulation of Healthor on DLT networks of

up to 5,000 nodes, we have shown that this simple health-based signal can increase the degree of decentralization

by 78%, improves throughput by 23%, and decreases 95 percentile message latency by 4×.

In the next steps, we are specifically investigating how to design a self-stabilizing mechanism for Healthor

(without a network target rate) to converge to an optimal equilibrium based on the current network load and

health of network participants. Furthermore, like early P2P designs, right incentives plays an important role

for protocol adherence in any open network. Currently, Healthor does not provide any hardened incentives for

nodes to follow the protocol except risking being dropped by a neighbor. One promising design is to incorporate

Healthor’s neighbor-assisting behavior into a DLT’s reputation system incentives. Another interesting research

direction is the detailed analysis of a colluding, malicious majority and its effects on the Healthor protocol.

Healthor’s source code (https://github.com/jonastheis/healthor) and simulation result data set (https://zenodo.

org/record/4573698) are both publicly available.

REFERENCES

[1] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and

Murari Sridharan. 2010. Data center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference. Association for Computing

Machinery, New Delhi, India, 63–74. DOI:https://doi.org/10.1145/1851182.1851192

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro, David Enyeart, Christopher

Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith

Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger

fabric: A distributed operating system for permissioned blockchains. In Proceedings of the 13th EuroSys Conference. Association for

Computing Machinery, New York, NY. DOI:https://doi.org/10.1145/3190508.3190538

[3] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. 2004. A survey of peer-to-peer content distribution technologies. Computing

Surveys 36, 4 (2004), 335–371. DOI:https://doi.org/10.1145/1041680.1041681

[4] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical delay-based congestion control for the Internet. In Proceedings of the Applied

Networking Research Workshop. ACM, Montreal QC Canada, 19–19. DOI:https://doi.org/10.1145/3232755.3232783

[5] Badr Bellaj, Aafaf Ouaddah, Emmanuel Bertin, Noel Crespi, and Abdellatif Mezrioui. 2022. SOK: A comprehensive survey on distributed

ledger technologies. In Proceedings of the ICBC 2022 : IEEE International Conference on Blockchain and Cryptocurrency. IEEE, Shanghai,

China, 1–16. Retrieved from https://hal.archives-ouvertes.fr/hal-03609651.

[6] Marianna Belotti, Nikola Bozic, Guy Pujolle, and Stefano Secci. 2019. A vademecum on blockchain technologies: When, which, and

how. IEEE Communications Surveys and Tutorials 21, 4 (2019), 3796–3838. DOI:https://doi.org/10.1109/COMST.2019.2928178

[7] Federico Matteo Bencic and Ivana Podnar Zarko. 2018. Distributed ledger technology: Blockchain compared to directed acyclic graph.

In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems. IEEE, Vienna, 1569–1570. DOI:https:

//doi.org/10.1109/ICDCS.2018.00171

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

https://github.com/jonastheis/healthor
https://zenodo.org/record/4573698
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/1041680.1041681
https://doi.org/10.1145/3232755.3232783
https://hal.archives-ouvertes.fr/hal-03609651
https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1109/ICDCS.2018.00171

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:25

[8] Juan Benet. 2014. IPFS - Content Addressed, Versioned, P2P File System. arXiv. https://doi.org/10.48550/ARXIV.1407.3561

[9] bitfly gmbh. 2020. Clients - Ethernodes.Org - The Ethereum Network & Node Explorer. (2020). Retrieved November 21, 2020 from

https://ethernodes.org/.

[10] Christian Cachin and Marko Vukolić. 2017. Blockchain Consensus Protocols in the Wild. arXiv. https://doi.org/10.48550/ARXIV.1707.

01873

[11] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson. 2017. BBR: Congestion-based congestion

control. Communications of the ACM 60, 2 (2017), 58–66. DOI:https://doi.org/10.1145/3009824

[12] David Chaum, Amos Fiat, and Moni Naor. 1990. Untraceable electronic cash. In Proceedings of the Advances in Cryptology — CRYPTO’

88. (, Shafi Goldwasser (Ed.), Lecture Notes in Computer Science, Springer, New York, NY, 319–327. DOI:https://doi.org/10.1007/0-387-

34799-2_25

[13] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. 2003. Making gnutella-like P2P systems scalable. In

Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. Association

for Computing Machinery, New York, NY, 407–418. DOI:https://doi.org/10.1145/863955.864000

[14] Bram Cohen. 2003. Incentives build robustness in BitTorrent. In Proceedings of the Workshop on Economics of Peer-to-Peer Systems.

Berkeley, CA, 68–72.

[15] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin

Gün Sirer, Dawn Song, and Roger Wattenhofer. 2016. On scaling decentralized blockchains: (A position paper). In Proceedings of the

Financial Cryptography and Data Security. Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan Wallach, Michael Brenner, and Kurt

Rohloff (Eds.), Vol. 9604, Springer, Berlin, 106–125. DOI:https://doi.org/10.1007/978-3-662-53357-4_8

[16] Scott A. Crosby and Dan S. Wallach. 2007. An analysis of BitTorrent’s two kademlia-based DHTs. Retrieved November 21, 2020 from

https://hdl.handle.net/1911/96357.

[17] Cullen Andrew, Pietro Ferraro, William Sanders, Luigi Vigneri, and Robert Shorten. 2020. Access Control for Distributed Ledgers in the

Internet of Things: A Networking Approach. arXiv. https://doi.org/10.48550/ARXIV.2005.07778

[18] W. Diffie and M. Hellman. 1976. New directions in cryptography. IEEE Transactions on Information Theory 22, 6 (1976), 644–654.

DOI:https://doi.org/10.1109/TIT.1976.1055638

[19] Maya Dotan, Yvonne-Anne Pignolet, Stefan Schmid, Saar Tochner, and Aviv Zohar. 2022. Survey on blockchain networking: Context,

state-of-the-art, challenges. Computing Surveys 54, 5 (2022), 1–34. DOI:https://doi.org/10.1145/3453161

[20] Ronald P. Doyle, Jeffrey S. Chase, Omer M. Asad, Wei Jin, and Amin M. Vahdat. 2003. Model-based resource provisioning in a web

service utility. In Proceedings of the 4th Conference on USENIX Symposium on Internet Technologies and Systems - Volume 4. USENIX

Association, 5.

[21] Cynthia Dwork and Moni Naor. 1993. Pricing via processing or combatting junk mail. In Proceedings of the Advances in Cryptology —

CRYPTO’ 92. Ernest F. Brickell (Ed.), Lecture Notes in Computer Science, Springer, Berlin, 139–147. DOI:https://doi.org/10.1007/3-540-

48071-4_10

[22] Nabil El Ioini and Claus Pahl. 2018. A review of distributed ledger technologies. In Proceedings of the On the Move to Meaningful Internet

Systems. OTM 2018 Conferences. Hervé Panetto, Christophe Debruyne, Henderik A. Proper, Claudio Agostino Ardagna, Dumitru Roman,

and Robert Meersman (Eds.), Vol. 11230, Springer International Publishing, Cham, 277–288. DOI:https://doi.org/10.1007/978-3-030-

02671-4_16

[23] Jamie Ericson, Masoud Mohammadian, and Fabiana Santana. 2017. Analysis of performance variability in public cloud computing. In

Proceedings of the 2017 IEEE International Conference on Information Reuse and Integration. IEEE, San Diego, CA, 308–314. DOI:https:

//doi.org/10.1109/IRI.2017.47

[24] Ethereum. 2020. Ethereum/Devp2p. GitHub (2020). Retrieved January 23, 2021 from https://github.com/ethereum/devp2p.

[25] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. 2016. Bitcoin-Ng: A scalable blockchain protocol. In Proceedings

of the USENIX NSDI. 45–59.

[26] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2020. Proof-of-stake blockchain protocols with near-optimal through-

put. ICryptology ePrint Archive. 2020 (2020), 37.

[27] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün Sirer. 2018. Decentralization in bitcoin and ethereum

networks. In Proceedings of the Financial Cryptography and Data Security. Sarah Meiklejohn and Kazue Sako (Eds.), Vol. 10957, Springer,

Berlin, 439–457. DOI:https://doi.org/10.1007/978-3-662-58387-6_24

[28] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. 2016. On the security and

performance of proof of work blockchains. In Proceedings of the ACM CCS. 3–16. DOI:https://doi.org/10.1145/2976749.2978341

[29] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling byzantine agreements for

cryptocurrencies. In Proceedings of the ACM SOSP. 51–68. DOI;https://doi.org/10.1145/3132747.3132757

[30] Huaqun Guo and Xingjie Yu. 2022. A survey on blockchain technology and its security. Blockchain: Research and Applications 3, 2 (2022),

100067. DOI:https://doi.org/10.1016/j.bcra.2022.100067

[31] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Systems

Review 42, 5 (2008), 64–74. DOI:https://doi.org/10.1145/1400097.1400105

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

https://doi.org/10.48550/ARXIV.1407.3561
https://ethernodes.org/
https://doi.org/10.48550/ARXIV.1707.01873
https://doi.org/10.1145/3009824
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1145/863955.864000
https://doi.org/10.1007/978-3-662-53357-4_8
https://hdl.handle.net/1911/96357
https://doi.org/10.48550/ARXIV.2005.07778
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/3453161
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-030-02671-4_16
https://doi.org/10.1109/IRI.2017.47
https://github.com/ethereum/devp2p
https://doi.org/10.1007/978-3-662-58387-6_24
https://doi.org/10.1145/2976749.2978341
DOI; https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/10.1145/1400097.1400105

10:26 • J. Theis et al.

[32] Stuart Haber and W. Scott Stornetta. 1991. How to time-stamp a digital document. In Proceedings of the Advances in Cryptology-CRYPTO’

90. Alfred J. Menezes and Scott A. Vanstone (Eds.), Lecture Notes in Computer Science, Springer, Berlin, 437–455. DOI:https://doi.org/

10.1007/3-540-38424-3_32

[33] Vikas Hassija, Gaurang Bansal, Vinay Chamola, Neeraj Kumar, and Mohsen Guizani. 2020. Secure lending: Blockchain and prospect

theory-based decentralized credit scoring model. IEEE Transactions on Network Science and Engineering 7, 4 (2020), 2566–2575. DOI:https:

//doi.org/10.1109/TNSE.2020.2982488

[34] Chenyu Huang, Zeyu Wang, Huangxun Chen, Qiwei Hu, Qian Zhang, Wei Wang, and Guan Xia. 2020. RepChain: A reputation based

secure, fast and high incentive blockchain system via sharding. IEEE Internet of Things Journal 8, 6 (2020), 4291–4304. DOI:https://doi.

org/10.1109/JIOT.2020.3028449

[35] ITU-T Focus Group on Application of Distributed Ledger Technology (FG DLT). 2020. Distributed ledger technology use cases. Retrieved

November 20, 2020 from https://www.itu.int/en/ITU-T/focusgroups/dlt/Documents/d21.pdf.

[36] Niclas Kannengießer, Sebastian Lins, Tobias Dehling, and Ali Sunyaev. 2020. Trade-Offs between distributed ledger technology charac-

teristics. Computing Surveys 53, 2 (2020), 1–37. DOI:https://doi.org/10.1145/3379463

[37] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew Miller, and Michael Bailey. 2018. Measuring ethereum net-

work peers. In Proceedings of the Internet Measurement Conference 2018. ACM, Boston MA, 91–104. DOI:https://doi.org/10.1145/3278532.

3278542

[38] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta: Heterogeneous cloud storage configuration for data analytics. In

Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference. USENIX Association, 759–773.

[39] N. Leibowitz, M. Ripeanu, and A. Wierzbicki. 2003. Deconstructing the kazaa network. In Proceedings of the 3rd IEEE Workshop on

Internet Applications. IEEE Comput. Soc, San Jose, CA, 112–120. DOI:https://doi.org/10.1109/WIAPP.2003.1210295

[40] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp: Comparing public cloud providers. In Proceedings of the

10th Annual Conference on Internet Measurement - IMC’10. ACM, Melbourne, Australia, 1. DOI:https://doi.org/10.1145/1879141.1879143

[41] Qin Lv, Sylvia Ratnasamy, and Scott Shenker. 2002. Can heterogeneity make gnutella scalable? In Proceedings of the Peer-to-Peer Systems,

Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Peter Druschel, Frans Kaashoek, and Antony Rowstron (Eds.), Vol. 2429, Springer,

Berlin, 94–103. DOI:https://doi.org/10.1007/3-540-45748-8_9

[42] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Subrata Mitra, Ana Klimovic, Somali Chaterji, and Saurabh Bagchi.

2020. OPTIMUSCLOUD: Heterogeneous configuration optimization for distributed databases in the cloud. In Proceedings of the

2020 USENIX Annual Technical Conference. USENIX Association, 189–203. Retrieved from https://www.usenix.org/conference/atc20/

presentation/mahgoub.

[43] Sami Ben Mariem, Pedro Casas, Matteo Romiti, Benoit Donnet, Rainer Stutz, and Bernhard Haslhofer. 2020. All that glitters is not bitcoin

– Unveiling the centralized nature of the BTC (IP) network. In Proceedings of the NOMS 2020 - 2020 IEEE/IFIP Network Operations and

Management Symposium. IEEE, Budapest, Hungary, 1–9. DOI:https://doi.org/10.1109/NOMS47738.2020.9110354

[44] Juri Mattila. 2016. The blockchain phenomenon. Berkeley Roundtable of the International Economy (2016), 16.

[45] Petar Maymounkov and David Mazières. 2002. Kademlia: A peer-to-peer information system based on the XOR metric. In Proceedings

of the Peer-to-Peer Systems. Peter Druschel, Frans Kaashoek, and Antony Rowstron (Eds.), Lecture Notes in Computer Science, Springer,

Berlin, 53–65. DOI:https://doi.org/10.1007/3-540-45748-8_5

[46] Ralph C. Merkle. 1978. Secure communications over insecure channels. Communications of the ACM 21, 4 (1978), 294–299. DOI:https:

//doi.org/10.1145/359460.359473

[47] Radhika Mittal, David Zats, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vahdat, Yaogong

Wang, and David Wetherall. 2015. TIMELY: RTT-based congestion control for the datacenter. In Proceedings of the 2015 ACM Conference

on Special Interest Group on Data Communication - SIGCOMM’15. ACM, London, United Kingdom, 537–550. DOI:https://doi.org/10.1145/

2785956.2787510

[48] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. May, http://www.bitcoin.org/bitcoin.pdf.

[49] Gleb Naumenko, Gregory Maxwell, Pieter Wuille, Alexandra Fedorova, and Ivan Beschastnikh. 2019. Erlay: Efficient transaction relay

for bitcoin. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. Association for Computing

Machinery, New York, NY, 817–831. DOI:https://doi.org/10.1145/3319535.3354237

[50] S. Popov. 2015. The tangle. Retrieved November 21, 2020 from https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae

33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf.

[51] Serguei Popov, Hans Moog, Darcy Camargo, Angelo Capossele, Vassil Dimitrov, Alon Gal, Andrew Greve, Bartosz Kusmierz, Sebastian

Mueller, Andreas Penzkofer, Bartosz Kusmierz, Sebastian Mueller, Andreas Penzkofer, et al. 2020. The coordicide. (2020). Retrieved from

https://files.iota.org/papers/20200120_Coordicide_WP.pdf.

[52] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. 2016. A reliable and cost-efficient auto-scaling system for web applications

using heterogeneous spot instances. Journal of Network and Computer Applications 65, C (2016), 167–180. DOI:https://doi.org/10.1016/

j.jnca.2016.03.001

[53] Elias Rohrer and Florian Tschorsch. 2019. Kadcast: A structured approach to broadcast in blockchain networks. In Proceedings of the

1st ACM Conference on Advances in Financial Technologies. ACM, Zurich Switzerland, 199–213. DOI:https://doi.org/10.1145/3318041.

3355469

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

https://doi.org/10.1007/3-540-38424-3_32
https://doi.org/10.1109/TNSE.2020.2982488
https://doi.org/10.1109/JIOT.2020.3028449
https://www.itu.int/en/ITU-T/focusgroups/dlt/Documents/d21.pdf
https://doi.org/10.1145/3379463
https://doi.org/10.1145/3278532.3278542
https://doi.org/10.1109/WIAPP.2003.1210295
https://doi.org/10.1145/1879141.1879143
https://doi.org/10.1007/3-540-45748-8_9
https://www.usenix.org/conference/atc20/presentation/mahgoub
https://doi.org/10.1109/NOMS47738.2020.9110354
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1145/359460.359473
https://doi.org/10.1145/2785956.2787510
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3319535.3354237
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://files.iota.org/papers/20200120_Coordicide_WP.pdf
https://doi.org/10.1016/j.jnca.2016.03.001
https://doi.org/10.1145/3318041.3355469

Heterogeneity-aware Flow Control in DLTs to Increase Performance and Decentralization • 10:27

[54] Fahad Saleh. 2020. Blockchain Without Waste: Proof-of-Stake. SSRN Scholarly Paper ID 3183935. Social Science Research Network,

Rochester, NY. DOI:https://doi.org/10.2139/ssrn.3183935

[55] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. 2001. Measurement study of peer-to-peer file sharing systems. In Proceedings

of the Multimedia Computing and Networking 2002. 156–170.

[56] Devavrat Shah. 2007. Gossip algorithms. Foundations and Trends® in Networking 3, 1 (2007), 1–125. DOI:https://doi.org/10.1561/

1300000014

[57] Michael Bedford Taylor. 2017. The evolution of bitcoin hardware. Computer 50, 9 (2017), 58–66. DOI:https://doi.org/10.1109/MC.2017.

3571056

[58] thetangle.org. 2020. Public IOTA Nodes. (2020). Retrieved November 21, 2020 from https://thetangle.org.

[59] Florian Tschorsch and Bjorn Scheuermann. 23. Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Com-

munications Surveys and Tutorials 18, 3 (23), 2084–2123. DOI:https://doi.org/10.1109/COMST.2016.2535718

[60] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Rellermeyer, Carlos Maltzahn, Robert Ricci, and Alexandru

Iosup. 2020. Is big data performance reproducible in modern cloud networks? In Proceedings of the 17th USENIX Symposium on Net-

worked Systems Design and Implementation. USENIX Association, Santa Clara, CA, 513–527. Retrieved from https://www.usenix.org/

conference/nsdi20/presentation/uta.

[61] Roger Wattenhofer. 2017. Distributed Ledger Technology: The Science of the Blockchain (2nd. ed.). CreateSpace Independent Publishing

Platform, North Charleston, SC.

[62] Shawn Wilkinson, Tome Boshevski, Josh Brandoff, and Vitalik Buterin. 2014. Storj A Peer-to-Peer Cloud Storage Network. Retrieved from

https://storj.io/storj.pdf.

[63] Gavin Wood. 2016. Polkadot: Vision for a heterogeneous multi-chain framework. (2016). Retrieved from https://pdfs.semanticscholar.

org/12ea/67d037ddd0a5c7beb40fbd4a70bc90631644.pdf.

[64] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou. Secondquarter 2020. A survey of distributed consensus protocols for blockchain networks.

IEEE Communications Surveys Tutorials 22, 2 (2020), 1432–1465. DOI:https://doi.org/10.1109/COMST.2020.2969706

[65] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. 2013. Bobtail: Avoiding long tails in the cloud. In Proceedings of the

10th USENIX Symposium on Networked Systems Design and Implementation. USENIX Association, Lombard, IL, 329–341. Retrieved from

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/xu_yunjing.

[66] Addy Yeow. 2020. Global Bitcoin Nodes Distribution. (2020). Retrieved November 21, 2020 from https://bitnodes.io/.

[67] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain: Scaling blockchain via full sharding. In Proceedings of

the ACM CCS. 931–948. DOI:https://doi.org/10.1145/3243734.3243853

[68] Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. 2020. Solutions to scalability of blockchain: A survey. IEEE Access 8 (2020),

16440–16455. DOI: https://doi.org/10.1109/ACCESS.2020.2967218

Received 24 November 2021; revised 18 May 2022; accepted 17 July 2022

Distributed Ledger Technologies: Research and Practice, Vol. 1, No. 2, Article 10. Publication date: December 2022.

https://doi.org/10.2139/ssrn.3183935
https://doi.org/10.1561/1300000014
https://doi.org/10.1109/MC.2017.3571056
https://thetangle.org
https://doi.org/10.1109/COMST.2016.2535718
https://www.usenix.org/conference/nsdi20/presentation/uta
https://storj.io/storj.pdf
https://pdfs.semanticscholar.org/12ea/67d037ddd0a5c7beb40fbd4a70bc90631644.pdf
https://doi.org/10.1109/COMST.2020.2969706
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/xu_yunjing
https://bitnodes.io/
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1109/ACCESS.2020.2967218

