Healthor: Protecting the Weak in Heterogeneous
DLTs with Health-aware Flow Control

Jonas Theis!?, Luigi Vigneri?, Lin Wang!, and Animesh Trivedi'
'Vrije Universiteit Amsterdam and 2IOTA Foundation

Abstract

Permissionless distributed ledger technologies (DLTs) utilize
an underlying peer-to-peer network to disseminate transac-
tions. These types of networks have been shown to be highly
heterogeneous. However, current DLTs fail to consider this
heterogeneity which can render low-end nodes to be unable
to participate in consensus.

In this paper we introduce Healthor, a novel heterogeneity-
aware flow-control mechanism that formalizes this hetero-
geneity in a notion of health of a node. In our early simula-
tion results we show that Healthor enables high-end nodes
to protect their weaker neighbors by buffering at their end
while incurring only minimal overhead.

CCS Concepts « Networks — Peer-to-peer protocols.

Keywords heterogeneity-aware flow-control, distributed
ledger technologies, peer-to-peer overlay network

ACM Reference Format:

Jonas Theis!2, Luigi Vigneriz, Lin Wangl, and Animesh Trivedil.
2020. Healthor: Protecting the Weak in Heterogeneous DLTs with
Health-aware Flow Control. In Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers (SERIAL °20), December 7—
11, 2020, Delft, Netherlands. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3429884.3430033

1 Introduction

First generation permissionless distributed ledger technolo-
gies (DLTs) such as Bitcoin-like blockchains reach consen-
sus through expensive proof-of-work which leads to hash-
ing power centralization in a few miners [7, 10]. This has
consequences for decentralization, e.g., in terms of censor-
ship resistance and device heterogeneity due to more effi-
cient mining with specialized hardware. Alternative means
to reach consensus in DLTs like proof-of-stake, Byzantine
fault tolerance algorithms, and voting have since developed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SERIAL °20, December 7-11, 2020, Delft, Netherlands

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8208-3/20/12...$15.00
https://doi.org/10.1145/3429884.3430033

Arguably, voting fosters a very heterogeneous and decentral-
ized network because it allows each participant to take part
in consensus without constraints on computing power or
stake. More recent DLTs such as IOTA [8], Nano [1], Hash-
Graph [4], etc., take a voting-based approach.

Every consensus mechanism has its own challenges. In
the case of voting-based consensus the main challenges re-
volve around fair network usage and Sybil protection [1, 8].
Enabling fair network usage becomes a very challenging
task due to the heterogeneity of nodes in a DLT and its un-
derlying peer-to-peer (P2P) overlay network. Heterogeneity
can be manifold: (1) bandwidth, latency, availability, and
processing capabilities can vary between multiple orders of
magnitude in P2P networks [9]; (2) protocols, geographical
location, node freshness, and software versions can differ
widely in DLTs [5]; (3) unsteady processing rates of a node
due to competing tenant applications. It is a result of the
very nature of permissionless P2P systems: anyone with a
computing device can join. Such heterogeneity was a topic of
active research with P2P content distribution systems such
as Gnutella [2, 9]. However, DLTs have additional require-
ments. Every node needs to receive all ledger state updates
(transactions) in a timely manner to be able to construct
and verify the ledger state. If the network operates too fast
without any flow control, only high-end nodes are able to
keep up with the network activity. However, if every node
should be able to maintain synced the network effectively
can only operate at the speed of the slowest low-end node.
It is important to find a middle ground between these two
extremes so that every participant receives and processes all
state updates in a timely manner, and is thus able to partic-
ipate in consensus. In turn, the overall throughput should
be high while maintaining a high degree of decentralization
and heterogeneity.

To illustrate and quantify the impact of heterogeneity
(when ignored) in DLTs, we run a simple experiment. In
this experiment we consider a 3-node simplified network,
where each node represents a transaction processing and
voting node with a queue for pending transactions. There is
a constant transaction influx at the rate of 1000 transactions
per second (TPS) until second 60 and 0 TPS from 60-90 sec-
onds in the network. We vary processing transaction rates of
node[2], and measure the queue size on each node to quan-
tify the impact of heterogeneity on transaction processing.
Figure 1 shows our results where there is a clear correlation
between a processing rate lower than influx of transactions

https://doi.org/10.1145/3429884.3430033
https://doi.org/10.1145/3429884.3430033

SERIAL 20, December 7-11, 2020, Delft, Netherlands

—&— node[0] node[1]
1000 T &=—v = LR
1
{
1

—e— node[2]

AT
I 1

\ 1 1
1 | 1
\

500 -

r 10000

-

processing rate (messages)
inbox buffer (messages)

time (s)

Figure 1. Correlation between growing queue size and vary-
ing processing rate is clearly visible when transaction influx
is higher than processing rate. 1000 TPS < 60s, 0 TPS 61-90s.
A dashed line indicates a node’s processing rate.

and growing queue length on a node. As the inbox queue
builds up, it has detrimental effect on the performance. At
time 10s there are 0 unprocessed transactions after 5 sec-
onds of their issuing time whereas at time 60s more than
10000 transactions are not processed by node[2] after 5 sec-
onds. This experiment shows that node[2] cannot keep up
with the network activity, and therefore its local ledger has
an inconsistent state. As a result, this node is not able to
participate in the voting process, thus, increasing central-
ization in the DLT network. In summary, there is a clear
need to address the heterogeneity challenges to maintain the
egalitarian nature of a DLT network.

In this paper we present Healthor!, a novel heterogeneity-
aware, flow-control mechanism for DLT networks. Healthor
captures heterogeneity by defining health of a node as func-
tion of the incoming queue length in relation to the network’s
target processing rate. Such queue-based indicators are also
used in data centers for distributed congestion control mech-
anisms [6]. This health-awareness enables high-end nodes to
protect weaker nodes from wasting unnecessary processing
power, rapidly changing network load and bursts so that
every node can stay in sync and participate in consensus.

We make following key contributions: (1) We make a
case for heterogeneity-aware network management (flow-
control) in DLT networks. (2) We design a novel health-based
flow-control mechanism for DLT networks that leverages
heterogeneity. (3) We present early simulation results show-
ing the efficacy of the mechanism while incurring only min-
imal overhead.

2 Network model

The set of all nodes participating in the network is denoted as
M where each node m € M has a set of neighbors Ny, ¢ M.
Neighbors are connected via bidirectional channels over
which they exchange messages. A message can contain any
data, e.g., monetary transactions. We use throughput and
latency as main metrics to evaluate performance of nodes
and network overall. Both are based on processing time, i.e.,
the time a node writes a message into its local ledger.

!Union of the word health and the Germanic god Thor who is amongst
other things associated with great strength and the protection of mankind.

Theis, Vigneri, Wang, and Trivedi

forward

process &
write

Figure 2. Model of a node m and its neighbors N,.

Figure 2 shows a node m’s model and its neighbors N,. A
node can perform different operations, namely issuing, pro-
cessing, receiving and forwarding messages. The network’s
target processing rate v defines the overall rate at which the
network as a whole should operate. We assume that nodes
efficiently exploit network resources using an underlying
TCP-inspired congestion control mechanism [3]. In particu-
lar, depending on the congestion status of the network and a
node’s reputation, node m will be able to generate messages
at rate A,,.

On receipt of a message, a node filters duplicated mes-
sages out and pushes unseen messages to its inbox. The
congestion control mechanism will schedule messages to be
processed and forwarded from the inbox at fixed rate vp,.
Ideally, v,,, = v at any time, meaning that a node m is able to
operate at the rate of the network. However, sometimes v,
might be smaller than v, which leads to accumulating mes-
sages at the inbox. This can happen because processing and
writing messages to the local ledger is a costly operation due
to cryptographic signature verification, and IO operations.
Thus, we model v, to express heterogeneity between nodes
and available processing capabilities with varying rates. Fur-
thermore, we assume that filtering and forwarding messages
have negligible cost. A message is forwarded to all neighbors
except the one that sent the message.

Adversaries may exceed the allowed generation rate A,
and the processing rate v,,. The analysis of such malicious
behavior, however, is left as a future work.

3 Design

In this section, we present the main components of Healthor,
our proposed heterogeneity-aware flow-control mechanism.
At high-level, Healthor works as follows: Nodes periodi-
cally send their health, a notion of their current fitness, to
their neighbors. A node adjusts its sending rates individu-
ally according to a neighbor’s health and buffers messages
for neighbors that are less healthy. Our key insight is that
more capable nodes store messages for weak neighbors, thus
shifting load away from low-end nodes (Section 4).
Healthor operates at the application-level and maintains
connections to multiple neighbors in a group communication
setup. It is inefficient to rely on existing mechanisms such
as TCP-based backpressure because (1) TCP-based backpres-
sure runs independently from the application-level resources,
and would need modifications to the TCP implementation

Healthor: Protecting the Weak in Heterogeneous DLTs with Health-aware Flow Control

nd to neighbors
Outboxp

.| Measurement
measure Engine

Node m Health J

o | {Jsceaer]

Noi process & . Non
health data W”‘: store .
Rate Ledger,
Computation I—'"I
Engine —rate per neighbor

Figure 3. Model of a node m with our Healthor. New com-
ponents compared to Figure 2 are highlighted in gray.

which is not feasible in a public DLT; and (2) TCP as a point-
to-point protocol cannot efficiently handle group communi-
cation dynamics.

Figure 3 depicts an updated model of a node m with the
new components highlighted. Healthor is a framework en-
compassing three separate engines, inspired by TIMELY [6],
that interact together and form a heterogeneity-aware flow-
control mechanism. Additionally, a node m has an Outbox,
for every n € N,,, where references to messages for a neigh-
bor n are stored before forwarding.

3.1 Health Measurement Engine

The Health Measurement Engine is at the heart of the mech-
anism. By introducing the notion of health h,, € [0,1], a
node m can express its fitness regarding current network traf-
fic taking into account its specific computational resources
available at this point in time. A node periodically calculates

. . . def
its health based on inbox occupation len(Inbox,,) = I, as
shown in

1 ifl,, < v,
hm=41=" ifl, >vAlL, <av (1)
0 if I, > av

where « is a tunable parameter, and sends the information
to its neighbors.

Since all messages are delivered to all nodes, every node
knows the current congestion level of the network. Therefore,
inbox occupation gives a reasonable assessment of how much
in sync a node is, i.e., whether it is able to receive and process
state updates in a consistent and timely manner. A lower
inbox occupation signals a node being able to process at the
network’s pace, being healthy. Conversely, a higher inbox
occupation conveys that the node is struggling to keep up
with network activity. Thus, it is unhealthy. Parameter « is
tunable and allows to adjust for how quickly a node considers
itself getting unhealthier.

3.2 Rate Computation Engine

On receipt of a neighbor n’s health data the node’s Rate Com-
putation Engine calculates the sending rate for this neighbor
n as shown in

rn=V-hy. (2)
It reduces the sending rate r,, linearly according to the neigh-

bor’s health h,,.

SERIAL 20, December 7-11, 2020, Delft, Netherlands

—e— node[2] —>— node[4] —— others

Available processing rate

1000 1

v

=3

]
L

messages

1000 A

500 1

messages

0 20 40 60 80
time (s)

Figure 4. Available processing rates and generation rate.

3.3 Pacing Engine

The Pacing Engine gets messages from an Outbox, for a
neighbor n and forwards them at the rate calculated by the
Rate Computation Engine. It essentially controls each flow of
messages to every neighbor to achieve the given sending rate
rn. A possible implementation in a real-world system could
make use of one thread per Outbox, that pulls messages
from the outbox and forwards them while inserting delays
to match r,,.

4 Evaluation

We built a simulator using OMNeT++ to test our mecha-
nism? and simulate a permissionless, voting-based DLT. We
compare Healthor (Section 3) with the baseline scenario de-
scribed in Section 2. The test network is made up of 10 nodes,
each with 4 random neighbors. Channels have a random de-
lay between 50ms and 150ms to simulate real network con-
ditions. Figure 4 depicts available processing and message
generation rates. The main point of interest here: node[2]
and node[4] have a varying processing rate, different than
that of the other nodes. This could be due to other tenant
applications requiring too much CPU time or naturally be-
cause of heterogeneity between nodes. The total amount of
generated messages at any point in time is less than or equal
to v = 1000. According to our experiments, the parameter
a seems to be at a sweet spot between growing inbox at
an unhealthy node and outbox length at its neighbors at
a = 10, which we adopt for our experiments shown here.
Every node’s Health Measurement Engine computes its health
hp, and sends it to its neighbors at an interval of 1 second.
Since we do not consider malicious behavior and message
priorities, a node’s scheduler operates according to FIFO. We
make use of unbounded buffers in our experiments to ease
monitoring of system behavior.

Figure 5 shows the throughput over time. It is evident that
all nodes with stable processing rates equal to v can keep up
with the influx of generated messages, without and with our

2The simulator and a framework to generate plots from Python can be
found at https://github.com/jonastheis/healthor.

https://github.com/jonastheis/healthor

SERIAL 20, December 7-11, 2020, Delft, Netherlands

—¢ node[4] —— others

Throughput without Healthor

1000 A
500 - [/\
0 L T T T T T

Throughput with Healthor

1000 +
500 -
04 T T T T k T
0 20 40 60 80

time (s)

Figure 5. Throughput without and with Healthor.

—e— node[2]

messages

messages

15000 4

12500 -

10000 A

7500 4

5000

inbox length (messages)

2500 -

0

0 20 40 60 80
time (s)

Figure 6. Inbox occupation over time without and with
Healthor. Solid lines show occupation without Healthor;
dashed lines with Healthor.

mechanism. Conversely, node[2] and node[4] can not al-
ways operate at v and we can see a changing throughput. As
a general trend it can be observed that the throughput in both
cases is very similar. There seems to be a minimal penalty
with our mechanism for unhealthy nodes which is due to the
overhead of adding messages to an outbox and sending them
via Pacing Engine. Latency (not depicted) paints a similar pic-
ture. Overall, with our mechanism latencies are minimally
increased due to this overhead.

In Figure 6 inbox occupation is shown over time. For
healthy nodes it is hovering around 0 without and with
Healthor. For node[2] and node[4] it clearly can be ob-
served that the occupation grows in times where there is less
processing rate available than the network’s target process-
ing rate v. Without Healthor the inbox of node[2] grows
extremely large to up to 15000 messages because all its neigh-
bors continue sending at rate v. With our mechanism a differ-
ent trend is visible: node[2]’ s inbox only grows up to 4000
messages, also increases in times of less processing power
but decreases in times of more processing power.

Recall that a growing inbox leads to a node becoming un-
healthier as described in Section 3.1. Consecutively, its neigh-
bors will slow down the sending rate accordingly. When the
node has more processing rate available again, it starts drain-
ing its inbox; it becomes healthier and its neighbors speed
up sending again. This balancing can be observed for both
node[2] and node[4]. While the messages are not buffered
at the unhealthy node they are buffered at its neighbors’

Theis, Vigneri, Wang, and Trivedi

outbox. These outboxes can grow up to 9500 messages. How-
ever, the message itself does not need to be stored but only
pointers to already processed messages.

Ongoing work: From our experiments we can conclude
that Healthor effectively shifts growing buffers from un-
healthy nodes to their more capable neighbors while incur-
ring only a minimal performance overhead. It is beneficial to
build up queues at neighbors due to multiple reasons. First,
there is less memory consumption on the low-end node that
is already struggling to keep up to the network’s pace. Sec-
ond, in future versions of the mechanism this can be utilized
to randomly drop messages at neighbors while still achieving
high probability that the node receives all messages, and thus
reducing the amount of messages to be received and filtered.
Lastly, we have seen that the inbox of an unhealthy node can
grow extremely large without our mechanism whereas this
is mitigated with Healthor. If we consider bounded buffers,
it becomes obvious that significant message drop would hap-
pen at an unhealthy node. We believe that in such scenarios
a future version of Healthor can not only improve consis-
tency but also latency and throughput. We are investigating
Healthor with bounded buffers to verify our intuition.

5 Conclusion

Healthor is a novel heterogeneity-aware flow-control mech-
anism for DLT networks that captures heterogeneity by in-
troducing health of a node. Therefore, more capable nodes
can protect low-end nodes so that every node can continue
to participate in consensus. In early simulation results we
show that Healthor is capable of shifting memory load away
from low-end nodes to their more capable neighbors without
incurring significant overhead.

References

[1] Federico Matteo Bencic et al. 2018. Distributed Ledger Technology:
Blockchain Compared to Directed Acyclic Graph. In 2018 IEEE 38th
ICDCS. 1569-1570.

[2] Yatin Chawathe et al. 2003. Making Gnutella-like P2P Systems Scalable.
In SIGCOMM °03. New York, NY, USA, 407-418.

[3] Andrew Cullen et al. 2020. On Congestion Control for Distributed
Ledgers in Adversarial [oT Networks. ArXiv abs/2005.07778 (2020).

[4] Nabil El Ioini et al. 2018. A Review of Distributed Ledger Technologies.
In On the Move to Meaningful Internet Systems. OTM 2018 Conferences.
Vol. 11230. Springer International Publishing, 277-288.

[5] Seoung Kyun Kim et al. 2018. Measuring Ethereum Network Peers. In
Proceedings of the ACM IMC 2018. 91-104.

[6] Radhika Mittal et al. 2015. TIMELY: RTT-Based Congestion Control for
the Datacenter. In Proceedings of the 2015 ACM SIGCOMM. 537-550.

[7] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash
System. (2009).

[8] Serguei Popov et al. 2020. The Coordicide: Realizing IOTA’s vision of
a permissionless and scalable distributed ledger technology.

[9] Stefan Saroiu et al. 2001. Measurement Study of Peer-to-Peer File
Sharing Systems. In Multimedia Computing and Networking 2002.

[10] Florian Tschorsch et al. 2016. Bitcoin and Beyond: A Technical Survey
on Decentralized Digital Currencies. IEEE Communications Surveys &
Tutorials 18, 3 (2016), 2084-2123.

	Abstract
	1 Introduction
	2 Network model
	3 Design
	3.1 Health Measurement Engine
	3.2 Rate Computation Engine
	3.3 Pacing Engine

	4 Evaluation
	5 Conclusion
	References

