
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Unification of Temporary Storage
in the NodeKernel Architecture

Patrick Stuedi, IBM Research; Animesh Trivedi, Vrije Universiteit;
Jonas Pfefferle, IBM Research; Ana Klimovic, Stanford University;

Adrian Schuepbach and Bernard Metzler, IBM Research

https://www.usenix.org/conference/atc19/presentation/stuedi

Unification of Temporary Storage in the NodeKernel Architecture

Patrick Stuedi† Animesh Trivedi‡ Jonas Pfefferle† Ana Klimovic§

Adrian Schuepbach† Bernard Metzler†

†IBM Research ‡Vrije Universiteit §Stanford University

Abstract
Efficiently exchanging temporary data between tasks is criti-
cal to the end-to-end performance of many data processing
frameworks and applications. Unfortunately, the diverse na-
ture of temporary data creates storage demands that often fall
between the sweet spots of traditional storage platforms, such
as file systems or key-value stores.

We present NodeKernel, a novel distributed storage archi-
tecture that offers a convenient new point in the design space
by fusing file system and key-value semantics in a common
storage kernel while leveraging modern networking and stor-
age hardware to achieve high performance and cost-efficiency.
NodeKernel provides hierarchical naming, high scalability,
and close to bare-metal performance for a wide range of data
sizes and access patterns that are characteristic of temporary
data. We show that storing temporary data in Crail, our con-
crete implementation of the NodeKernel architecture which
uses RDMA networking with tiered DRAM/NVMe-Flash
storage, improves NoSQL workload performance by up to
4.8× and Spark application performance by up to 3.4×. Fur-
thermore, by storing data across NVMe Flash and DRAM
storage tiers, Crail reduces storage cost by up to 8× compared
to DRAM-only storage systems.

1 Introduction

Managing temporary data efficiently is key to the performance
of cluster computing workloads. For example, application
frameworks often cache input data or share intermediate data,
both both within a job (e.g., shuffle data in a map-reduce job)
and between jobs (e.g., pre-processed images in a machine
learning training workflow). Temporary data storage is also in-
creasingly important in serverless computing for exchanging
data between different stages of tasks [17].

Storing temporary data efficiently is challenging as its char-
acteristics typically lie between the design points of existing
storage platforms, such as distributed file systems and key-
value stores. For instance, shuffle data in a map-reduce job

may consist of a large number of files which are organized
hierarchically, vary widely in size, are written randomly, and
read sequentially. While file systems (e.g., HDFS) offer a
convenient hierarchical namespace and efficiently store large
datasets for sequential access, distributed key-value stores are
optimized for scalable access to a large number of small ob-
jects. Similarly, DRAM-based key-value stores (e.g., Redis)
offer the required low latency, but persistent storage platforms
(e.g, S3) are more suitable for high capacity at low cost. Over-
all, we find that existing storage platforms are not able to
satisfy all the diverse requirements for temporary data storage
and sharing in distributed data processing workloads.

In this paper we present NodeKernel, a new distributed
storage architecture designed from the ground up to support
fast and efficient storage of temporary data. As its most dis-
tinguishing property, the NodeKernel architecture fuses file
system and key-value semantics while leveraging modern net-
working and storage hardware to achieve high performance.
NodeKernel is based on two key observations. First, many
features offered by long-term storage platforms, such as dura-
bility and fault-tolerance, are not critical when storing tem-
porary data. We observe that under such circumstances, the
software architectures of file systems and key-value stores
begin to look surprisingly similar. The fundamental differ-
ence is that file systems require an extra level of indirection
to map offsets in file streams to distributed storage resources,
while key-value stores map entire key-value pairs to stor-
age resources. The second observation is that low-latency
networking hardware and multi-CPU many-core servers dra-
matically reduce the cost of this indirection in a distributed
setting by enabling scalable RPC communication at latencies
of a few microseconds.

Based on these insights we develop the NodeKernel archi-
tecture by implementing file system and key-value semantics
as thin layers on top of a common storage kernel. The storage
kernel operates on opaque data objects called “nodes” in a
unified namespace. Applications can store arbitrary size data
in nodes, arrange nodes in a hierarchical namespace, and ob-
tain file system or key-value semantics through specialized

USENIX Association 2019 USENIX Annual Technical Conference 767

node types if needed. For instance, key-value and table nodes
permit concurrent creation of nodes with the same name, of-
fering last-put-wins semantics. On the other hand, file and
directory nodes permit efficient enumeration of data sets at a
given level in the storage hierarchy. By splitting functionality
in a common storage kernel and custom node types, NodeKer-
nel enables applications to use a single platform to store data
that may require different semantics, while generally offering
good performance for a wide range of data sizes and access
patterns.

NodeKernel is designed explicitly with modern hardware
in mind. Following strict separation of concerns, the storage
kernel is composed of a lightweight and scalable metadata
plane tailored to low-latency networking hardware and an
efficient data plane that provides access to multiple tiers of
network-attached storage resources. The metadata plane is
trimmed down to offer only the most critical functionality,
with low overhead. The data plane runs a lightweight software
stack and leverages modern networking and storage hardware
to achieve fast access to arbitrary size data sets while also op-
timizing cost efficiency. For instance, data attached to “nodes”
may either be pinned to a particular storage technology tier
or may spill from one storage tier to another depending on
performance and cost requirements.

Crail is our concrete implementation of the NodeKernel
architecture using RDMA networking and two storage tiers
based on DRAM and NVMe SSDs respectively. We evaluated
Crail on a 100Gb/s RoCE cluster equipped with Intel Optane
NVMe SSDs using raw storage microbenchmarks as well as
using the NoSQL YCSB benchmark and different Spark work-
loads. Our results show that Crail matches the performance
of current state-of-the-art file systems and key-value stores
when operated in their sweet spot, and outperforms existing
systems up to 3.4× for data accesses outside the sweet spot of
file systems and key-value stores. Moreover, Crail creates new
opportunities to reduce cost and gain flexibility with almost
no performance penalties by using NVMe Flash in addition
to DRAM. For instance, using Crail to store shuffle data in
Spark allows us to adjust the ratio between DRAM and Flash
with only a minimal increase in job runtimes.

In summary, this paper makes the following contributions:

• We propose NodeKernel, a new storage architecture fus-
ing file system and key-value semantics to best meet
the needs of temporary data storage in data processing
workloads.

• We present Crail, a concrete implementation of the
NodeKernel architecture using RDMA, DRAM, and
NVMe Flash.

• We show that storing temporary data in Crail reduces
the runtime and cost of data processing workloads. For
instance, Crail improves performance up to 4.8× for

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 1kB 1MB 1GB

C
D

F

data size

TPC-DS
ML-Cocoa
PR-Twitter

Figure 1: CDF of the size of intermediate data written or read
per compute task in Spark for different workloads.

NoSQL workloads. When integrated in Spark’s shuf-
fle and broadcast services, Crail improves application
performance up to 3.4× and reduces cost up to 8×.

Crail is an open source Apache project [2, 3] with the
code available for download from the project website as well
as directly from GitHub at https://github.com/apache/
incubator-crail. Further, all benchmarks used in this pa-
per are open source.

2 Background and Motivation

Temporary data represent a large and important class of in-
processing data in analytics frameworks. For example, Zhang
et al. report that over 50% Spark jobs executed at Facebook
contain at least one shuffle operation, generating significant
amounts of temporary data [37].

We define temporary data as the multitude of all application
data being created, handled, or consumed during processing,
excluding the original input and final output data. Specifically,
we identify three distinct classes of temporary data: intra-job,
inter-job, and cached input/output datasets. Intra-job tempo-
rary data is generated within a framework when executing a
single job like page-rank, or a SQL query. Common examples
are datasets generated during shuffle or broadcast operations
in frameworks like Spark, Hadoop or Flink. Such data is typi-
cally generated and consumed by the same job, which puts a
bound on the lifetime of the data. Inter-job temporary data are
intermediate results in multi-job pipelines. For example, there
are many pre-processing and post-processing jobs in a typical
machine learning pipeline [35], where the output of one job
becomes the input of another job. Lastly, examples of cached
input/output data are mostly read-only datasets that are pulled
into a cache for fast repetitive processing. For instance, users
may run many SQL queries on the same table (or a view) over
a short period of time. In this case, a copy of the input table
might be cached on a fast storage media.

768 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/apache/incubator-crail
https://github.com/apache/incubator-crail

Local Remote
Technology Latency Latency Bandwidth Price
DRAM 80ns 2us 10s GB/s 5$/GB
3D XPoint 5us 10us 2-3 GB/s 1.25$/GB
NAND Flash 50us 55us 2-3 GB/s 0.63$/GB

Table 1: Price and performance of DRAM (DDR4), 3D
XPoint (NVMe) and NAND Flash (NVMe). Remote DRAM
latency for RDMA, remote 3D XPoint and NAND Flash la-
tency for NVMf.

Building an efficient storage platform for the different types
of temporary data requires careful consideration of application
demands, data characteristics and hardware opportunities. In
the following section we discuss several requirements for
a temporary storage platform and provide an overview of
current state-of-the-art solutions.

2.1 Requirements and Challenges
Size, API, and Abstractions Diversity: Temporary data in
data processing workloads can vary substantially with regard
to the data size. In Figure 1 we show the size distribution
(CDF) of temporary data generated per task during the execu-
tion of (a) PageRank on the Twitter graph; (b) SQL queries
on a TPC-DS dataset; and (c) Cocoa machine learning on a
sparse matrix dataset [24]. As shown, the per-task data sizes
are ranging from a few bytes (for machine learning) to a GB
(for TPC-DS). Historically, different storage systems are used
to handle the two ends of this spectrum. Distributed key-value
stores (e.g., RAMCloud, memcached, etc.) have an object API
and are optimized to store small values efficiently for fast ran-
dom lookups [20, 33]. In contrast, file systems like HDFS or
Ceph, can store large datasets (GBs) efficiently by partitioning
the dataset and maintaining indexes for lookups. Moreover,
filesystem abstractions of appendable files, enumerable hier-
archical namespace, and a streaming-byte interface for I/O
provide additional support for an easy mapping of temporary
datasets, such as all-to-all shuffle, to the underlying storage.

A temporary storage platform should be able to store small
and large values efficiently, with the unified benefit of file and
key-value abstractions in a single system.
Performance: Temporary data often lies in the critical path
of data processing, hence it is imperative that access to the
temporary data is fast. As with the size, the access pattern also
varies widely. For example, as there is no global order, shuffle
data is often written randomly [11], whereas SQL tables are
read in large sequential scans [32]. Hence, one requirement
a storage platform for temporary data has to fulfill is that it
should be capable of performing well on the entire spectrum
of data sizes for any access pattern.

Fortunately, over the last decade, I/O devices have evolved
rapidly to support high-bandwidth (100s of Gbps), ultra low-

latencies (less than 10 usec), with millions of IOPS. In order
to meet data processing demands, these devices are now being
deployed in the cloud (AWS, Azure), and used inside data
processing frameworks. Consequently, an ideal temporary
storage system should be able to run efficiently on modern
networking and storage hardware while delivering close to
bare-metal performance.
Beyond In-Memory Storage: The total amount of tempo-
rary data that is generated or consumed by data processing
workloads can be large. For instance, between the workloads
whose temporary data object size CDFs are shown in Fig-
ure 1, the collective total volume of data differs by 100s of
GBs (10-100% of the input dataset size, not shown in the
figure). Efficiently storing large volumes of data while offer-
ing good data access performance is difficult. For instance,
storing all the data in DRAM is preferred from a performance
standpoint but doing so typically is too costly. Thankfully,
over the past years different media types such as NAND Flash,
and PCM storage, have emerged to store data at a different
cost, performance, and energy price point. Hence, an efficient
storage platform for temporary data should integrate multi-
ple storage technologies that offer different performance cost
trade-offs, and allow applications to choose between differ-
ent points in the trade-off space. A comparison of different
storage technologies with respect to price and performance is
given in Table 1.
Non-Requirements: We observe that in the specific case of
temporary data storage, many traditional storage features such
as durability and fault-tolerance are not a priority. Durability,
for instance, is of low importance due to the short lifetime of
temporary data. While fault-tolerance is generally useful for
short-lived data, it still is not a high priority for temporary data
storage. Today, fault tolerance is often implemented at the
level of the compute framework, in a coarse grained manner.
For instance, Spark [36] and Ray [25] use lineage tracking to
re-compute data in case of data loss by relaunching tasks.

2.2 Limitations of Existing Approaches

We review current state-of-the-art storage systems with regard
to the design goals listed in the previous section. We classify
the systems discussed into the following three categories.
Key-Value Stores: Memcached [4] and Redis [5] are two of
the most popular key-value stores designed to store data in
DRAM. Network-optimized KVs like MICA [21], Herd [14],
FaRM [12], KVDirect [19] and RAMCloud [26] use RDMA
operations to provide high-performance data accesses but
cannot easily integrate data storage to different tiers beyond
DRAM. Redis has an extension to spill data to Flash, how-
ever keys are still stored in DRAM, and hence are limited
by the DRAM capacity. Storage-optimized KVs such as
Aerospike [30] or BlueCache [34], use NAND Flash for stor-
age. Hence, their performance is bounded by the performance
of Flash, and they are not optimized for the next-generation

USENIX Association 2019 USENIX Annual Technical Conference 769

of NVM storage devices like Optane (see Section 5.1). Other
systems, like HiKV [33], have hybrid DRAM-Flash indexes
but only target a single node deployment, hence limiting their
applications to a wider class of operations such as shuffling.
Furthermore, the design of these KV stores is tailored to very
small data sets of a few hundred bytes up to a few MB maxi-
mum, thus, limiting their operational window to these object
sizes.
Distributed Data Stores: Storage systems such as Ceph-
over-Accelio [8] and Octopus [23] are high-performance dis-
tributed file systems used for fast network and NVM devices.
However, due to the focus on providing fault-tolerant, durable
storage their performance for small objects is poor (see Sec-
tion 5). The recently proposed Regions system provides a file
abstraction to remote memory [6]. As with other in-memory
storage systems, however, Regions is not a cost-effective so-
lution for storing large data sets. Systems like Alluxio [1]
and Pocket [17] provide support for multiple storage tech-
nology types. But Alluxio does not deliver the performance
of high-end hardware, and is targeted towards building local
caches. Pocket shares our aim of a dedicated storage system
for temporary data and its design has similarities with the
NodeKernel architecture. However, the focus of Pocket is on
providing efficient and elastic temporary storage on commod-
ity hardware in the cloud whereas NodeKernel is designed
for low-latency high-bandwidth network and storage hard-
ware. Moreover, Pocket has only an object based I/O interface
which is well suited for data sharing in serverless workloads.
In contrast, NodeKernel’s unified API provides semantics
like “append” and “bag” to support storing a wide range of
temporary data in different workloads.
Temporary-data specific operations: A number of works
accelerate specific storage operations in data processing work-
loads. For instance, Riffle [37] is an optimized shuffle server
that aims to reduce overheads associated with large fanouts.
Sailfish [27] is a framework that introduced I-files which are
shuffle optimized data containers. ThemisMR [28] also aims
to optimize shuffle and target small rack-scale deployments.
In general, the aim of these systems is to optimize disk-based,
file-oriented shuffle data management for map-reduce type
workloads. It is not clear how their design can support other
communication patterns, such as broadcast and multicast, or
integrate different storage types to optimize for different ac-
cess patterns. Parallel databases [7,22] use RDMA-optimized
shuffling operations for database operators. These works, how-
ever, are highly database specific and do not extend naturally
to other data processing workloads or other forms of tempo-
rary data.

3 The NodeKernel Architecture

We present the NodeKernel, a new storage architecture de-
signed to match the diverse and complex demands of tempo-
rary data storage in data processing workloads. The NodeK-

ernel tackles this challenge by fusing storage semantics that
are otherwise available separately in file systems and key-
value stores, such as hierarchical naming, scalability, multiple
storage tiers, fast enumeration of datasets, and support for
both tiny and large data sizes (Figure 2). The NodeKernel
architecture is guided by three design principles:

1. Distill higher-level storage semantics into thin layers on
top of a common storage kernel.

2. Separate data management concerns into a lightweight
metadata plane and a ”dumb“ data plane optimized for
modern networking and storage hardware.

3. Leverage multiple storage technologies for efficient stor-
age of large datasets.

We discuss each of these design principles in more detail
below before describing Crail, a concrete implementation of
the NodeKernel architecture, in Section 4.

3.1 Storage Kernel and Node Types
In the NodeKernel architecture, higher-level storage seman-
tics are implemented as thin layers – or more precisely, as
specialized data types – on top of a shared storage kernel
exporting a hierarchical namespace of opaque data “nodes”.
Nodes are objects of an abstract type Node as shown in the
following code snippet.

abstract class Node {
protected:
/*implemented by derived types*/
abstract bool addChild(Node child);
abstract bool removeChild(Node child);
/*implemented by the storage kernel*/
future<int> read(byte[] buf);
future<int> append(byte[] buf);
future<int> update(byte[] buf, int off);
string getPath();
int size();
...

}

The kernel is responsible for allocating storage resources
on behalf of nodes, manipulating the hierarchical namespace,
and implementing basic data access operations such as read,
append and update. Applications interface with the storage
kernel to create data nodes at a given location in the hierarchy,
attach data of arbitrary size to a node, look up nodes, and fetch
the associated dataset from a node. Nodes are identified using
path names encoding the location in the storage hierarchy,
similar to files and directories in a file system.

Applications do not create raw Node objects directly, in-
stead they create objects of derived types offering specialized
functionality. These so-called custom types implement higher-
level storage semantics by extending Node in two ways. First,

770 2019 USENIX Annual Technical Conference USENIX Association

custom types provide implementations for the abstract op-
erations addChild and removeChild. These operations are
called by the kernel whenever a new node is inserted or re-
moved to/from the storage hierarchy. Second, custom data
types provide specialized data access operations implemented
using read and append available in Node.

NodeKernel defines five custom node types, each offering
slightly different semantics and operations:

• File and KeyValue: Both node types provide read and
append interfaces by exposing the corresponding oper-
ations in Node. The two types, however, provide differ-
ent semantics during the creation and insertion of new
nodes, controlled via the implementation of addChild
and removeChild. For File nodes, the first create oper-
ation for a given path name succeeds and subsequent cre-
ate operations on the same path name fail. For KeyValue
nodes, subsequent create operations on a path name rep-
resenting an existing node will succeed, replacing the
existing node. As we will see in Section 5, KeyValue
nodes are useful to cache input datasets in NoSQL work-
loads, permitting concurrent updates of the data, whereas
File nodes are a better match to cache read-only input
data in Spark workloads.

• Directory and Table: Those node types are containers
for File and KeyValue nodes respectively. Directory
and Table nodes store the name components of all of
their children as part of their data (implemented using
append and update operations available in Node). For
instance, the data segment of a Directory with path
name “/a/b” storing two files with path names “/a/b/c1”
and “/a/b/c2” consists of the two name components “c1”
and “c2”. Both Directory and Table nodes offer op-
erations to enumerate the names of all of their children
(implemented using read available in Node). Tables
can optionally be configured as “non-enumerable” in
which case no name components are stored and enumer-
ation returns the empty set. Creating KeyValue nodes
in a non-enumerable table is typically faster because it
eliminates the step of updating the name component (as
described in Section 4.1).

• Bag: The Bag node type is designed to support efficient
sequential reading of data spread across many data nodes.
A Bag behaves like a directory such that it acts as a con-
tainer for File nodes. Applications create and write
files in a Bag just like they create and write files in a
Directory. When reading a Bag, however, the Bag ap-
pears to the application like a single file. Using a Bag’s
read operation allows applications to sequentially read
through the full set of files in the bag. Generally, the
read operation of a Bag offers better performance than
reading each File node separately, due to more efficient
metadata access at file boundaries. As we will see in

Section 5, Spark applications can use Bags to store shuf-
fle data, allowing reduce tasks to efficiently fetch data
written by map tasks. The Bag type in NodeKernel is
similar in spirit than bags in Hurricane, a recent work on
taming skew in data processing workloads [9].

NodeKernel restricts the way node types can be stacked.
For instance, KeyValue nodes can only be attached to Table
nodes, whereas File nodes can only be attached to Bag and
Directory nodes. Moreover, directories can be arbitrarily
nested, whereas bags and tables implement a flat namespace.
The permitted combinations of node types match the spe-
cific use cases of temporary data storage. At the same time,
preventing arbitrary combinations of node types ensures the
architecture is not over-designed and simple to implement.
For instance, Bags are mainly used to store shuffle data which
is organized in flat per-reducer buckets, thus, enabling arbi-
trarily nested bags seemed unnecessary. At the time, a read
operation on flat Bags is easier to implement than a read
operation on an arbitrarily nested Bag.

Why provide a single unified storage namespace? By
splitting functionality in a common storage kernel and a set of
custom data types, the NodeKernel achieves two things. First,
it permits different types of temporary data requiring differ-
ent semantics to be managed by a single storage platform.
For instance, as we will see later, Spark applications can use
Crail for storing both broadcast and shuffle data, as well as
for caching RDDs. Second, decoupling core data access from
storage semantics allows applications to choose a particular
node type based on the semantics they need (key/value vs
file) rather than based on the size of the data or the access
pattern. As discussed in Section 2.1, temporary data often
varies in terms data size and access pattern even within a sin-
gle workload, making it difficult to store the data efficiently
in a storage platform like a filesystem or a key-value store. By
contrast, node types in NodeKernel have no size limitation
and provide efficient data access for different access patterns
as we will see later in Section 5.

3.2 System Architecture
Figure 2 illustrates the NodeKernel system architecture. At
the data management level, NodeKernel’s architecture resem-
bles the architecture of distributed file systems like HDFS
or GFS, consisting of a set of metadata and storage servers
deployed across a cluster. Data attached to a “node” in the
storage hierarchy appears to clients as a stream, but inter-
nally the data is composed of a sequence of blocks. A block
refers to a fixed sequence of bytes stored in one of the storage
servers. Metadata servers maintain the hierarchical storage
namespace as well as block metadata, i.e., a mapping between
storage blocks and storage servers. Storage servers allocate a
large set of storage blocks at startup and register them with

USENIX Association 2019 USENIX Annual Technical Conference 771

File

Bag

KeyValue

Table

Directory

Datacener
Network

Clients

Metadata
Servers

Data
Read/Write

Storage
Class 1

Metadata Lookup

Storage
Class 2

Storage
Class N

Application interface

Figure 2: The NodeKernel storage architecture.

one of the metadata servers. Metadata servers maintain a free
list with blocks that are not assigned to a particular node, and
move blocks from the free list to a per node list during data
writes and appends. When accessing data, clients first contact
one of the metadata servers and request the metadata for the
corresponding block. Based on this information clients then
contact the given storage server to read or write the data.

The Node abstract data type exports two abstract opera-
tions, addChild and removeChild, to be implemented by
the derived types described in Section 3.1. Those operations
are executed at the metadata server each time a new node
is created or removed. The Node further exports functions
to manipulate data such as read, append or update. Those
functions are implemented as part of the client library and
require interactions with both metadata and storage servers.
Finally, the basic metadata operations such as getPath or
size are also implemented by the client library returning
cached values if possible.

Target deployment: NodeKernel targets temporary data
which is short-lived and simple to regenerate. Furthermore,
NodeKernel targets small to medium size deployments con-
sisting of few compute racks. Considering the target deploy-
ments and the nature of the data to be stored, NodeKernel pri-
oritizes performance over fault tolerance. However, if deemed
necessary, additional fault-tolerance mechanism such as repli-
cation, erasure-coding, etc., can be added. The lack of these
features is not fundamental to the design.

Performance challenges: The main challenge in NodeKer-
nel was to come up with a system architecture that can serve
the full spectrum of demands discussed in Section 2.1. In
particular, the architecture should be scalable like a key-value
store despite offering a convenient hierarchical namespace.

Furthermore, the architecture should support both low-latency
key-value style access, as well as high-bandwidth file sys-
tem like data access. In the following we discuss in how we
accommodate these requirements in the NodeKernel architec-
ture.

3.2.1 Low-latency metadata operations

Fusing file system and key-value semantics into a single stor-
age kernel primarily requires a fast metadata access. In Sec-
tion 2.1, we observed that software architectures of distributed
file systems fundamentally differ from key-value stores only
by an extra metadata operation required to map offsets in file
streams to storage resources (e.g., blocks on storage servers).
Thus, keeping the overheads of metadata operations low will
make NodeKernel’s architecture amenable to key-value style
operations on small datasets, while also improving the effi-
ciency of large data accesses.

Today, modern low-latency networking hardware enables
RPC communication at latencies of a few microseconds [13,
16]. The NodeKernel features a lightweight metadata plane
that matches well with low-latency networking hardware. For
one, the metadata plane is trimmed down to offer only the
most critical functionality consisting of six key RPC opera-
tions: create to create a new node, lookup to retrieve the
metadata of a node, remove to delete an existing node, move
to move a node to a different location in the storage hierar-
chy, map to map a logical offset in a node’s data stream to
a storage resource, and register used by storage servers
to register storage resources with the metadata server. All
these operations have low compute and I/O intensity and can
be implemented at the latency of a few microseconds on a
high-performance network fabric. We deliberately move data
intensive metadata operations like enumeration to the data
plane to avoid interference (see Section 3.1 and 4).

3.2.2 Metadata partitioning

The scalability of NodeKernel heavily depends on the through-
put and scalability of its metadata RPC subsystem. Recent
work has shown that RPC systems can be scaled to mil-
lions of operations per second on a single server using high-
performance networking hardware on the one hand [15],
but also using efficient software stacks on commodity hard-
ware [13]. The lightweight RPC interface in NodeKernel is
designed for high throughput and can drive up to 10 million
metadata operations per second using a single metadata server,
as shown later in Section 5. Up to now in all of our deploy-
ments we have never had a situation where a single metadata
server would reach its limit. In fact, in one of our largest de-
ployments on 128 nodes the metadata throughout reached 4.5
million operations per second, thus, roughly half of what a
single metadata server can support.

Nevertheless, for the case where a single metadata server

772 2019 USENIX Annual Technical Conference USENIX Association

is not sufficient, NodeKernel permits partitioning the meta-
data space over multiple servers. Thereby, the top-level root
namespace is hash-partitioned among an ordered list of meta-
data servers. Using metadata partitioning, one can scale the
metadata plane horizontally assuming a sufficiently large top
level fan out.

One drawback of static of partitioning based on top-level
namespaces is that load may be unevenly distributed among
the metadata servers depending on the size of the subtree
and the activity within the subtree. One alternative approach
would be dynamic partitioning at a more fine grained level.
For instance, past work has proposed a partitioning scheme
for file systems where metadata partitioning is implemented
at the directory level, with an option to split large directories
on-demand as they grow too big and distribute the splits over
multiple metadata servers [29]. Even though such an approach
creates a more even load distribution, it comes at a significant
performance cost as it requires multiple RPC invocations dur-
ing path lookup and traversal. Given the performance target
of 5-10 µs in NodeKernel we ultimately decided to adopt
the simpler partitioning scheme where node paths are always
local to a metadata server.

3.2.3 Hardware-accelerated storage

NodeKernel’s data plane is designed to work well with mod-
ern networking and storage hardware. The goal is to keep
the storage interface simple to avoid excessive software over-
heads and permit as much of the data access functionality to
be implemented in hardware. Clients in NodeKernel inter-
act with local and remote storage servers via two interfaces:
read(blockid, offset, length, buffer) to fetch a
certain number of bytes from a block, and write(blockid,
offset, buffer, length) to write a data stored in a buffer
to a block. Later in Section 4 we show that read and write
operations in Crail can almost completely be offloaded to
networking and storage hardware for both DRAM and Flash.
Also note that the storage interface explicitly supports byte ad-
dressable storage hardware by defining the access granularity
at the byte level as opposed to block level.

3.2.4 Tiered storage

NodeKernel employs a simple tiered storage design to ac-
commodate large datasets that cannot be stored in DRAM
in a cost-effective manner. Storage servers are grouped into
different classes (see Figure 2), typically a class per storage
technology (DRAM, NVMe SSDs, HDD, etc.). A storage
server is a logical entity, i.e., one physical or virtual machine
may host multiple storage servers of different types. For in-
stance, a common deployment is to run two storage servers
per host, one exporting some amount of local DRAM and one
exporting storage space on the local NVMe SSD. In princi-
ple, storage classes are user-defined sets of storage servers.

Object type Methods
Crail create<T extends Node>(path, sc)→ future(T)

creates a data node of type T
lookup<T extends Node>(path)→ future(T)

lookup of an existing node
delete(path)→ future(boolean)

deletes an existing node at the given path
move(src, dst)→ future(boolean)

moves node src to new location dst
File & read(offset, buffer, length)→ future(Int)
KeyValue reads data at given offset

append(buffer, length)→ future(Int)
appends application buffer to data

Bag read(buffer, length)→ future(Int)
sequentially reads through all subfiles

Directory enumerate()→ iterator(Node)
& Table enumerates all nodes in a given directory

Table 2: Application programming interface of Crail.

A storage server always belongs to exactly one storage class.
In our evaluation we configure two storage classes, one for
DRAM servers and one of NVMe SSD servers.

The traditional approach to storage tiering is to migrate
data to more cost effective storage classes as the faster storage
classes fill up. We found this strategy to be ineffective for tem-
porary data due to the short lifetime of the data. Instead, we
opted for a simpler approach where storage classes are filled
up according to a user-defined order – typically DRAM first
followed by Flash and hard disk – without ever migrating data
between the tiers. Specifically during data write operations,
metadata servers try to allocate DRAM blocks first, turning
to lower priority storage tiers only once no higher priority
storage blocks are available across the entire cluster.

4 Crail

Crail is a concrete implementation of the NodeKernel archi-
tecture. We implemented Crail in about 10K lines of Java and
C++ code. Table 2 shows the application interface of Crail.
The top level data type in Crail is CrailStore. Applications
use CrailStore to create, lookup and delete data nodes,
or to move data nodes to a different location in the storage
hierarchy. Nodes are identified using path names similar to
file systems. When creating a new node using create, appli-
cations may choose a preferred storage class for the data to be
stored (parameter “sc” in Table 2). We also refer to the storage
class preference as storage affinity because it allows users to
specify affinity for a particular set of data to a particular set
of storage servers or storage media.

Crail implements the full set of node types discussed in
Section 3.1. Note that all operations in Crail are non-blocking
and asynchronous (returning a future object). Crail’s asyn-

USENIX Association 2019 USENIX Annual Technical Conference 773

chronous API matches well with asynchronous software in-
terfaces for modern networking and storage hardware. In fact,
almost all of Crail’s high-level operations can be mapped di-
rectly to a set of non-blocking and asynchronous network and
storage operations. Failures of Crail API calls are commu-
nicated either via invalid futures or exceptions (not shown
in Table 2). For instance, an attempt to lookup a node that
does not exist will result in an invalid future (nullpointer),
while an attempt to read data from a node beyond the node’s
capacity will result in an exception.

Crail can be operated either as a shared storage service or
in the form of per-user or per-application deployments. The
current implementation of Crail, however, does not provide
any tools to virtualize, protect and isolate multiple tenants
from each other.

4.1 Metadata plane
Crail metadata servers maintain an in-memory representation
of (a) the storage hierarchy, (b) the set of free-blocks, and (c)
the assignments of blocks to “nodes”. Specifically, each meta-
data server maintains a per storage class list of free blocks.
Storage classes are ordered according to a user-defined prefer-
ence. As discussed in Section 3.2, if during a write operation
the current write position does not yet point to an allocated
block, a client requests a fresh new block by calling the meta-
data map RPC operation. The metadata server selects a free
block based on the selected storage affinity (or “sc” in Ta-
ble 2). If there are no free blocks in the selected storage class,
the metadata server attempts to allocate a block from the next
storage class in the priority list. When selecting a block in
a storage class, the metadata server uses round-robin over
all storage servers in the given storage class to make sure
data is distributed uniformly in the cluster. If no free block is
available in any of the storage classes the write operation at
the client will fail.

Crail partitions metadata across an array of metadata
servers as discussed in Section 3.2.1, meaning, each metadata
server is responsible for a partition of the storage hierarchy.
Each individual server is implemented as a lightweight RPC
service using DaRPC [31], an asynchronous low-latency RPC
library based on RDMA send/recv. To achieve high through-
put, client connections are partitioned across the different
CPU cores. Each core manages a subset of the client connec-
tions in-place within a single process context to avoid context-
switching overheads. All the memory for RPC buffers is allo-
cated local to the NUMA node associated with the given CPU
core that is responsible for the particular connection. Figure
3 illustrates the different aspects of the metadata processing
in Crail.

Enumeration: In Section 3.1 we discussed how container
nodes (Table, Directory, Bag) maintain a list of the names
of all child nodes as part of their data. The rational behind this

CPU cores

RDMA NIC

User-mapped
network queues

RPC
processing

 Metadata

 Metadata
partitioning

Figure 3: Lightweight metadata plane in Crail.

design is that it allows us to implement container enumeration
efficiently in the data plane. We have seen use cases where
storing Spark shuffle data in Crail generated close to hundred
thousand File nodes in a Bag. Implementing enumeration at
the metadata server would lead to substantial data transfers
between clients and metadata servers and in many cases would
require multiple rounds of RPC to enumerate all of the nodes.

Crail’s file format for container nodes is structured as an
array of fixed-size records consisting of the children’s name
component along with a valid flag. Upon creating a new node,
the metadata server assigns a unique offset within the array
based on which the client writes the corresponding record.
During a delete operation, after the metadata server has re-
moved the node entry, a client clears the valid flag of the
corresponding record (by zeroing the valid bit in the record).
Note that the node record inside a container’s data is only
considered supplementary information. The metadata server
always serves as the authority for validating the existence of
a node. Thus, an enumerate operation running concurrently
with a delete operation may lead to a situation where a node’s
record in the directory file is still valid, but the node’s meta-
data state at the metadata server has already been deleted. In
that case, the node is considered deleted and no read or write
operations will be permitted.

4.2 Data plane
Crail implements two storage classes, one for DRAM and
one for NVMe-based SSDs. An implementation of a storage
class consists of a server part exporting a storage resource
(see Section 3.2.3), and a client part implementing efficient
data access.

RDMA storage class: A storage server in the RDMA stor-
age class exports large regions of RDMA registered memory
to the metadata server. Metadata for RDMA based storage
blocks contains the necessary RDMA credentials such as ad-
dress, length and stag and allows clients to directly read or
write a storage block using RDMA one-sided read/writes.

NVMe-over-Fabrics storage class: NVMe-over-Fabrics
(NVMf) is a recent extension to the NVMe standard that
enables access to remote NVMe devices over RDMA-capable

774 2019 USENIX Annual Technical Conference USENIX Association

networks. It eliminates unnecessary protocol translations
along the I/O path to a remote device, exposing the multi-
ple paired queue design of NVMe directly to clients. As with
RDMA, the queue pairs can directly be mapped into the ap-
plication context to avoid kernel overheads.

A Crail NVMf storage server acts as a control plane for
a NVMf controller by connecting to the controller and re-
porting its credentials like NVMe qualified name, size, etc.,
to the metadata server. With the credentials provided by the
metadata server, the clients can directly connect to the NVMf
controller and perform block read and write operations.

4.3 Failure semantics and persistence

Crail does not currently implement mechanisms for fault-
tolerance (see Section 3.2) and therefore does not protect
against machine or hardware failures. On a crash of a storage
server the corresponding data blocks are lost. On a crash of a
metadata server the correponding metadata partition is lost.
Metadata servers remove inaccessible storage servers from
the list of active servers based on keep-alive messages and
make sure only active servers are considered during block
allocation.

Crail provides optional mechanisms to persist data stored
in DRAM, shut down a Crail deployment and to start a Crail
deployment from a previously persisted state. Persistence is
implemented via operation logging at the metadata servers
and the use of memory mapped persistent storage at storage
servers.

4.4 Anatomy of data access

Figure 4 illustrates how a Crail client interacts with storage
and metadata servers on behalf of an application reading data
from a File or KeyValue node. The application first calls
lookup to retrieve a node handle, causing Crail to fetch the
necessary metadata via RPC from the metadata server. The
metadata contains information about the node such as the size
of the data and the location of the first block. Following a suc-
cessful lookup call, the application issues a read operation to
read a certain number of bytes from the node. The requested
number of bytes may be less than a block. In that case a single
RDMA or NVMf operation will be sufficient to complete the
request. If the requested number of bytes spawns multiple
blocks, as it is case in the example, Crail immediately issues
the data transfer for the first block, while in parallel requesting
the metadata for the next block. Under normal circumstances
– due to the low latency RDMA-based protocol between the
client and the metadata server – the metadata request will
complete ahead of the current block transfer and guarantee a
continued data transfer without the client ever having to wait
for missing metadata information.

RDMA/read

Metadata
Servers Client

<name=”n.dat”,offset=0>

Storage
Servers

NVMf/read

<nid=1,offset=512>

<nid=1,offset=1024>

metadata

metadata

metadata

DRAM
block

NVMe
block

lookup()

read()

client
buffer

read()

Figure 4: Anatomy of file read/write operations in Crail.

5 Evaluation

In our evaluation we assess if Crail meets the requirements
for a temporary storage platform discussed in Section 2.1.
Specifically we answer the following questions:

1. Does the unified abstraction of Crail, with its extra indi-
rection layer, perform well for a wide spectrum of data
sizes on high-performance devices? (Section 5.1)

2. How simple is it to map higher-level workloads (with
their temporary data accesses) to Crail? (Section 5.2)

3. How big are the performance and cost benefits of a
mixed-media storage system for data-processing frame-
works? (Section 5.3)

Cluster configuration: We use a cluster of eight x64 nodes
with two Intel(R) Xeon(R) CPU E5-2690 v1 @ 2.90GHz
CPUs, 96GB DDR3 DRAM and a 100 Gbit/s Mellanox
ConnectX-5 RoCE RDMA network card. For the client server
microbenchmarks, the server is configured with 4 Intel Op-
tane 900P SSDs, except for the IOPS experiments where we
only use 2 Optane drives per server. For the larger cluster
experiments, all 8 nodes are equipped with 4 Samsung 960
Pro SSDs. The nodes run Ubuntu 16.04.3 LTS (Xenial Xerus)
with Linux kernel version 4.10.0-33-generic and Java 8.

5.1 Microbenmarks
Small and medium-size values: We first start by evaluat-
ing Crail’s performance for storing small to medium size
values, a use case typically well served by key-value stores.
Consequently, we compare Crail’s performance (latency and
IOPS) with two state-of-the-art open-source key-value stores,
namely, RAMCloud (for DRAM storage) and Aerospike (for
NVM Optane). Figure 5 shows the performance for get and
put operations for different data sizes. In Crail, a put opera-
tion is implemented by creating a KeyValue node using the
create API call (see Table 2), followed by an append op-
eration. The get operation is implemented using a lookup
call followed by a read on the KeyValue node – similar to

USENIX Association 2019 USENIX Annual Technical Conference 775

1

10

100

1000

10000

4B 64K 1M

80Gb/s

87Gb/s

P
U

T
 l
a
te

n
cy

 [
u
s]

key size

RAMCloud
Crail/DRAM

Crail/Optane
Aerospike/Optane

16M 128M

80Gb/s

87Gb/s

key size

1

10

100

1000

10000

4B 64K 1M

80Gb/s

87Gb/s

G
E
T
 l
a
te

n
cy

 [
u
s]

key size

16M 128M

80Gb/s

87Gb/s

key size

Figure 5: Put/Get latencies in Crail, RAMCloud and
Aerospike for datasets of different sizes.

the scenario shown in Figure 4. For small datasets (4 bytes),
Crail performs slightly worse than RAMCloud for DRAM
storage (12 µs vs 6 µs), but outperforms Aerospike on Optane
NVM by a margin of 2−4× (23-40 µs for Crail vs. 100 µs
for Aerospike). The difference between Aerospike and Crail
comes from differences in their I/O execution. Aerospike uses
synchronous I/O and multiple I/O threads, which cause con-
tention and spend a significant amount of execution time in
synchronization functions [18]. Crail uses asynchronous I/O
and executes I/O requests in one context, avoiding context
switching and synchronization completely. The latency differ-
ence between Crail and RAMCloud is acceptable considering
that RAMCloud is a system optimized for small values. For
medium sized values (64KB-1MB), Crail outperforms RAM-
Cloud and Aerospike by a margin of 2−6.8×. For instance,
a 1MB Put on Crail takes around 590 µs, versus 4 ms in
Aerospike. These performance gains come from the efficient
use of RDMA one-sided operations (for both DRAM and
NVM), which eliminates data copies at both client and server
ends and generally reduces the code path that is executed
during put/get operations. While Crail natively supports arbi-
trary size datasets – by distributing the blocks over multiple
storage servers – storing such large values in systems like
RAMCloud or Aerospike is either difficult or prohibited. For
instance, Aerospike limits individual key/value pairs to 1MB.
RAMCloud does not have a strict size limitation but failed to
store values larger than 4MB.

For sake of completeness, Figure 5 also shows put/get la-

0

20

40

60

80

100

La
te

n
cy

 [
u
s]

DRAM Optane Flash

0

50

100

150

200

250

300

104 105 106 107

La
te

n
cy

 [
u
s]

IOPS

104 105 106 107

IOPS

Figure 6: Media-specific loaded latency profile. Top left: Put,
queue depth 1. Top right: Get, queue depth 1. Bottom left:
Put, queue depth 4. Bottom right: Get, queue depth 4.

tencies for extra large values of 16MB and 128MB. As we can
see, it takes around to 12 ms to store a 128MB value in Crail’s
DRAM tier, and 20 ms to store the same dataset in Crail’s
Optane tier. Storing such large values in Crail is entirely a
matter of throughput. Consequently, the remote DRAM la-
tency is limited by the 100 Gb/s network bandwidth, while
the NVM latency is the determined by the bandwidth of the
storage device. The aggregated bandwidth of the 4 Optane
drives is around 10-12 GB/s. Hence, the resulting data access
bandwidth for large datasets stored in Crail’s NVM tier is
80-87 Gb/s.
IOPS scaling: So far we have discussed unloaded latencies.
Figure 6 shows the latency profile for 256 bytes values for a
loaded Crail system for different media types. In this setup,
we increase the number of clients from 1 to 64. The clients
are running on 16 physical machines, issuing put/get oper-
ations in a tight loop. We use only one storage server and
one metadata server in this setup, configured either to serve
DRAM, Optane NVM or Flash. The top row in Figure 6 show
the case for a queue depth of 1, meaning, each client always
has only one operation in flight. As shown in the figure, Crail
delivers stable latencies up to a reasonably high throughput.
For DRAM, the get latencies (top right in Figure 6) stay at
12-15 µs up to 4M IOPS, at which point the metadata server
became the bottleneck. We ran the same experiment with mul-
tiple metadata servers and verified that the system throughput
was scaling linearly (shown later in Figure 7 on top). For the
Optane NVM configuration, latencies stay at 20 µs up until
almost 1M IOPS, which is very close to the device limit. The
Flash latencies are higher but the Samsung drives also have a
higher throughput limit. In fact, 64 clients with queue depth
1 cannot saturate the Samsung devices. In order to generate

776 2019 USENIX Annual Technical Conference USENIX Association

 0
 5

 10
 15
 20
 25
 30

 0 10 20 30 40 50 60 70

IO
P
S

 [
m

ill
io

n
s]

#Clients

2 Namenodes Crail
4 Namenodes Crail

Crail
Octopus

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

B
a
n
d

w
id

th
 G

b
p

s

buffer size in KB

Alluxio Octopus Crail

Figure 7: Top: metadata performance in Crail compared to
Octopus (we could not run Octopus reliably after 36 clients).
Bottom: sequential read performance in Crail and Octopus
for large datasets and different buffer sizes.

a higher load, we measured throughput and latencies for the
case where each client always has four operations in flight
(queue depth 4, bottom row in Figure 6). As shown, queue
depth 4 generally achieves a higher throughput up to a point
where the hardware limit is reached, the device queues are
overloaded (e.g., for NVM Optane) and latencies sky rock.
For instance, at the point before the exponential increase in the
latencies, Crail delivers get latencies (Figure 6 bottom right)
of 30.1 µs at 4.2M IOPS (DRAM), 60.7 µs for 1.1M IOPS
(Optane), and 99.86 µs for 640.3K IOPS (Flash). The situation
for put is similar, though generally with lower performance.
Metadata performance: In Figure 7 (top), we benchmark
the performance of a simple lookup metadata operation
which is used to retrieve node metadata in Crail, and com-
pare it with the performance of a similar metadata operation
getattr in Octopus [23] (an RDMA-optimized NVM file
system running in DRAM). There are two main observa-
tions here. First, for the single namenode case, Crail outper-
forms Octopus by 1.7− 5.9×. A single namenode in Crail
peaks around 9.3M lookups/sec. Second, Crail can very ef-
ficiently scale the single namenode performance to multi-
namenode setups. The system can deliver up to 16.7M and
27.4M lookups/sec for 2 and 4 namenode configurations.

 1

 10

 100

 1000

 10000

 0 50 100 150 200

#
o
p

e
ra

ti
o
n
s

latency [us]

Crail - DRAM
Crail - Optane

Aerospike - Optane
RAMCloud

 0 50 100 150 200

 1

 10

 100

 1000

 0 50 100 150 200

#
o
p

e
ra

ti
o
n
s

latency [us]

Crail - DRAM
Crail - Optane

Aerospike - Optane
RAMCloud

 0 50 100 150 200

Figure 8: YCSB benchmark performance. Top: small value
(1K per KV pair) read (left) and update (right) latencies. Bot-
tom: large value (100K per KV pair) read and update laten-
cies.

Accessing large datasets: Figure 7 (bottom) shows the band-
width (y-axis) measured when reading large datasets of File
nodes in Crail, in comparison to file read operations in Octo-
pus and Alluxio. The x-axis in Figure 7 refers to the size of the
application buffer the client is using during read operations.
Crail with its efficient data and metadata plane, and overlap-
ping of lookup RPCs and data fetching quickly reaches the
network bandwidth limit even for relatively small buffer sizes
(just over 1kB). Alluxio performance is bottlenecked by the
CPU due to data copies and inefficiencies in the network stack
implementation. Octopus performs better than Alluxio, and
gradually for large buffers (close to 1MB) reaches the line
speed of 98 Gb/s. Note that Crail’s peak bandwidth (98 Gb/s)
in Figure 7 is better than the peak bandwidth (87 Gb/s) in Fig-
ure 5 because for the KV experiments each KeyValue node
is opened, read, and closed whereas for the file experiments
those accesses are amortized.

Summary: In this section we have shown that Crail can store
a large spectrum of values effectively while offering compa-
rable or superior performance than the other state-of-the-art
systems that are optimized for a particular data range.

USENIX Association 2019 USENIX Annual Technical Conference 777

 0

 20

 40

 60

 80

 100

 120

10
0/

0

10
0/

0

80
/2

0

60
/4

0

40
/6

0

20
/8

0

0/
10

0

Vanilla Spark
 (100% Memory)

R
u
n
ti

m
e
 (

se
co

n
d
s)

Memory to Flash Ratio

Reduce
Map

Figure 9: Spark Terasort with mixed DRAM-NVM.

5.2 Systems-level Benchmarks

5.2.1 NoSQL workloads

The Yahoo! Cloud Serving Benchmark (YCSB) is an open
standard designed to compare the performance of NoSQL
databases [10]. It comes with five workloads that stress dif-
ferent properties, e.g. workload A is update heavy whereas
workload C is read heavy. We choose workload B to compare
Crail to RAMCloud and Aerospike. Workload B has 95%
read and 5% update operations and the records are selected
with a Zipfian distribution. All systems run in a single namen-
ode/datanode configuration. The purpose of this experiment is
to evaluate the latency profile of Crail for a realistic workload
beyond microbenchmarks presented in the last section.

Figure 8 (top part) shows the read and update latency dis-
tributions for workload B using a single client for the default
setup of 10 fields of 100 bytes per record (1K per KV pair).
The left part of the figure shows the read performance, and
the right part shows the update performance. As shown for
this default setup, the largest number of read operations ob-
serve a latency of 14 µs (95% and 99% percentile are at 37
and 84 µs) and 26 µs (95% and 99% percentile are at 47 and
81 µs) for DRAM and Optane respectively. Crail on Optane
has an average latency of 38 µs and thus is only 15 µs slower
than Crail on DRAM. On the other hand, Aerospike with Op-
tane delivers an average latency of 108.7 µs, which is 2.84×
worse than the average Crail latency (38.03 µs). Comparing
Crail’s DRAM performance to RAMCloud shows that RAM-
Cloud is slightly faster than Crail. However, as we move to
larger values of 10 fields of 10KB each (100KB per KV pair)
in Figure 8 (bottom) Crail is almost 2.6− 4.8× better than
Aerospike and RAMCloud, respectively.

Summary: Our experiments using the YCSB benchmark
have demonstrated that (a) Crail can successfully translate the
raw DRAM/NVMe performance advantages into workload
level gains, and (b) Crail effectively deals with both small and
large datasets while RAMCloud and Aerospike perform their
best in a specific operating range.

5.2.2 Spark Integration

We present the evaluation of Crail with Spark, one of the most
popular data processing engines. Spark executes workloads as
a series of map-reduce steps while sharing performance criti-
cal data in each step. There are multiple points in the Spark
data processing pipeline where temporary datasets are gen-
erated. In this section, we show performance measurements
specifically for two: shuffle and broadcast. Both subsystems
can easily be implemented as plugin modules for Spark.
Broadcast: We implemented broadcast using Crail by stor-
ing broadcast data as KeyValue nodes in a non-enumerable
Table. A broadcast writer creates a new KeyValue node, ap-
pends the broadcast data to the node, and passes the node
“name” to the readers. Readers, which are distributed over
multiple machines inside Spark executors, do a lookup on the
“name” and read the data from Crail. Figure 10a shows the
result. The x-axis shows the latency as observed by different
broadcast readers in the Spark job, while the y-axis shows
the percentage of readers. The solid vertical line represent
the baseline latency of 12 µs, which we demonstrated in our
microbenchmarks. As shown, most of the Crail broadcast
readers observe latency very close to the minimum possible.
A few observe a latency lower than 12 µs because some of
these readers are co-located on the same physical machine
where the values are stored. For those nodes, even though
they still read the data using the local network interface, there
is no actual network transfer happening, hence, their read per-
formance is not limited by the network. In summary, Crail
broadcast performance is 1-2 orders of magnitude better than
the default Spark implementation.
Shuffle: In Spark, a shuffle writer continuously generates
shuffle data during the map phase as it processes the input
dataset and classifies data into different buckets that are later
read by reducers. Due to the large fan-in and fan-out access
pattern, we implemented shuffle using Crail Bag nodes. There
is one Bag node per reducer and each shuffle writer appends
data to an array of privately owned File nodes, one File
node per writer per bag. After the map phase, each reducer
reads its associated bag using the optimized read interface
available in the Bag node type (see Section 3.1). We gen-
erated a large amount of data (512 GB) and triggered the
shuffle operation using the GroupBy benchmark available in
the Spark source code. Figures 10b and 10c show the per-
formance (runtime on the x-axis) and the observed network
throughput (y-axis) for various configurations. The values 1,
4, or 8 represent the number of cores given to each Spark ex-
ecutor. A quick comparison of the two figures shows that the
Crail-accelerated Spark observes higher network throughput
(for a corresponding core count) and, thus, as a result better
runtimes (1 core 5x, 4 cores 2.5x and 8 cores 2x).
Summary: In this section we have demonstrated that Crail
is able to successfully accelerate temporary data access in
Spark for small values (e.g., broadcast) as well as large values

778 2019 USENIX Annual Technical Conference USENIX Association

 0

 20

 40

 60

 80

 100

1us 10us 100us 1ms 10ms100ms

C
D

F

read 128b broadcast latency

Crail
Spark

(a) Broadcast performance

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
(G

b
it

/s
)

Elapsed time (seconds)

1 core
4 cores
8 cores

(b) Vanilla Spark GroupBy performance

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
(G

b
it

/s
)

Elapsed time (seconds)

1 core
4 cores
8 cores

(c) Crail accelerated GroupBy performance

Figure 10: Spark broadcast and GroupBy performance, using Vanilla Spark vs. Crail temporary storage.

(e.g., shuffle) by taking advantage of the different node types
(KeyValue and Bag) in Crail.

5.3 Efficiency of hybrid DRAM/NVM setup

As the last part of our evaluation, we quantify how Crail’s
tiered data plane helps with regard to performance and cost
objectives. We consider the Terasort workload, which is one of
the most I/O intensive applications on Spark. We implement
Terasort as an external range-partition sort algorithm in two
stages. The first stage maps the incoming key-value pairs (10
bytes keys and 90 bytes value) into external buckets. These
buckets are then shuffled and sorted by individual reduce
tasks. For this evaluation we use the accelerated shuffle and
broadcast plugins that we previously developed.

In Figure 9, we explore the performance/cost trade-off of us-
ing NVM instead of DRAM to store shuffle data in a 200 GB
Spark sorting workload. For this we configure Crail with dif-
ferent storage limits for the DRAM and the Flash storage tiers.
The x-axis indicates what fraction of the total shuffle data is
stored in DRAM versus Flash. Note that in this experiment
we are using the Samsung Flash-based SSDs rather than the
Optane devices. A configuration of 10/90 means that 10% of
the data is held in DRAM, while 90% is held in Flash. The
figure also shows the performance of vanilla Spark (first bar
of the figure) that runs on its default shuffle engine completely
in DRAM (using tmpfs as a storage backend). There are two
key observations here. First, in comparison to vanilla Spark,
the use of Crail for the shuffle backend already reduces the
runtime by a factor of 3.4. This performance gain can be
attributed to the efficient use of high-performance network-
ing and storage hardware in Crail. For instance, during the
reduce phase we measured an all-to-all network throughput
of 70 Gb/s/machine. Second, as we decrease the fraction of
DRAM in Crail in favor of Flash, Spark graciously and auto-
matically spills shuffle data into the Flash tier. In the extreme
configuration, where all shuffle data is stored in Flash, the
performance degrades to 46.49 second (48% increase), while
to total cost for storage is reduced by 8× from 1,000$ to 126$
(to store 200 GB of data based on the numbers in Table 1).

The gradual spilling of data from DRAM to Flash happens
transparently. Even in the all-Flash configuration, the perfor-
mance of the Crail-integrated Spark Terasort is half of the
completely-in-DRAM vanilla Spark performance. These re-
sults validate the design choices we made in Crail that permit
trading performance for storage cost.

Summary: In this section, we demonstrated that the use
of Crail in Spark (i) leads to better performance due to its ef-
ficient I/O path; (ii) reduces the cost of storage, and increases
the performance due the hybrid DRAM-NVMe architecture.

6 Conclusion

Storing and accessing temporary data efficiently in data pro-
cessing workloads is critical for performance, yet challenging
due to complex storage demands that fall between the lines of
existing storage systems like file systems or key-value stores.
We presented NodeKernel, a novel storage architecture offer-
ing a new point in the storage design space by combining hi-
erarchical naming with scalability and excellent performance
for a wide range of data sizes and access patterns that are typi-
cal for temporary data. The NodeKernel architecture is driven
by opportunities of modern networking and storage hardware
that enabled us to reduce overheads that made such a design
impractical in the past. We showed that storing temporary
data in Crail, our concrete implementation of the NodeKernel
architecture leveraging RDMA networking and NVMe stor-
age, can improve NoSQL workloads by up to 4.8× and Spark
application performance by up to 3.4×. Crail’s use of NVMe
Flash further reduces storage cost by up to 8× compared to
storage systems that only use DRAM.

Acknowledgments

We thank our shepherd, Michael Swift, and the anonymous
Usenix ATC reviewers for their helpful feedback.

USENIX Association 2019 USENIX Annual Technical Conference 779

References

[1] Alluxio: Open source memory speed virtual distributed
storage. https://www.alluxio.org/.

[2] Apache Crail (Incubating). http://crail.apache.
org/.

[3] Apache Crail (Incubating) Source Code. https://
github.com/apache/incubator-crail.

[4] Memcached. http://memcached.org.

[5] Redis. https://redis.io/.

[6] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novaković, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, Rajesh Venkatasubramanian, and Michael Wei.
Remote regions: a simple abstraction for remote mem-
ory. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 775–787, Boston, MA, 2018.

[7] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo
Alonso, and Torsten Hoefler. Distributed join algorithms
on thousands of cores. Proc. VLDB Endow., 10(5):517–
528, January 2017.

[8] Matt Benjamin. Xiomessenger: Ceph transport abstrac-
tion based on accelio, a high-performance message-
passing framework by mellanox, at https://www.
cohortfs.com/ceph-over-accelio.

[9] Laurent Bindschaedler, Jasmina Malicevic, Nicolas
Schiper, Ashvin Goel, and Willy Zwaenepoel. Rock you
like a hurricane: Taming skew in large scale analytics.
In Proceedings of the Thirteenth EuroSys Conference,
EuroSys ’18, pages 20:1–20:15, New York, NY, USA,
2018. ACM.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, pages
143–154, New York, NY, USA, 2010.

[11] Aaron Davidson and Andrew Or. Optimiz-
ing shuffle performance in spark. In https:
//pdfs.semanticscholar.org/d746/
505bad055c357fa50d394d15eb380a3f1ad3.
pdf, 2013.

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
Seattle, WA, 2014.

[13] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), Boston, MA, 2019.

[14] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Using rdma efficiently for key-value services. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, pages 295–306, 2014.

[15] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance rdma systems.
In Proceedings of the 2016 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC
’16, pages 437–450, Berkeley, CA, USA, 2016.

[16] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 185–201, GA, 2016.

[17] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’18,
pages 427–444, Berkeley, CA, USA, 2018.

[18] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Kolt-
sidas. Reaping the performance of fast NVM storage
with uDepot. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 1–15, Boston,
MA, 2019. USENIX Association.

[19] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 137–152, New York, NY, USA, 2017.

[20] Hyeontaek Lim, Bin Fan, David G. Andersen, and
Michael Kaminsky. Silt: A memory-efficient, high-
performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 1–13, New York, NY, USA,
2011.

[21] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. Mica: A holistic approach to fast
in-memory key-value storage. In Proceedings of the
11th USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 429–444, Berke-
ley, CA, USA, 2014.

780 2019 USENIX Annual Technical Conference USENIX Association

http://crail.apache.org/
http://crail.apache.org/
https://github.com/apache/incubator-crail
https://github.com/apache/incubator-crail
https://www.cohortfs.com/ceph-over-accelio
https://www.cohortfs.com/ceph-over-accelio
https://pdfs.semanticscholar.org/d746/505bad055c357fa50d394d15eb380a3f1ad3.pdf
https://pdfs.semanticscholar.org/d746/505bad055c357fa50d394d15eb380a3f1ad3.pdf
https://pdfs.semanticscholar.org/d746/505bad055c357fa50d394d15eb380a3f1ad3.pdf
https://pdfs.semanticscholar.org/d746/505bad055c357fa50d394d15eb380a3f1ad3.pdf

[22] Feilong Liu, Lingyan Yin, and Spyros Blanas. Design
and evaluation of an rdma-aware data shuffling operator
for parallel database systems. In Proceedings of the
Twelfth European Conference on Computer Systems,
EuroSys ’17, pages 48–63, New York, NY, USA, 2017.

[23] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Oc-
topus: An rdma-enabled distributed persistent memory
file system. In Proceedings of the 2017 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’17, pages 773–785, Berkeley, CA, USA, 2017.

[24] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I.
Jordan, Peter Richtárik, and Martin Takáč. Adding vs.
averaging in distributed primal-dual optimization. In
Proceedings of the 32nd International Conference on
Machine Learning - Volume 37, ICML’15, pages 1973–
1982, 2015.

[25] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing AI applications. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 561–577, Carlsbad, CA,
2018.

[26] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego On-
garo, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang.
The ramcloud storage system. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, August 2015.

[27] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein,
Mike Ovsiannikov, and Damian Reeves. Sailfish: A
framework for large scale data processing. In Proceed-
ings of the Third ACM Symposium on Cloud Computing,
SoCC ’12, pages 4:1–4:14, New York, NY, USA, 2012.

[28] Alexander Rasmussen, Vinh The Lam, Michael Conley,
George Porter, Rishi Kapoor, and Amin Vahdat. Themis:
An i/o-efficient mapreduce. In Proceedings of the Third
ACM Symposium on Cloud Computing, SoCC ’12, pages
13:1–13:14, New York, NY, USA, 2012.

[29] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson.
Indexfs: Scaling file system metadata performance with
stateless caching and bulk insertion. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14,
pages 237–248, Piscataway, NJ, USA, 2014. IEEE Press.

[30] V. Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil
Sayyaparaju, Andrew Gooding, Rajkumar Iyer, Ashish
Shinde, and Thomas Lopatic. Aerospike: Architecture

of a real-time operational dbms. Proc. VLDB Endow.,
9(13):1389–1400, September 2016.

[31] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and
Jonas Pfefferle. Darpc: Data center rpc. In Proceedings
of the ACM Symposium on Cloud Computing, SOCC
’14, pages 15:1–15:13, New York, NY, USA, 2014.

[32] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian
Schuepbach, and Bernard Metzler. Albis: High-
performance file format for big data systems. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), pages 615–630, Boston, MA, 2018.

[33] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. Hikv:
A hybrid index key-value store for dram-nvm memory
systems. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 349–362, Santa Clara, CA,
2017.

[34] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu,
Jamey Hicks, and Arvind. Bluecache: A scalable dis-
tributed flash-based key-value store. Proc. VLDB En-
dow., 10(4):301–312, November 2016.

[35] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
Fen Xie, and Corey Zumar. Accelerating the machine
learning lifecycle with mlflow. In IEEE Bulletin of the
Technical Committee on Data Engineering, pages 39–45,
2018.

[36] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012.

[37] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching,
and Michael J. Freedman. Riffle: Optimized shuffle
service for large-scale data analytics. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, pages
43:1–43:15, New York, NY, USA, 2018.

Notes: IBM is a trademark of International Business Ma-
chines Corporation, registered in many jurisdictions world-
wide. Intel and Intel Xeon are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United
States and other countries. Linux is a registered trademark of
Linus Torvalds in the United States, other countries, or both.
Other products and service names might be trademarks of
IBM or other companies.

USENIX Association 2019 USENIX Annual Technical Conference 781

	Introduction
	Background and Motivation
	Requirements and Challenges
	Limitations of Existing Approaches

	The NodeKernel Architecture
	Storage Kernel and Node Types
	System Architecture
	Low-latency metadata operations
	Metadata partitioning
	Hardware-accelerated storage
	Tiered storage

	Crail
	Metadata plane
	Data plane
	Failure semantics and persistence
	Anatomy of data access

	Evaluation
	Microbenmarks
	Systems-level Benchmarks
	NoSQL workloads
	Spark Integration

	Efficiency of hybrid DRAM/NVM setup

	Conclusion

