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Abstract

How can Minecraft-like games become scalable cloud ser-
vices? Hundreds of Minecraft-like games, that is, games act-
ing as modifiable virtual environments (MVEs), are currently
played by over 100 million players, but surprisingly they do
not scale and are frequently not published as cloud services.
We envision a new architecture for large-scale MVEs, support-
ing much larger numbers of concurrent users by scaling up
and out using serverless technology. In our vision, developers
focus on the game (business) logic, while cloud providers
manage resource management and scheduling (RMS) and
guarantee non-functional properties. We provide a definition
for MVEs, model their services and deployments, present a
vision for large-scale MVEs architected as serverless systems,
and suggest concrete steps towards realizing this vision.

1 Introduction

Games provide entertainment to hundreds of million of play-
ers worldwide. In 2019, this entertainment industry generated
arevenue of $152.1 billion [52], which is more than four times
the global box office revenue [17] and ten times the music
industry’s revenue [58]. We focus in this work on an emerging
type of game, exemplified by Minecraft, which offers players
a modifiable virtual environment (MVE). Minecraft is one of
the most popular games of all time: it has sold more than 176
million copies [55] and has over 100 million active monthly
players [25] (which, in comparison, is more than the global
number of MacOS users [54]). Surprisingly, Minecraft uses
replicated, non-communicating game instances, which do not
scale beyond a few hundred concurrent players [68]. We en-
vision MVEs with millions of concurrent players together
in a seamless virtual world. In this paper we make a case to
redesign these MVE environments as serverless systems.
The unique features of MVEs are generally beneficial. By
allowing users to construct and deconstruct the world in com-
plex ways, MVEs enable creative user-behavior that is cur-
rently not possible in other games. MVEs are also useful for
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Definition: A modifiable virtual environment is a
real-time, online, multi-user environment which al-
lows its users (i.e., players) to modify the virtual
world’s objects (e.g., player apparel) and parts (e.g.,
terrain), create new content by connecting compo-
nents, and interact with the world through programs.

other important societal tasks. Minecraft: Education Edition
contains lessons on a diverse set of topics, for example, com-
puter science lessons in which students construct their own
digital computers and history lessons in which they explore
UNESCO world-heritage sites [1]. Minecraft has also been
used for social activism, for example, in protecting Europe’s
last primeval forest from illegal logging [51].

Through their unique features, MVEs also inspire large
communities of developers and players. Modifications (mods)
are programmatic game changes, ranging from user-interface
tweaks to entire sub-games within the MVE, designed and
developed by communities and individuals outside the con-
trol of the original game developer or publisher. Modding is
popular for MVEs, e.g., there are currently over 55,000 mods
available for Minecraft alone [2].

We conclude there exists a strong case for supporting MVEs
through a new class of cloud services, with the lucrative po-
tential of hundreds of millions of players. However, we argue
that enabling cloud services for MVEs requires a careful in-
vestigation, motivated by scalability issues.

Although Minecraft has more than 100 million of active
players, there is a looming scalability challenge. Minecraft’s
current scalability is only achieved by replicating game in-
stances that do not exchange state. Thus, players join a single
instance, and do not interact in-game with users on other
instances. Moreover, both recent academic findings and in-
dustry practice indicate the scalability of a single game’s
instance (analyzed in Section 2.1) is limited. Minecraft in-
stances, and several community-created games using the same
protocol, scale only to 300-400 players under favorable condi-



tions [68], and Minecraft Realms, a cloud-operated Minecraft
service, does not allow more than 10 simultaneous players in
each world-instance [48]. Many games similar to Minecraft
likely' suffer from similar scalability limitations.

State-of-the-art approaches for scaling traditional online-
games, such as world-partitioning [26] and interest manage-
ment techniques [10,43], are designed to address scalability is-
sues caused by player-avatars, and assume largely immutable,
low-complexity virtual worlds. In contrast, MVE players have
fine-grained control over the environment by modifying its
terrain, components, and programs.

Our vision: Minecraft-like games and, more gener-
ally, MVEs, will become cloud-based services scal-
able to millions of concurrent players (users).

Toward our vision, and aligned with the goals and meth-
ods of the research program on massivizing computer sys-
tems [31], we propose a novel architecture where MVEs are
redesigned as serverless systems, making large-scale MVEs a
“killer application” for modern cloud infrastructures. In this
article, we set a course towards this vision:

1. We model current MVEs as an set of interconnecting ser-
vices (in Section 2). We model the services operating a
current game instance, and describe how these game in-
stances are currently deployed as cloud services.

2. We envision for large-scale MVEs (in Section 3). In our
vision, MVEs are serverless; running as a collection of
services. We describe for these services their operation,
state synchronization, and deployment.

3. To move towards our vision, we propose three challenging
and timely areas of research (in Section 4). The areas are:
using serverless functions to schedule MVE services, dy-
namic consistency units for MVEs, and scheduling MVE
services at cloudlets.

2 MVE Model

In this section, we model the services operating a current
game instance, and describe how the scalability of these game
instances is limited, despite their cloud deployment.

2.1 Inside MVEs: the Minecraft-like Game

This section discusses the common distributed architecture
used for MVEs, depicted in the top part of Figure 1.

MVEs typically use client-server architectures, where each
player runs locally a client that connects to a remote server.
The client caches in memory the part of the world which is

! Anecdotally, the authors of this vision paper have personally experienced
the lack of scalability of several Minecraft alternatives. No systematic study
of this situation currently exists.
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Figure 1: MVE processes and services (top row), and current
deployment models (bottom row).

of interest to the player, typically, around the player’s rep-
resentation (avatar). The client aims to render this part of
the world approximately 30 to 60 times per second, and to
show the result to the player. The player can interact with the
world by performing various MVE-specific actions. A net-
working component sends these actions to the server, where
their effects on the world are simulated. Concurrently, the
networking component continuously receives state updates
from the server, which are then shown to the user. To give the
illusion of continuous updates yet provide some game-state
consistency, clients may speculatively simulate actions locally
while waiting for state updates.

The server is commonly architected as a multi-threaded
monolithic application with three important responsibilities.
Firstly, it maintains a persistent copy of the game state, which
includes the terrain and the status of all players and non-
playable characters (NPCs). Secondly, it simulates the virtual
world, which includes both traditional services (e.g., player
actions and NPCs) and MVE-specific services (e.g., compo-
nents and player-written programs), typically 20 times per
second, creating an illusion of continuous time to the player.
Thirdly, MVE-specific, the server generates procedurally an
endless world for players to explore.

Adding the MVE-specific services to the server simplifies
the design, but limits how services can scale independently.

2.2 Current Deployment Models for MVEs

In this section, we discuss three common ways of deploying
MVEs. Each of these is shown in the lower half of Figure 1.

The self-hosted deployment model (D1) is for operators, or
players if the game server is sufficiently easy to manage, to
host their own MVE server. This method requires buying and



maintaining own infrastructure. For example, many players
deploy Minecraft under this model, but other Minecraft-like
games can require considerable tuning and maintenance.

Following pioneering work arguing during the late-2000s
for operating online games in clouds as opposed to self-
hosting [40,49], MVEs are starting to be offered as cloud-
based services. There are two key models of cloud deploy-
ment. Firstly, in the Game as a Service model (D2), players
pay a fee to the cloud operator, who takes responsibility for
the infrastructure and resource management and scheduling
(RMS) required to run the MVE server. Players run only their
client software, and connect to the cloud-based MVE server.
Minecraft Realms exemplifies these services.

Secondly, in the streamed games model” (D3), both the
server and the client are moved to the cloud. Players run only a
thin client, which sends their inputs to the cloud, and receives
a fully-rendered video-stream of the player’s local view. This
moves the responsibility of rendering to the cloud, giving
access to the virtual world even to resource-constraint devices.
However, in contrast to the previous methods, it requires high-
bandwidth, low-latency, and low-jitter network connections
from player to cloud datacenter [3, 13].

The three deployment models move the client and server
between the user-owned and cloud-operated infrastructure,
but limit individual service-scaling.

3 Vision: Serverless MVEs

Single MVE instances do not scale beyond a few hundred
players [68], despite increasingly being deployed in clouds.
Towards scaling to millions of single-world players, we envi-
sion serverless MVEs. In our vision, depicted in Figure 2:

1. MVEs become serverless: they are split into services, oper-
ated professionally by the cloud operator, and provisioned
on-demand by the game developer or operator. This im-
proves elasticity and multi-tenancy.

2. MVEs require specialized consistency models, which take
into account the trade-off between various quality of ser-
vice (QoS) (e.g., latency) and quality of experience (QoE)
guarantees. This offers ways to control the bandwidth bud-
get yet offer good gameplay experience.

3. MVE services run on the user’s device, the cloud, or on
cloudlets, depending on available resources and require-
ments. This enables QoS and QoE improvements.

3.1 Serverless Operation

While state-of-the-art scalability techniques assume servers
to primarily simulate players, MVEs can additionally contain
arbitrarily complex connections of components and programs
that can change the entire environment with fine-granularity.

2This modeled was mislabeled as “cloud gaming” in the early 2010s, by
OnLive and similar services, as a marketing stunt.
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Figure 2: Our vision: a serverless large-scale MVE.

In our vision, MVEs can scale by using serverless computing.
Serverless computing is an emerging cloud architecture in
which systems run as a collection of small services, or func-
tions [22,34]. A function contains executable code which is
executed in isolation by the arrival of events [4,53,71].

Figure 2 depicts a high-level view of the possible services;
in practice, each could be comprised of several functions. We
identify the virtual world and three other classes of MVE ser-
vices. The virtual world services (blue, solid outline) provide
an immersive experience to players. The rendering service
translates game state into video through which the player ex-
periences the virtual world. The player simulator translates
player actions (e.g., mouse clicks) into game actions (e.g.,
terrain modification). Because these services process directly
the player’s input, their response latency needs to be of 10s of
milliseconds to maintain QoE, and thus should run close to
the player [12,16,76]. NPCs, components, and programs are
simulated using independent service instances. The latter two
services are unique to MVEs. To allow interaction between
the services, they exchange volatile state through a system-
wide state synchronization service, and persistent game state
through a distributed database. Because these services can
interact with all players, they run in a central cloud.

The other three important classes of MVE services (gray,
dashed outline) are (i) game analytics, which enables game
operators to extract information from the large amounts of
data produced by the game; (ii) procedural content genera-
tion (PCG), which uses world generators to create an endless
virtual world; and (iii) meta-gaming network services, which



allow players to interact outside the virtual world. Gameplay
broadcasting is a popular meta-gaming service, which allows
players to live-stream gameplay to thousands of viewers [32].
Although these services are not part of the interactive virtual
world, they provide an important supporting role and fit well
in our vision of serverless MVEs.

In our vision of serverless MVEs, its services are inde-
pendently scheduled by the cloud operator, leading to high
scalability and elasticity. How players interact with each other
and with the environment has a significant effect on the work-
load, even for traditional games [50]. The unique features of
MVESs can magnify this phenomenon [68]. Scheduling many
small, independent services is conveniently parallel, which
leads to high scalability. Moreover, adding and removing ser-
vices is fine-grained, leading to good elasticity properties [27].
(Services that need to exchange state, so where consistency is
an issue, are considered in Section 3.2.)

We conjecture serverless operation could lead to perfor-
mance isolation for MVEs, even under multi-tenancy. For
example, a serverless rendering service (as shown in Figure 2)
can be specialized to execute a single task (i.e., rendering),
thus, ensuring low performance variability in gaming [35].
This simplifies performance isolation and makes it easier for a
cloud operator to consolidate multiple such services together
on the same hardware, even in the presence of accelerated
hardware, for example, GPUs [41].

Building MVEs as a collection of services increases the
modularity of these systems, making it easier for players to
create content (e.g., mods), a driving force behind the popu-
larity of Minecraft and commercially available game engines.

3.2 Specialized Consistency Models for
An Immersive Virtual World

Essential for the MVE is to provide an immersive virtual
world where players must not experience significant inconsis-
tency with other players, when performing one of the follow-
ing four classes of in-game actions: (i) modifying regular ob-
Jjects, which entails adding, changing, or removing them from
the world; (ii) modifying the game-world, e.g., allowing play-
ers to construct and remove world-parts such as mountains,
valleys, oceans, and other natural phenomena; (iii) connecting
in-game components, to create new complex constructions
that may not be envisioned by the game’s developers; and (iv)
supporting player-written, arbitrary programs, as a way to
interact with the world with precise control. The last three
classes distinguish MVEs from other (popular) game-genres.

Maintaining a real-time completely consistent MVEs game
state is challenging due to large communication overheads.
We envision a system-wide service that dynamically deter-
mines the importance of each player action to all other nearby
players, and synchronizes these using a distributed state syn-
chronization service. This service uses consistency models
that quantify the amount of inconsistency in the system, and

policies that selectively and temporarily allow inconsistencies
in places where players are unlikely to notice. Such consis-
tency models could be applicable to other real-time distributed
systems where users need multiple consistency models [66].

3.3 Differentiated Deployment for
Different MVE Services

Current deployment models used by MVEs, as shown in Fig-
ure 1, do not fit well the requirements for immersive virtual
worlds and other MVE services. In our vision, MVE services
are deployed across user devices, clouds, and cloudlets, de-
pending on available resources and QoS constraints.

Due to stringent QoS requirements, rendering is typically
performed on the user device. However, this can be challeng-
ing for devices with limited resources (e.g., smartphones).
Scheduling these services on cloudlets provides a compro-
mise. It provides lower latency than the cloud, and has more
available resources than the user device.

In state-of-the-art gameplay broadcasting, players receive
game-state updates from cloud-operated servers, render and
record video, and send this back into the cloud for distribution
to viewers. In a serverless MVE, this approach can be simpli-
fied. A serverless gameplay broadcasting service, scheduled
in the cloud, or on cloudlets close to viewers, can obtain the
necessary game state through the state-synchronization ser-
vice, and use it to render and distribute video independently,
without further input from the player.

Privacy and data protection regulation (e.g., GDPR) may
introduce novel challenges for cloud-based game analytics
when the players and the game operator reside in different
jurisdictions. Scheduling game analytics closer to the player
may provide a solution to these challenges, analyzing data
locally and anonymizing it before storing it a central cloud.

4 Towards Scalable, Cloud-Based MVEs

Matching the vision described in Section 3, we describe here
three timely research challenges towards supporting millions
of players in serverless MVEs. We aim to design novel solu-
tions to these challenges in future work, and apply them to an
open-source MVE. To evaluate their scalability improvements,
we aim to observe application-level metrics (e.g., maximum
number of players, simulation rate) and system-level metrics
(e.g., instructions per cycle, bandwidth usage) while bench-
marking the system using realistic and heavy workloads (e.g.,
many players that build and connect components).

C1: Serverless functions for independent scheduling
of MVE services.

While MVE services such as world generation may be
easily expressed as serverless functions, important research
challenges remain. Providing MVE services using server-
less functions requires guaranteeing non-functional proper-



ties, which is an open research problem [22]. More advanced
features of serverless computing, such as keeping state and
communicating with other functions using networking [65]
or shared storage [36,37,56] are actively areas of research,
but may be required to support more complex MVE services.
Combining these features may enable a serverless version
of distributed actor models [5] (or Actors as a Service [63]),
which matches well our proposed architecture.

Using serverless architectures is already being explored
for MVE-related services. For example, PyWren [33] and
Graphless [67] are serverless systems for data- and graph-
processing, respectively, and may enable game analytics.

C2: Dynamic consistency units to control and limit
MVE inconsistency.

Continuous consistency [74] is a consistency model that
quantifies the inconsistency in a system, and allows the system
to operate under arbitrary consistency bounds.

Unfortunately, the real-time nature of MVEs does not tol-
erate unavailability—some value must always be returned
to (rendered for) the user. To address this problem, we pro-
pose dynamic consistency units as a timely research topic. In
such a model, MVE operators specify policies that dynam-
ically determine inconsistency bounds for each player, and
even for each type of data—world objects, terrain, etc [66].
A dedicated consistency service then communicates updates
to MVE services based on their bounds. We aim to evaluate
experimentally the potential for scalability of these models.

C3: Schedule services at cloudlets to resources to
improve QoS and cost.

Cloudlets are resource-rich compute clusters connected
to the Internet that are specifically available for nearby de-
vices [62], which play an important role in edge computing,
where such resources are deployed near the Internet’s edge,
close to end users [61]. Examples include servers available at
internet service provider (ISP) end-stations and cell-towers.

Initial research on using cloudlets for gaming is promis-
ing. Computational offloading to cloudlets [20] enables high
QoS for players with resource constrained devices. Streaming
games from cloudlets can deliver low-latency video to users,
while reducing bandwidth load from remote clouds [42,76].
Game analytics may run on processing engines specifically
designed for cloudlets at the Internet’s edge [24]. Further re-
search could investigate if rendering can take place at multiple
cloudlet locations concurrently, to efficiently provide game-
play broadcasting for live audiences. Evaluating the benefits
of running other computational MVE services on cloudlets,
such as world generation, remains an open research challenge.

The community is exploring how to move serverless sys-
tems to the edge [57], and how to use efficiently cloudlets for
game workloads [15]. For example, resource sharing between

small units of computation on cloudlets [59] is particularly rel-
evant to serverless MVEs. Data storage [72] or caching [75]
could make data from all four game functions available to
users with low latency and reduced cost. Further research
should explore using physical hot-spots as gaming caches.

5 Related Work

We propose here a novel, integrated vision of scalable MVEs,
which we see achieved through a combination of diverse
systems-level techniques and cloud deployment models.

This article is not the first that argues for increasing the
scalability of MVEs. Manycraft [19] increases the scalability
of single Minecraft instances to support up to 1,000 players in
a static world. Koekepan [21] modifies Minecraft to be used
as a research platform and adds scalability through world
partitioning. The Yardstick [68] benchmark was used to show
Minecraft and other MVEs do not scale well.

The MVE services identified in this article can be built
using distributed actors. Implementations of this model are
available (e.g., Akka and Orleans [7, 11]), but do not include
specialized consistency models for latency-sensitive MVE
state changes, and require RMS from the game operator.

The approach we propose leverages existing techniques for
scaling horizontally and vertically across servers. Common
approaches include partitioning geographical areas of the
virtual world [18, 30, 39,45, 70], and partitioning based on
entities [14,28,29,46]. Our vision is a generalization of these
approaches, allowing independent scheduling.

Last, dynamic consistency is different from scalability tech-
niques used in traditional large-scale online games [73], such
as consistency models for areas of interest [10,43,69] and
reduced synchronization [8,9, 47, 60, 64], and consistency
models for key-value stores, e.g., Cassandra [38], Pileus [66].

6 Conclusion

In this work, we focus on an emerging type of game, ex-
emplified by Minecraft, which offers players a modifiable
virtual environment (MVE). Although Minecraft is one of
the most popular games of all time, it uses replicated, non-
communicating game instances, which do not scale beyond a
few hundreds of concurrent players.

We propose large-scale MVEs, run as a collection cloud-
native services, as a “killer application” for modern cloud
infrastructures. In this article, we set a course towards this vi-
sion with a three-fold contribution. Firstly, we model current
MVEs as a system of interconnecting services, and describe
how these game instances are currently running as cloud ser-
vices. Secondly, we envision serverless MVEs, which run
as independently scheduled services that synchronize using
specialized consistency models. Thirdly, we propose server-
less computing, dynamic consistency units, and scheduling
MVE services on cloudlets as challenging and timely areas
of research to move towards this vision.



7 Discussion Topics

Discussion Point and Feedback

1. How to deal with technical limitations of serverless plat-
forms, such as bounded execution time and limited com-
munication possibilities?

2. How to leverage existing consistency models and perfor-
mance techniques from the area of datacenter storage?
We understand that there is a large body of work in the
area [38,66] which are optimized for key-value stores. Can
we adapt these models for gaming workloads (many writes)
and requirements (real-time)?

3. On the use of specialized consistency models and protocols
in clouds. We would like a discussion around the topic,
not limited to our challenge C2. Are there also practical
issues to be considered? Is there experience with running
such services in clouds, especially related to performance
variability in networks?

4. On the use of cloud-edge resources. How does the com-
munity see the practical aspects of such approaches? Any
use-cases related to ours?

Controversial Topics

1. Are gaming and MVEs important topics to the HotCloud
community? The current paper discusses challenges specifi-
cally in the context of gaming, which by itself affects many
people, but also represents a broader class of emerging
AR/VR applications that interact with a shared world.? All
these applications need predictable low-latency decision
making and data processing, access to a shared state, and
flexible scalability. We believe starting with gaming may
synthesize reusable abstractions, mechanisms, and ideas
applicable to other domains.

2. Are serverless architectures a good fit for MVEs? Players’
ability to add and remove (often independent) simulated
components to the virtual world fits well with the elastic-
ity provided by serverless architectures. However, MVE
simulations may share state with each other, and may need
to run for longer periods of time. We are familiar with the
many platforms used in serverless operations in the cloud,*
related analysis studies [6,22,34,44], and use-cases [23,33],
but know that one size does not fit all, and we would ap-
preciate feedback and a discussion on the experience of
the community in running serverless workloads, especially
large-scale and/or with interactive elements.
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