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During the past decade, network and storage devices have undergone rapid performance improvements,

delivering ultra-low latency and several Gbps of bandwidth. Nevertheless, current network and storage stacks

fail to deliver this hardware performance to the applications, often due to the loss of I/O efficiency from

stalled CPU performance. While many efforts attempt to address this issue solely on either the network or the

storage stack, achieving high-performance for networked-storage applications requires a holistic approach

that considers both.

In this article, we present FlashNet, a software I/O stack that unifies high-performance network properties

with flash storage access and management. FlashNet builds on RDMA principles and abstractions to provide a

direct, asynchronous, end-to-end data path between a client and remote flash storage. The key insight behind

FlashNet is to co-design the stack’s components (an RDMA controller, a flash controller, and a file system)

to enable cross-stack optimizations and maximize I/O efficiency. In micro-benchmarks, FlashNet improves

4kB network I/O operations per second (IOPS by 38.6% to 1.22M, decreases access latency by 43.5% to 50.4μs,

and prolongs the flash lifetime by 1.6-5.9× for writes. We illustrate the capabilities of FlashNet by building

a Key-Value store and porting a distributed data store that uses RDMA on it. The use of FlashNet’s RDMA

API improves the performance of KV store by 2× and requires minimum changes for the ported data store to

access remote flash devices.
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1 INTRODUCTION

Modern distributed applications such as data processing stacks (Spark or MapReduce), web ser-
vices, databases, and so on, routinely store, access, and analyze Terabytes of data stored across
hundreds of storage servers. Consequently, their performance depends considerably on the I/O
performance of the many storage and network devices involved. Thankfully, the I/O performance
of network and storage devices has been dramatically improved over the past decade. Ethernet,
the most popular interconnect technology, has evolved from 1 to 10, 40, and now 100Gbps data
rates with single-digit microsecond link latencies. Flash storage has delivered two to four orders of
magnitude bandwidth and latency improvements over HDDs, while recent advancements in non-
volatile memory technologies [40, 68] promise to improve performance further by one or more
orders of magnitude.

However, translating these raw I/O performance improvements into application-level gains re-
mains a challenge due to multiple factors. First, traditional I/O stacks1 are designed assuming slow

I/O and fast CPUs, which is no longer true [5]. Consequently, the cost of maintaining generic OS
abstractions, I/O interfaces, scheduling, context switches, implementation-related inefficiencies,
and so on, contributes significantly to the loss of I/O efficiency. Second, recent improvement ef-
forts either target the network [29, 42, 64] or the storage stack [8, 50, 81, 101] exclusively but
not the combination of both. As a result, remote data accesses over the network typically involve
costly application-level coordination across network, storage, and file system operations while en-
gaging the operating system many times for each I/O operation. Last, many established solutions
in this space, such as NFS or iSCSI, aim to deliver data only up to the file (Network Attach Storage
(NAS)) or block (Storage Area Network (SAN)) level. Hence, they still leave last-mile, end-host
inefficiencies between data and clients, as we demonstrate in the next section. In conclusion, there
is a need for a holistic approach that tackles both network and storage challenges to enable high-
performance remote data accesses (not just file, block, or device) between servers and their clients.

In this article, we present FlashNet, a co-designed I/O stack that delivers high-performance data
access to networked clients. The FlashNet stack builds on the data and control path separation phi-
losophy of commodity Remote Direct Memory Access or RDMA networks. RDMA networks, e.g.,
InfiniBand, iWARP, or RoCE, and so on, have already shown to deliver high network performance
to various applications [19, 48, 67, 70, 83], and related concepts [11, 100] and even APIs [91] are
explored in the storage domain as well. In FlashNet, we unify these fragmented efforts across the
I/O stacks and extend the path separation philosophy of RDMA networks to storage with the help
of a co-designed flash file system and a flash device controller. This extension enables FlashNet to
establish an end-to-end network data path between clients and data on remote flash devices, thus
eliminating any last-mile, end-host inefficiencies (on both the client and the server sides), which is
the hallmark of RDMA networking. Furthermore, a co-designed storage/network stack also means
that FlashNet can target optimizations across the stacks to reduce overheads. For example, Flash-
Net issues flash I/O directly from the network stack, tracks dirty data between network and storage
stacks in a unified manner, uses network access statistics to better manage flash devices, and so
on. As a result, FlashNet delivers 1.22M I/O operations per second (IOPS) (100% of 40Gbps net-
work bandwidth performance), decreases access latencies by 43.5% to 50.4μs, and improves the
flash lifetime by 1.6-5.9× for writes.

FlashNet is designed to be fully RDMA compatible, thus enabling hybrid RNIC/FlashNet de-
ployments. Consequently, applications that have previously used RDMA to efficiently access re-
mote memory require minimum changes to access data to/from flash storage using FlashNet. To

1Collectively referring to the network and storage stacks.
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illustrate the benefits of FlashNet’s RDMA API, we have built one application and ported one
RDMA-ready application on it. Our first application is a Key-Value (KV) store that uses RDMA
operations to access data from a remote flash storage in a dis-aggregated setting. We chose this
workload because previous work in this space has identified network and last-mile inefficiencies
with heavy-weight protocols such as iSCSI to be a bottleneck [51]. By using FlashNet’s one-sided
RDMA read/write operations, the KV store delivers 490K IOPS, representing a 102.4% improve-
ment from the baseline number of 242.7K IOPS achieved over sockets and files. Our second appli-
cation is a distributed in-memory data store called RStore [90], which uses RDMA to access data
from remote DRAMs. We have ported RStore and one of its applications, a distributed Sorter, to
FlashNet. The porting process requires minimum changes to RStore. In comparison to the original
in-memory version, FlashNet imposes no performance overheads to the runtime, and the ported
Sorter delivers a performance that is the sum of its in-memory runtime and flash read/write time.

Our specific contributions include (a) proposing and extending the path separation philoso-
phy of RDMA for remote flash storage accesses; (b) FlashNet, a co-designed prototype I/O stack
that consists of an RDMA network controller, a file system, and a flash controller; (c) evaluating
FlashNet in a distributed setting, showcasing that it reduces CPU overheads to deliver peak I/O
performance, helps in translating raw performance into application-level performance, and adds
minimum overheads to RDMA-ready applications.

2 MOTIVATION

We first quantify overheads associated with remote data accesses. We consider a storage server
that serves client requests to access data from a storage device over the network (e.g., an iSCSI
storage node, or a key-value server). The server’s peak performance depends on the efficiency
of both the network and the storage operations. Our setup consists (for details see Section 7) of
a server with three off-the-shelf PCIe NVMe drives in a software RAID-0 configuration and an
ext4 file system on top. The server is connected to clients over 40 Gbits/sec Ethernet. The clients
issue 4kB random reads from remote NVMe devices over the network. We measure the peak IOPS
delivered by the server for the following configurations:

• iSCSI: iSCSI is the de-facto block-level data access protocol in data centers. It is config-
ured with in-kernel iSCSI drivers. iSCSI targets are the three devices that were partitioned
and distributed between clients. The iSCSI configuration is tuned as described by Klimovic
et al. [51].

• NFS: NFS is a popular network file system protocol. In our experiments, the NFS server
runs in kernel and accesses data from the ext4 file system mounted on top of the software
RAID-0 device made on top of the three NVMe devices.

• Key-Value: We evaluate the performance of Aerospike KV, a state-of-the-art NoSQL store in
terms of performance and functionality [82]. Aerospike is configured to run over the raw
block device in the recommended high-performance configuration (see Section 7.2.1).

• Hadoop Distributed File System (HDFS): And, last, we measure the Apache Hadoop dis-
tributed file system (HDFS) [97]. Here, HDFS clients access a 4kB block randomly in a large,
private 8GB file.

We generate load for file and block I/O with fio [3]. We include performance numbers from
the device specification marked as spec and local block-level I/O performance. The specification
for each device is 430K IOPS, reaching an aggregate of 1.29M IOPS. There are three key points
in our results (Figure 1). First, none of the configurations were able to deliver the raw NVMe
device performance to clients across the network. iSCSI peaks at 420.6K, NFS at 79.2K, Aerospike
at 139.2K, and HDFS at 7.8K IOPS. Second, in most of the configurations, the performance is
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Fig. 1. Random 4kB read IOPS performance under various systems and configurations. Spec shows the

device performance from the specification. Block is the measured performance at the local block I/O level.

Fig. 2. I/O paths taken by data in tested settings.

limited by the CPU performance. In Figure 2, we illustrate various I/O paths involved between
a server and a client. Along these lines, the CPU has to to do network processing, I/O buffer
management, file system execution, block I/O, scheduling, and execute generic OS services and
abstractions. In line with previous findings [51], our analysis of iSCSI reveals that performance
is limited by CPU load. For NFS, overheads come from the protocol/buffer management, RPCs,
and file system related overheads where the NFS server has to serve files from the ext4 file
system. Application-level workloads, i.e., KV and HDFS, are more involved than a simple block or
file-level access, requiring multiple round-trips over the network. Hence, their peak performance
is driven by the application logic, which in absence of a direct access remote storage API,
requires the server application to be actively scheduled to orchestrate the dataflow. The cost of
scheduling, context switches, cache flushes, I/O resource management (as they are tied to the
process abstraction), and so on, becomes an overhead. And, last, though efforts have been made
to remedy exactly these overheads, they only focus on either network or storage but not both. In
networking, for example, the use of RDMA operations has been proposed to completely eliminate
OS and servers from an application design, e.g., KV stores [19, 67, 83], distributed transactions [20,
49], locking [94], and so on. On the storage side, multiple projects advocate to eschew the OS
in the data access path in favor of a leaner and faster access to flash storage [11, 57]. FlashNet is
built on similar principles but goes a step further by unifying these isolated efforts and building
a holistic, end-to-end data path for fast remote data accesses.

2.1 Background: RDMA Primer

Before proceeding further with the design and implementation of FlashNet, in this section
we provide relevant background information on the RDMA technology. RDMA is a userspace
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networking technology that provides high performance by eliminating unnecessary OS and
application involvement (and associated overhead) from the network I/O processing path. One
of the key principles of RDMA is the explicit separation of control operations to setup network
resources, from data operations triggering the actual data transfer. Examples of networking
resources are transmission (TX) and receiving (RX) queues (collectively called Queue Pairs
(QPs)), completion notification queues (CQs), and network buffers. Those resources need to
be pre-allocated and applications are given direct userspace access to them with the help of
the operating system. Network buffers are registered with the RDMA network controller to
generate a valid buffer identifier tag also known as the Steering Tag (STag). These STags are used
to resolve RX and TX buffer locations associated with an RDMA network operation. Hence, in
the network request processing path there are no stalls for scheduling and/or resource allocation.

RDMA employs a message oriented protocol where a network I/O request issued by an ap-
plication makes an RDMA message. An application is only notified when a complete message is
received or transmitted, thus reducing its involvement in network packet processing. A single
RDMA message is broken down into various fragments. Each fragment is delivered and processed
in order. The RDMA header of each fragment contains the STags of the involved I/O buffers and
a fragment offset that is used to identify if it is the last fragment of the message. The RDMA net-
working API goes beyond simple send and receive operations. One-sided RDMA operations allow
a client to directly read or write data from a prepared remote network buffer without involving the
remote server application. Because of its design and its minimum application involvement, one-
sided RDMA operations have the lowest latency and the highest bandwidth. A comprehensive
introduction to RDMA can be found in Reference [24].

Though traditionally implemented in hardware as an offloaded network controller, RDMA con-
cepts and ideas can be implemented in software as well. Multiple open-sourced implementations
are available today [65, 88]. Naturally, a software-only implementation cannot offer the same level
of performance as an offloaded hardware. However, these devices are shown to be useful to im-
prove CPU efficiency and performance in circumstances where the RDMA hardware might not be
available [89]. A hybrid software-hardware solution is also possible, either in the form of indirec-
tion [92] or as a paravirtualized RDMA device [74].

3 DESIGN OF FLASHNET

The high-level goal of FlashNet is to improve I/O efficiency (and, consequently, performance) of
data-intensive applications when accessing remote storage devices. Inspired by the fact that the
evolution of modern userspace storage stacks and high-performance userspace networking stacks
share many key performance properties, application interfaces, and design goals [91], FlashNet
uses the RDMA principle, semantics, and associated mechanisms to achieve its performance goals.
For example, it pre-allocates networking and storage resources ahead of data accesses. Using the
same one-sided RDMA operations, FlashNet eliminates the server application’s involvement from
the data processing path.

3.1 Overview

FlashNet is a unified software stack that consists of three logical components: a flash controller, a
file system (ContigFS), and an RDMA controller.2 By co-developing these components, we design a
unified, end-to-end data path where data can flow between a remote flash device and a client buffer

2FlashNet is a software stack, though, a hardware prototype would be possible with the help from the network (e.g.,

Reference [58]) and storage device controllers. We use separate controller names to highlight their roles in the overall

FlashNet architecture.
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Fig. 3. FlashNet stack illustrating the network-storage setup (dotted, red line) and the end-to-end dataflow

path (bold green line).

uninterrupted. Figure 3 shows the setup and interaction among these components. Applications
use FlashNet by programming against a familiar RDMA API and FlashNet transparently extends
RDMA operations (originally intended for DRAM buffers) to flash devices. Applications already
using RDMA require minimum changes to access data from remote flash devices. The design of
FlashNet is guided by three principles:

(1) Eliminate application involvement from I/O flows: FlashNet leverages the path separation
philosophy of RDMA networks and extends it to storage devices to completely eliminate
an application’s involvement from data transfer orchestration in an end-to-end manner.

(2) Minimize system overheads: FlashNet eliminates the file system and much of the generic
OS and the VFS code from the extended data transfer path by designing a file system that
uses a simple file layout. Hence, the file system and associated actions (e.g., inode look-
ups, checks, location translations, etc.) are eliminated from fast data paths between the
network and storage controllers.

(3) Keep application interface simple and clean: With the help of the file system, FlashNet lever-
ages the basic ideas of files and mmap-based I/O to autonomously and efficiently manage
data transfers over RDMA networks. Using existing standard mechanisms, FlashNet plugs
storage buffers into the application address space and lets the application manage them
in a unified manner with other DRAM buffers.

3.2 The Flash Controller

A key part of the FlashNet architecture is its flash controller design. A flash controller manages
the performance and packaging idiosyncrasies of flash devices. However, prevalent embedded flash
controller designs are too restrictive for the FlashNet architecture due to multiple reasons. First,
with high-speed networks, a flash page containing hot data may experience bursts of concurrent
small writes from the network within a small time frame (a few μsecs). Even though the network-
ing stack contains pertinent information that could be useful to absorb the bursty, concurrent
nature of network I/O, there is no standard way to pass this information to the flash controller for
better flash management. Second, flash devices are exposed as conventional block devices where
the logical block management is tied to the flash storage management. Previous research in the
field has demonstrated that decoupling these two can lead to performance improvements with a
much simpler file system layout [46]. A simpler file layout enables removing the file system from
network data transfers. And, last, the one-controller-per-device design cannot leverage multiple
flash devices present in a system.

ACM Transactions on Storage, Vol. 14, No. 4, Article 30. Publication date: December 2018.
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To alleviate the aforementioned restrictions and to jointly optimize the flash controller with
the rest of the stack, we have designed and implemented a software-defined flash array controller
that builds on top of virtualized flash storage works [46, 95]. The FlashNet flash controller is im-
plemented using the SALSA software-defined storage framework [41]. SALSA splits the available
storage space (spanning one or more storage devices) into segments (e.g., 1GB), and segments are,
in turn, split into grains (e.g., 4kB). SALSA supports multiple “controllers” over a single pool of
storage, each with its own policy and allocation streams. A segment can only be owned by a sin-
gle controller at any point in time. SALSA provides space allocation API for allocating grains,
invalidating grains, as well as a garbage collection callback that upcalls the owning controller to
relocate a consecutive range of grains. For more details about the SALSA architecture please refer
to Reference [41].

FlashNet implements its flash management as a SALSA controller. The controller decouples
the logical block management from the flash storage management and exports a large 64-bit block
address space using a virtualized Flash Translation Layer (FTL). The FTL dynamically maps logical
block addresses (LBAs) to physical block addresses (PBAs) over a virtual device array made out of
one or more flash devices. An LBA entry in the FTL contains the location of the data on a flash
device (its PBA) and its location in a DRAM buffer (if the data are present in the system). This
design ensures that all concurrent accesses (networked or local via the file system) are given the
same DRAM page or PBA location. All accesses to data happen through an asynchronous get/put
page interface (see Table 1). This interface also allows the flash controller to track heat and access
frequency information related to data/page accesses.

Dirty data are always written out-of-place while keeping track of new LBA to PBA mappings
in the FTL. Updates to the FTL are appended to the flash device asynchronously with the data and
are synced when instructed by an application or a remote RDMA access. The controller uses a log-
structured allocation strategy to allocate PBA blocks across multiple devices. It ensures uniform
wear leveling and employs advanced data placement and efficient garbage collection (GC) policies
to reduce write-amplification. Our GC algorithm employs a generalized version of the greed [15]
and circular buffer [76] policies, augmented with an aging factor. This aging factor improves the
performance of the algorithm under a skewed write workload without negatively impacting its
performance under random writes. It uses a per-block reference count for validity tracking and
a reverse map for blocks that are not fully invalid. Under non-uniform (i.e., skewed) workloads,
the controller segregates data into three data streams based on their update frequency to reduce
data relocation overheads [34]. Ideally, a number of data streams equal to the update frequencies
that the workload exhibits should be chosen. In practice, however, the supported number of data
streams is limited by hardware or metadata resources. Our controller performs a three-level data
segregation scheme based on (a) the logical origin of data blocks, (b) their age in the system, and
(c) their frequency and heat of updates tracked with the get/put API. A detailed discussion of the
GC algorithm and the data placement policies is outside the scope of this article and is provided
elsewhere [22].

To protect against crashes, the flash controller logs updates to the mapping table (LBA-to-PBA).
On initialization, it first checks whether it was cleanly shut down using checksums and unique
session identifiers written during the LBA-to-PBA dumps. If a clean shutdown is detected, then
the mapping table is fully restored from a fixed location. Otherwise, the mapping table is re-
constructed by scanning all the log metadata pages, based on back-pointers and timestamps.

3.3 Contiguous File System (ContigFS)

File systems such as ext4, are one of the most popular ways of storing and organizing data. In
this work, we want to keep the benefits of using a file system for data storage management while
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delivering the full performance of storage devices to clients over the network. Unfortunately, as
storage devices get faster, the constant and unnecessary involvement of a file system in every
aspect of I/O (local or networked) operations generates a significant amount of overhead [11, 55].
In the I/O path, one of the key file system operations is the translation of a file offset to a device
block location. With the current extent-based file layouts, it is difficult to reduce the file system
involvement from the I/O path due to their sophisticated extent management logic. However,
by co-designing the file system together with the storage controller (with its virtual 64-bit FTL
address space), we can simplify the file system design by using a range-based rather than an
extent-based file layout. A range-based file layout stores a complete file in contiguous device block
addresses. This layout enables a trivial file offset to device location translation by adding the file
offset to the start location of the file on the device. This simple translation can also be done by the
network controller, hence potentially removing the file system and application involvement from
the networked I/O. Another alternative that can achieve a simple, range-based offset translation is
raw block-device interface. In this setup, a block device can be used to store data using contiguous
storage blocks. However, this option eliminates many applications that use file system interface
and properties (e.g., hierarchical naming and access control) from running on FlashNet. Hence,
we decided to develop a simple, range-based file system that is optimized for fast I/O operations.

To realize our idea, we design a POSIX file system called Contiguous file system or ContigFS
that does contiguous file allocations on top of the virtualized FTL address space. The files that are
stored in a contiguous LBA address range can grow and shrink by manipulating their mappings
in the FTL address space. Like any other file system, ContigFS provides the full file system API to
applications. To exert full control over data buffering and sharing to/from flash devices, ContigFS
co-manages (with the flash controller) its own pool of DRAM pages. Data are staged for access and
dirty data are written out from pages in the pool. Pages from the pool are also given to serve page
faults in mmap’ed memory regions. In a similar spirit to the I/O-lite system [71], ContigFS ensures
(in collaboration with the flash controller) that there is only a single physical and consistent copy
of data in the system that is shared between the storage controller, the network controller, and
applications by reference counting.

3.4 The RDMA Controller

The RDMA controller of FlashNet extends the data and control paths [93, 98] of commodity RDMA
networks to include the file system and the flash controller as well. Similarly to the original path
separation idea, applications, file systems, and, to a large extent, the OS, are eliminated from the
extended dataflow path. To achieve this, FlashNet translates necessary abstractions in advance
from an RDMA access to the data location on a flash device. This means that an RDMA access
to a memory address can be mapped to its flash LBA directly by the controller without having to
consult the application or the file system.

A key operation on the extended control path is the RDMA buffer registration process. In the
buffer registration process, every data source or sink buffer is pre-registered with the network
controller to generate an RDMA buffer identifier tag or STag. This STag is used in subsequent
RDMA operations to identify network source or sink buffers without involving the application
to steer dataflows. FlashNet uses the same mechanism to identify files and offsets to resolve data
locations that are involved in a network operation. ContigFS files, which are involved in RDMA
network operations, are registered with the FlashNet RDMA controller by passing their mmap’ed
area. At this point, with the help from the ContigFS, the RDMA controller translates the memory
area to the start LBA of the file. As files are contiguously allocated in the LBA address space, further
offset calculations during network operations are done entirely by the RDMA controller and then
passed to the flash controller for reading/writing data from/to involved LBAs. Hence, on the fast
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Fig. 4. Abstraction translations inside FlashNet. A fast translation from a memory region to an LBA is ac-

complished with the use of memory-mapped I/O (i.e., mmap) and buffer registration mechanisms.

data path, the file system is eliminated and the two device controllers talk to each other to manage
dataflows. Figure 4 shows the end-to-end translation process between these abstractions on the
extended control and the data path.

We cannot leverage existing RDMA NICs (RNICs), because they require pages to be immediately
pinned. This setup (a) does not allow the system to track dirty data from RDMA access (as they
happen in hardware and are transparent to the system) and ensure it is flushed properly, (b) does
not allow scaling beyond the system DRAM size, and (c) is wasteful to the system DRAM. To
overcome these limitations, the RDMA controller of FlashNet is implemented in software and
supports on-demand memory pinning. With on-demand memory pinning, during the memory
registration (happens only for memory segments backed from a ContigFS file), the controller only
allocates necessary metadata, locks, and data structures to hold DRAM page pointers, but does not
pin pages yet. The pages are populated and pinned on-demand on the extended data path when an
RDMA request accesses them. Types of access to these pages (read or write) are told to the flash
controller to track dirty data. These pages are also shared concurrently (without creating copies)
between an application, the network, and the storage stack using RDMA buffer ownership rules.

The use of the RDMA further brings byte granular, low-latency, high-bandwidth flash accesses
into the Remote Memory Access programming model [33]. Many of its key performance proper-
ties such as userspace-mapped I/O queues, batching, asynchronous I/O, polling, and so on, have
been explored and shown to be useful in the context of local flash accesses as well [11, 80, 101].
FlashNet provides a high-performance I/O interface around these unified RDMA properties [91].
This holistic approach collapses the layer structure and thus, efficiency is gained by creating fast,
non-blocking, asynchronous end-to-end dataflow paths [7].

3.5 The Life of an I/O Operation

To demonstrate how various components come together, we illustrate an example where a server
serves data to a networked client using FlashNet’s one-sided RDMA read operation in Figure 5.
Section 5 presents the pseudo source code for this example and discusses further application-level
considerations when using FlashNet. A server application starts by mmaping a file (step ❶) that
server wants to serve to network clients. It then registers the mmap address with the FlashNet
RDMA controller to prepare the mmap region for RDMA operations (step ❷). The controller re-
solves the passed region to be a ContigFS-file region and, hence, only translates mappings and
saves the LBA address of the memory region by adding the mmap offset to the starting LBA address
of the file (step ❸). The controller then generates a valid STag. The server then communicates
the relevant RDMA credentials that include permissions, mmap addresses, and STags to a client.
Steps ❶–❸ constitute the extended control path of the FlashNet stack where the file system, the
flash controller, and the RDMA controller work in unison to establish mappings and translate
abstractions.

On the extended data path (steps ❹–❾), a client, after having acquired right RDMA credentials
from the server process, issues an RDMA read request. On receiving an incoming RDMA read
request, the RDMA controller first resolves the flash buffer using the STag present in the request.
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Fig. 5. The life of a FlashNet RDMA read. The orange/thin lines represent the control setup steps (1–3),

whereas green/thick lines represent the dataflow steps (4–9).

The controller then calculates the flash LBA address by adding the offset (present in the RDMA
request) to the previously saved base LBA address of the registered region (step ❺). The flash pages
in the identified region are then populated (see Section 4.2) with the help of the flash controller
(steps ❻ and ❼). On completion of the RDMA request processing (step ❽), the involved LBA pages
are given back to the flash controller (step ❾). Meanwhile, the incoming RDMA response data are
directly deposited in the client’s buffer by the RDMA controller. The server-side data processing
does not involve any active involvement or coordination from the server application.

4 IMPLEMENTATION OF FLASHNET

The components of the FlashNet stack are implemented as kernel modules in the Linux kernel
and do not rely on any specific hardware support. The implementation of the in-kernel virtualized
flash controller is based on the SALSA software-defined storage framework [41]. The controller is
extended to support the in-place, DRAM-based page sharing and callback based on a non-blocking
I/O API (see Table 1). In order to support local accesses (Section 3.3), the controller also implements
the block interface, utilizing the device-mapper (DM) framework. The block interface is imple-
mented on top of the same non-blocking I/O API. ContigFS hooks into the VFS layer of the kernel
and talks to the flash controller for the block management. The RDMA controller of FlashNet is
derived from the open-sourced SoftiWARP RDMA controller [65, 89] that provides the complete
iWARP RDMA features and semantics. It uses memory-mapped I/O queues and non-blocking ker-
nel TCP sockets with per-core kernel threads to perform asynchronous network I/O on behalf of
user processes. SoftiWARP is enhanced to interact with ContigFS and the flash controller to sup-
port lazy memory management while maintaining the compatibility with current RDMA RNICs
for hybrid hardware-software deployments. The whole FlashNet framework does not require any
changes to the kernel and network or storage drivers.

4.1 File Management

ContigFS file management is similar to the Direct File System [46, 85]. One key difference being
that with the current prototype we do not reserve LBA ranges to provide large unassigned LBA
ranges to files and let them grow in that. Instead, ContigFS performs remapping on the FTL as the
file size grows out of its current allocation size. The current size is set by a fallocate call, which
commits LBA space for the given file size. The size of an LBA block is configurable (default is 4kB).
The file can grow and shrink by reallocing its LBA address in the FTL. If necessary, files can be
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Table 1. The Flash Controller (Abridged) API

API functions Description

is_contigfs_vma(va, len) is passed vma segment a ContigFS mmap’ed area
get_LBA(addr, len, flags, callback*) gets DRAM pool pages for I/O
put_LBA(addr, len, flags, callback*) puts pool pages in a LBA range

relocated in the FTL address space without physically moving the data on the devices by updating
the FTL mappings of the new LBA range to the old PBA entries. The LBA space is managed using
the buddy allocation technique [53].

ContigFS Layout: ContigFS splits the 64-bit virtual FTL address space into two regions, saving
file metadata and data separately. The metadata region provides a mapping from inode numbers
to 32 bytes of metadata that include the data LBA address (on the second region), the file size, file
permissions, and flags. For directories, the data LBA address contains the directory entries. The
metadata region is implemented as a file, and can be expanded as needed. Metadata changes are
made persistent synchronously with respect to file modifications. The ContigFS design is opti-
mized for the FlashNet workloads, targeting large files and shallow directory hierarchies.

4.2 Flash Page and Buffer Management

In this section, we describe FlashNet’s page pool management stragegy when processing I/O re-
quests. DRAM pages from this pool are used to buffer and share data from flash devices. The pool
is co-managed by ContigFS and the flash controller. These pages are populated using a set of asyn-
chronous get and put based interfaces (Table 1) to the flash controller. The idea of the interface is
to implement an access reference counting mechanism for an efficient data staging and buffering.
The get_LBA call takes a start LBA address, size, and type of request (r/w) with flags, and provides
DRAM pages from where data can be read from or written to. Obviously, a request for a write
access marks the page dirty. After usage, these pages are put back to the flash controller using the
put_LBA call. Both calls are byte-addressable and take a callback pointer (marked as cb) to indicate
the completion of an operation.

Flash Page State Machine: To ensure that no two entities in the system see different data, the
flash controller implements a state machine with atomic transitions (shown in Figure 6) for every
flash LBA page. The state of an LBA page is stored with its FTL mapping. An uninitialized flash
LBA page starts in an Invalid state. At the time of the first write, the controller allocates a PBA
address, maps it to the LBA page, and updates the LBA entry state in the FTL from an Invalid
to a PBA state. For a get request, the flash controller checks the state of the LBA pages involved to
determine if any page has previously been brought into the system (i.e., contains an LBA entry in
the FTL that points to a DRAM page in the buffer pool or a device PBA). For LBA pages that are not
in the buffer pool (indicated by the PBA state), the flash controller allocates new DRAM pages from
the pool, issues DMA requests for them, and atomically updates their status to IN_FLIGHT. When
the DMA is finished (IO_DONE), the associated DRAM page is atomically installed in the FTL and a
callback is executed with the DRAM page address. Any subsequent read or write get requests on
this LBA is given the same DRAM location while maintaining usage and frequency counters on a
per-page basis. These counters are used by the flash garbage collector to identify the hot and cold
LBA pages. For LBAs that were already in the buffer pool, the flash controller immediately issues
callbacks to the requesting entity (either the RDMA controller or ContigFS) with a valid DRAM
page pointer. Consequently, depending on the status of the pages involved in a request, callbacks
can be issued in any order. After processing, references to pages are put down by calling put_LBA.
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Fig. 6. The state machine of a flash LBA page.

Additionally, for dirty pages, a call to put_LBA can optionally generate a callback when the LBA
was made persistent (i.e., transitioned to a PBA state). Concurrent small writes are absorbed by
the same DRAM page, and only the last put call triggers a dirty data write out. The current flash
controller prototype does not cache data. A selected form of time-bounded caching is done for
pre-fetching. The pre-fetching logic is similar to the get_LBA, but without the callbacks.

4.3 Data Access and Concurrency

Figure 7 shows the concurrency and page sharing model of FlashNet. Local data accesses happen
using mmap or POSIX read or write calls on ContigFS. When a process calls an mmap (path 1 in
the figure), the Linux kernel allocates a contiguous virtual memory area (VMA) within the process
address space and passes it to ContigFS. On receiving the call, ContigFS does sanity and permission
checks and registers itself as the page fault handler for this area. When the process accesses the data
and a page fault happens, ContigFS is notified and it calculates the LBA from the faulting address.
It then calls get_LBA with the LBA, and installs the DRAM page from the pool provided in the
callback into the application address space. For read or write calls (path 2 in the figure), the same
LBA calculation step from a file offset is followed and data are copied into the process provided
user buffers. Pages are put back to the pool after copying or when the process calls munmap.

Remote networked clients access data by issuing RDMA operations. As outlined in Section 3.4,
the RDMA controller also calculates the target LBA address by the simple offset calculation based
on the address present in the RDMA request (path 3 in the figure). The RDMA controller uses this
LBA address to issue asynchronous get_LBA. If the target LBA address is not present in the pool,
then the RDMA network processing can be stalled. A stalled connection is resumed after receiving
callbacks form the flash controller. However, as explained in the previous section, these callbacks
can happen in any order, whereas the RDMA specification requires in-order data processing. To
keep track of out-of-order page callbacks, FlashNet takes advantage of the fact that RDMA requires
pre-allocation and registration of flash VMAs. At the time of registration, FlashNet allocates an
atomic counter (separately from the flash controller) on a per-page basis to store the validity of
the page. In a callback, this counter is increased and before calling a put on the page, the counter
is decreased. FlashNet checks the readiness of a region by scanning for the longest sequence of
non-zero atomic counters and only processes data in that ready region. After the processing, the
pages are put back.

The flash controller is the serialization point that provides the LBA’s mapping to local and
remote accesses. It utilizes the compare-and-swap primitive to implement atomic LBA mapping
state transitions (Section 4.2) on aligned 64-bit FTL mapping entries. Thus, concurrent accesses to
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Fig. 7. Semantics of a page sharing between (1) mmap, (2) POSIX I/O, (3) remote RDMA accesses.

an LBA will observe coherent values of its mapping (PBA, dirty, etc.). However, no consistency is
guaranteed for the data itself other than what the RDMA semantics dictate.

4.4 Dirty Data Write-Outs

One issue with the use of RDMA one-sided operations to write data is when/how to instruct the
storage stack to make data persistent. Recall that there is no application involvement while servic-
ing these one-sided RDMA write requests, and hence, it cannot be notified to trigger data write-
outs. For this purpose, FlashNet defines Semantics STags, which are like a normal STag, but they
carry additional operational semantics with them. These semantics are masked in lower 8-bits (re-
served for application use by the RDMA specification) of a 32-bits STag to set sync or async flags
provided by FlashNet. With this extension, on encountering a sync flag in an STag, the RDMA
controller does not process further incoming RDMA operations on a particular connection until
dirty data from the last operation is written to the flash device (indicated by the put_LBA callback).
Consequently, no work completion notifications are generated on the client side. Whereas async
write processing continues immediately without waiting for the put callbacks, and a client-side
work completion is generated immediately. Independently of the way incoming RDMA writes are
processed, the client-side RDMA queues always remain asynchronous. Applications built on top
of FlashNet requiring strong durability guarantees can utilize the sync STag; it provides similar
guarantees to the REQ_FLUSH block request flag in Linux.

5 APPLICATION API AND EXAMPLE

In this section, we show an example how a server application can use FlashNet to integrate flash
storage accesses with RDMA operations. As discussed previously, FlashNet combines the RDMA
interface from network to the mmap abstraction of storage stack to build a unified end-to-end stack.
Instead of providing a comprehensive introduction to the RDMA programming (available here [24,
87]), we are going to focus on key mechanisms that allow the integration of FlashNet to an al-
ready RDMA-aware server application. FlashNet’s RDMA controller device is implemented as a
software RDMA device in the Open-Fabrics Alliance (OFA) RDMA framework. A sample output
of ibv_devices is shown in listing 1. This listing demonstrate that software RDMA devices of
FlashNet (shown as flashnet_lo and flashnet_eno3) coexist together with a hardware RDMA
device of Mellanox (shown as mlx4_0). From a client-side, there is no observable difference be-
tween communicating to a FlashNet’s software RDMA device or an actual hardware RDMA device.

The abstraction that links a storage device to a FlashNet RDMA device is the virtual address
space. A skeleton code how a server application can achieve this is shown in listing 2. The code
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Listing 1. A sample output of ibv_device command showing two FlashNet devices and one Mellanox device.

Listing 2. Skeleton example code of acquiring memory for RDMA operations using FlashNet. A comprehen-

sive error handling code is omitted.

example assumes that ContigFS is already mounted at a pre-defined location (e.g., /mnt/
contigfs/). As ContigFS hooks in the VFS layer of Linux, this can be achieved by the standard
mount command. After setting the right permission, applications can either create new files or
read/write already existing file at the mounted location (lines 5–13). To pre-allocate a capacity for
a newly created file, the example application calls fallocate call. The same mechanism can be
used to expand the capacity of a file. Otherwise, using the standard POSIX write call also increases
the size of the file. With the right size and offset, the file is then mmaped in the application address
space (line 16), and a valid address (void *faddr) is acquired. This address is then registered with
the RDMA device using the ibv_reg_mr call (line 23). From, this step onwards, this address can be
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used like any other virtual memory address (lines 24–29). RDMA operations in this address range
will be served by the FlashNet’s RDMA device. There are no changes required on the client side.

There are three practical issues that application must consider while integrating FlashNet to
server data files from flash over RDMA operations. First, often RDMA-based systems implement
application-specific, memory/buffer management logic. The idea here is to pre-allocate and regis-
ter these buffers, and reuse them for multiple RDMA operations to amortize the cost of the slow
memory-allocation operation. These buffers are also used for the send/recv (two-sided) based com-
munication, for example, RPC calls for synchronization. Naturally, applications want to have their
high-performance RPC buffers in DRAM and data buffers on flash. Hence, an application must be
aware of the location of a buffer, and use it accordingly. All RDMA-ready applications do not make
this distinction, because RDMA operations so far are only destined for DRAM. Second, FlashNet
only offers OFED RDMA/CM API [1] to applications. The native InfiniBand API is not supported
at this moment. Third, the RDMA controller of FlashNet implements the iWARP protocol in soft-
ware. Hence, the current FlashNet prototype can only operate with other iWARP RDMA stacks
(either hardware or software). Because of these three limitations, currently open-sourced RDMA
applications, e.g., HERD or RAMCloud (without extensive modifications), are misfits for FlashNet.
Hence, for our application-level evaluation (Section 7.2), we build one native and port one applica-
tion to FlashNet. The native application is a key-value store. The ported application is a distributed
in-memory data store [90], which already makes the distinction between RPC and data buffers.

6 FUTURE DIRECTIONS

Persistent RDMA Credentials: RDMA semantics are currently defined within the scope of a pro-
cess. When a process dies, the associated RDMA resources are destroyed. However, with the flash
integration, FlashNet brings persistency to RDMA operations. Hence, persistent storage services
built on FlashNet, such as a filesystem, may require persistent RDMA credentials. Furthermore, a
client might have cached RDMA credentials for one-sided operations. We are investigating, first,
whether it makes sense to to preserve RDMA credentials and, second, if so, then how can we pre-
serve or re-generate (doable by replaying an operational log) RDMA credentials (registered flash
regions, STags, mapped virtual address ranges, etc.) across a process or the system restart.

Current RDMA semantics: The current FlashNet prototype is bound to the RDMA protocol
(specifically iWARP) and semantics. RDMA up to now, however, is defined for DRAM only. Conse-
quently, the current RDMA specification does not provide any ordering, consistency, and synchro-
nization guarantees in the presence of concurrent accesses or failures. In a limited scope, atomic
operations with in a single RDMA device, fences for ordering guarantees, and so on, are discussed.
However, there is no comprehensive treatment of these issues specially in presence of out-of-order
completion/notification by NVMe devices and failures. There have been some initial proposals for
extensions in the current RDMA semantics to include commits and durability operations for byte-
addressable remote persistent memories [18, 86].

Quality-of-Service for FlashNet: Achieving isolation among various RDMA connections requires
applications to carefully tune a variety of device and network parameters [102]. Klimovic et al.
make a similar case for delivering “predictable performance” for remote flash accesses [52]. Pro-
viding fairness, isolation, and good quality-of-service on the end-to-end data path of FlashNet is
a focus of future efforts.

7 EVALUATION

We evaluate FlashNet on a cluster of 17 machines with dual Xeon E5-2690 CPUs, 256GB of DRAM,
and Chelsio T5 40 Gbps NICs, running Linux 3.19 on Ubuntu 15.04. One machine has three off-
the-shelf, enterprise-level NVMe PCIe flash devices on which we run FlashNet. The remaining
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Fig. 8. 4kB random read performance.

machines run clients that repeatedly request the server for data stored in flash. Clients use Softi-
WARP as a software RDMA device [65]. All numbers reported here are the average of of three
runs, each lasting 60s. FlashNet experiments are done with the files on ContigFS while other con-
figurations use the ext4. The key performance highlights are as follows:

• FlashNet successfully delivers high performance to networked clients for remote NVMe
accesses. It scales well with the number of clients, and with 256 clients saturates the 40Gbps
network with 1.22M 4kB IOPS, the network maximum possible on our 40Gbps link.

• The direct end-to-end data path of FlashNet helps to reduce the network read latency of
a 4kB flash page from 89.2μs to 54.9μs, a 38.4% improvement. This latency can be reduced
further by a margin of 8.2% to 50.4μs in a mixed RNIC-FlashNet setup.

• By efficiently managing the flash device using the access, heat, and frequency data provided
by the flash controller’s API, FlashNet reduces the write amplification by 38–83% under
skewed write workloads.

• The use of FlashNet’s RDMA API helps applications to deliver performance close to the
hardware. The KV store delivers 460K get IOPS, a close to 2× improvement over its
socket/file-based variant. For ported distributed sorting application of RStore, FlashNet adds
negligible overheads to access data from remote flash devices.

7.1 Micro-Benchmarks

We first show a set of micro-benchmarks to highlight the performance efficiency of FlashNet in
a conventional server-client setup. Our benchmarks are implemented in netperf [45] with two
modifications: (1) support for RDMA operations and (2) support for accessing flash via POSIX
read/write calls. Our objective is to eliminate protocol or implementation-related concerns from
SAN/NAS solutions and focus solely on I/O operations while highlighting the potential raw
performances.

7.1.1 Peak IOPS Scaling. We first revisit our key experiment from Section 2. Figure 8 shows
the performance of FlashNet/RDMA operations in comparison to socket/file-based operations in
netperf. On the X-axis we have a number of clients and the Y-axis shows the number of 4kB
random read IOPS delivered. The horizontal bar shows the network performance limit. For a single
client, in comparison to a socket/file-based client performance of 33.6K IOPS, FlashNet delivers
42.2K IOPS as peak IOPS. However, for 2 clients, the performance drops due to uneven balancing
with 3 NVMe devices and 2 CPU nodes, where one devices gets twice the amount of requests as the
other two do. The performance is recovered again after that, and, as is evident, both approaches
scale well with the number of clients. The socket/file-based approach stops scaling linearly around
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Table 2. Breakdown of CPU Cycles

network storage I/O drivers scheduling kernel app-logic misc.

Socket/file 19.3% 7.3% 6.7% 15.8% 40.1% 4.7% 6.1%

FlashNet 20.6% 0.8% 6.4% 8.4% 46.7% 11.7% 5.4%

The key performance gains of FlashNet comes from saving the cycles in scheduling, storage, and spending more time in

I/O logic processing logic routines.

64 clients, and hits the peak at 256 clients and delivers 880.9K IOPS. At this point, the server CPU
is fully saturated. In comparison, FlashNet is able to deliver 1.22M IOPS, an improvement of 38.6%
over a socket/file-based client, and 190% better than the peak iSCSI performance of 420.6K IOPS.
The FlashNet performance is only limited by the peak network performance that is saturated at
40Gbps when delivering 1.22M 4kB IOPS. Hence, FlashNet reaches its first objective of delivering
full storage performance across the network.

Table 2 breaks down the CPU cycles into network, storage, I/O device drivers, scheduling, ker-
nel, request processing/application logic, and miscellaneous (misc.). We focus on the cycles spent
in storage, scheduling, and request processing. The storage column includes routines from the
ext4 file system, the generic VFS layer, and the block layer, and so on. Most of these routines are
executed for every network-storage request. Furthermore, the traditional I/O stack architecture
experiences high context switching and scheduling related overheads. This is because most of the
I/O resources (e.g., network sockets, buffers, etc.) are tied to the process abstraction. These re-
sources need to be valid during the I/O processing and hence require the application process to be
scheduled for I/O processing and data movement orchestrations. As a result, not many CPU cy-
cles are left for actual request processing. With FlashNet’s design, the file system and most of the
generic storage stack is eliminated from the core I/O path and request processing does not require
server process scheduling. The CPU cycle gains from here are then used in the request processing.

7.1.2 Latency and Bandwidth. One key benefit of RDMA networking is low latency network
operations. A FlashNet/netperf client is able to read and write a single 4kB random block to a
remote flash device in 59.8μs and 83.3μs, respectively. In comparison, the socket/file-based client
takes 89.2μs and 114.9μs, respectively. The read performance numbers can be further improved
to 54.9μs when we configure the FlashNet device in the latency mode with polling. In the polling
mode, the server CPU polls for a few more micro-seconds in anticipation of the next request before
going to sleep. We configure this time to be around network RTT.

FlashNet also delivers good bandwidth to its clients. For the bandwidth test, clients read and
write 1MB data blocks to a large file. A single socket/file-based client observes 13.6 and 17.4Gbps
of read and write bandwidth, respectively. In comparison, FlashNet delivers 24.4Gbps (gains: 79.4%)
and 25.6Gbps (gains: 47.1%) of read and write bandwidth, respectively. As we increase the number
of clients, both approaches hit the networking bandwidth limits and are able to deliver close to
40Gbps bandwidths to their clients.

7.1.3 The Cost of Flash Buffer Registration. We now evaluate the cost of buffer registration
for FlashNet, which is one of the costliest operation in RDMA [25]. The key difference between
standard RDMA and FlashNet registration is the lack of page allocation and pinning costs from
the latter. However, per-page metadata are still allocated. Figure 9 shows the cost of mmaping a
ContigFS file and registering the obtained mmap area with the FlashNet RDMA device. In compar-
ison, we also show the performance of mmap on ext4 with MAP_POPULATE flag, and its registration
cost. FlashNet can register and prepare 16GB of flash in about 90ms (6ms for mmap, 84ms for
registration). In contrast, a DRAM buffer registration takes almost 5s (3.3s for mmap and 1.7s for
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Fig. 9. mmap and buffer registration cost.

registration), where the majority of the time is spent in page allocation, bringing data in from the
flash devices, and allocating RDMA metadata in the RNIC driver, and then installing DMA I/O
descriptors. FlashNet avoids this cost, because it does not allocate any DRAM pages during mmap.
DRAM pages are allocated only at the time of page faults from the flash controller managed pool
of DRAM pages. However, during registration on FlashNet, all necessary metadata are allocated.

7.1.4 Efficiency of Flash Management. The flash controller segregates data in three levels based
on their heat, age, and origin during data placement. As described earlier in Section 4.2, the
get/put API of the controller enables it to extract write-heat information (i.e., update frequency)
about a page from its usage counter. A high get count implies a hot data page. The data segregation
and GC algorithm of the flash controller exhibit a significant reduction in write amplification in
the common case of skew write patterns, compared to existing GC schemes. Under Zipfian write
workloads of 80/20 (80% accesses to 20% flash area) and 95/20 (95% accesses to 20% flash area), the
flash controller reduces the write amplification by 38% and 83% and improves the flash lifetime by
1.6× and 5.9×, respectively, compared to a greedy-window GC scheme without data segregation.

7.1.5 Mixed RNIC-FlashNet Deployment. One key advantage of keeping the iWARP packet for-
mat is that FlashNet is compatible with the current iWARP RNIC hardware. In this section, we
evaluate this mixed setup using Chelsio’s T5 RNIC. We use an offload RDMA engine in one of the
client’s T5 NIC and measure the read and write latencies for a 4kB page. For a read configuration,
FlashNet transmits data from a flash page to the client. For a write configuration, the T5 RNIC is
used to transmit data from the client to the FlashNet server. We measured potential latency im-
provements from this mixed setup, which are shown in Table 3. On average, a mixed setup delivers
additional 4.2% to 8.2% performance gains to FlashNet. These gains come from by-passing the full
client-side software stack, and represent a realistic FlashNet deployment scenario.

7.1.6 Next-Generation of NVMe Storage. In this section, we present the latency evaluation
of FlashNet on an Intel Optane SSD 900P Series storage device [39]. The Optane technology
represents the next generation of NVM storage with a superior performance than the current
generation of NAND-flash storage. We put one Optane device in our server with a baseline 4kB
block-level random read latency of 11.14μs. In this setup, FlashNet delivers 28.14μs of remote
4kB page access latency. In comparison, the 4kB DRAM page access latency is 17.8μs. Hence,
FlashNet’s read path to the Optane drive adds minimum overheads to the overall remote page
access performance. This experiment validates the suitability of the thin and fast data path of
FlashNet even for the next generation of NVM devices.
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Table 3. 4kB I/O Latencies in Mixed, Hybrid RNIC-FlashNet Configurations

TX-side RX-side 4kB/poll Gains

Read
FlashNet SoftiWARP 54.9μs

8.2%
FlashNet T5 RNIC 50.4μs

Write
SoftiWARP FlashNet 72.4μs

4.2%
T5 RNIC FlashNet 69.3μs

In reads, the server is transmitting, for writes, the server is receiving.

7.2 Applications

We demonstrate the applicability of FlashNet using two applications: a Key-Value Store and a
distributed sorting workload.

7.2.1 Key-Value Store. Key-Value stores is one of the most popular applications that is known
to benefit from RDMA operations. Multiple stores have been proposed, e.g., Pilaf [67], HERD [48],
FaRM [19], and so on, which explore the tradeoffs and semantics in the design space. We have also
implemented a distributed KV store that supports get and put operations. The main data structure
is a hopscotch hash table [31] with fixed size keys and values, and a bucket size of 16; each hash
table entry holds the key along with some metadata. To reduce the lookup cost, we separate the
keys from the values in two tables that are indexed the same way. The whole hash table is mmap’ed
over the capacity of a file (e.g., an ext4 file, or a block device). Concurrent accesses to the hash
table are supported with the use of the compare-and-swap primitive.

On a put, the key is hashed into a 64-bit value that is used to index the hash table, and we iterate
over the hopscotch bucket until a free entry is found. When a free entry is found, the full key is
copied in the table entry, and the data are copied at the value table, on the same index as the free
entry. If the bucket is full, then we first try to displace one of the other entries in the same bucket,
and if that is unsuccessful, then we push the entry into a victim bucket. On a get, the matching
bucket is searched until the key is found; if not found, then we repeat the search over the victim
bucket. If the key is found in the KV store, then we read the associated data from the value table.
In terms of I/O amplification on random operations, the KV store has the following amortized
behavior: A put operation will result in a read I/O for the bucket and two write IOs (one for the
table entry and one for the value); a get operation will result in two read IOs (one for the table
entry and one for the value).

We implemented two network back-ends to the KV store: one over sockets and one over RDMA
on FlashNet. The socket back-end uses socket operations over TCP: The control-path server runs
on the storage node with 3 NVMe devices and creates a separate thread (data-path server) and
socket to handle each new client connection; the client nodes create one or more threads, each
creating a separate connection to the data server, and then perform data-path operations using
blocking socket I/O. The data-path servers operate on the shared KV hash table that has been
mapped over storage. A client get/put involves four network operations each: a send and recv
on the client and matching recv and send on the data-path server. The RDMA back-end uses
one-sided RDMA operations to the KV store for the data path: The clients read and write directly
to the remote flash (essentially by running the server data path locally); the storage node only
spawns a control path server to mmap the FlashNet file and handle the client connections. A client
get involves two remote operations: one read for reading the bucket and one read for reading the
value. A put involves four remote operations: one read for the bucket, one RDMA compare-and-
swap to lock the key, and two writes; one for value and one that updates the key and unlocks it.

We evaluate the KV store against Aerospike, a state-of-the-art NoSQL store in terms of per-
formance and functionality [82]. We deployed Aerospike over the same storage as our KV store,
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Fig. 10. Performance of 4kB puts and gets in the KV store.

using their recommended configuration (raw block device and 128K write-block-size). We used the
Aerospike C client library benchmark to generate load for Aerospike. We performed random puts
and gets of 10M keys for 4kB key-value size; we used 4kB to match the block size characteris-
tics of the underlying storage and illustrate I/O amplification. We drop the caches before starting
each experiment. Figure 10 shows our results. For puts, FlashNet/KV achieves 222.4K IOPS, an
improvement of 3.8× and 1.1× over Aerospike and socket/file variant, respectively. For get opera-
tions, the use of FlashNet’s RDMA operations result in delivering 456.2K IOPS, an improvement of
3.2× and 1.8× over Aerospike and socket/file, respectively. Hence in conclusion, the potent com-
bination of storage and RDMA operations in FlashNet API lets us develop applications that enjoy
significant performance benefits over their traditional counterparts in the ways remote storage is
accessed.

7.2.2 Distributed Sorting on FlashNet. We have modified and ported RStore [90], an RDMA-
enabled distributed in-memory data store, to FlashNet. RStore uses a centralized master and dis-
tributed server/client model. In this model, servers donate parts of their DRAM to store data
by preparing and registering memory buffers with RNICs. This information is then relayed to
the centralized master from where the capacity allocation and distribution happens. The nodes
communicate using RPC implementation on two-sided send/recv RDMA operations, and all data
accesses between clients and servers happen using one-sided RDMA read/write operations.

To port RStore on FlashNet, we modified less than 100 lines (of 15k) of code. The majority of these
modifications are focused on acquiring RDMA-ready data buffers by mmaping ContigFS files at the
server side. With these modifications in place, RStore now supports storing data on remote flash
devices as files together with the currently supported DRAM buffers. No client-side changes were
required and clients always accessed data transparently using one-sided RDMA operations. We
evaluate RStore using one of its applications, a distributed key-value Sorter. The Sorter implements
a two-phase external merge sort that reads the input data from flash files, processes it in distributed
DRAM buffers, and writes out the sorted data to flash files. We run these experiments on four
machines from our testbed where we re-distributed NVMe devices to put one in each machine.
These machines run RStore data servers as well as Sorter clients. We use one additional machine
to run the master.

We compare the performance of Sorter/FlashNet with its in-memory variant that read, sorts,
and writes data completely in memory and uses RNIC to access data. Figure 11 shows our results.
On the Y-axis is the runtime in seconds, and on the X-axis is the amount of data sorted. The key
observation here is that, in comparison to the identical in-memory execution of RStore/sorter, the
FlashNet version of Sorter mostly adds the time of I/O from the flash devices and does not incur
any additional overheads. This observation can be verified by calculating the time difference and
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Fig. 11. Distributed sorting performance of RStore.

amount of data that are read from and written to the NVMe devices. For example, in the 128GB
run, the time difference between an in-memory run and over-FlashNet run is 43.1s, which is close
to the expected NVMe device performances. With a simple calculation, we can verify that the
read time should be 14.5s (128GB/(4 devices × 2.2GB/sec/device)) and the write time should be
35.5s (128GB/(4 devices × 0.9GB/sec/device)). That calculation gives us a total time of 50 seconds,
whereas RStore/FlashNet adds 43.1s to the in-memory run. The FlashNet is faster due to bursty
read/write performance being higher than what we measured in the steady state. To conclude,
FlashNet (a) enables us to port an RDMA-ready system with minimal effort and (b) imposes mini-
mum overheads when using FlashNet’s one-sided RDMA operations to access remote flash storage.

8 RELATED WORK

In this section, we cover the large body of related work in the field of high-performance network
and storage integration. Table 4 summarizes our discussion here.

Inefficiencies in commodity end-host networking stacks have first been discussed in the 1990s
and have led to the design of high-performance networking stacks [9, 10, 93, 98]. Modern day
userspace RDMA network stacks such as InfiniBand, iWARP, or RoCE, are the latest incarnation of
these ideas and are being used both in supercomputers as well as in data center workloads [19, 48,
67, 70, 83]. Meanwhile, commodity network and storage software stacks are constantly being opti-
mized to eliminate inefficiencies. For example, networking efforts have focused on providing better
locality [72], abstractions/APIs [29, 75], scalability [42], specialization [36, 64], per-packet process-
ing [38, 60], and so on. In parallel, the storage community has also targeted offloading [11], direct
hardware access [50], specialization [57, 78], fast I/O paths [81], scalability [8], interrupt coalesc-
ing [2], and polling [80, 101], and so on. Many of these efforts take a very network-alike approach
towards reducing storage overheads [91]. FlashNet is built on such common high-performance
I/O properties from both, networking and storage, and unifies them in a single stack. The easiest
way to eliminate the data-path overheads when accessing storage is to use the sendfile interface.
Nonetheless, this interface only solves the transmission-side issues and yet still requires the server
application to be involved for cross-stack control loop transfers (data are not relayed through the
userspace). Furthermore, it does not provide other highly desired client-side, high-performance
I/O properties such as asynchronous I/O with selective notifications, direct polling of userspace
mapped queues for low-latency, and so on.

In a systemwide approach, I/O-lite [71] unifies the data representation within a system for both
the network and storage accesses. With a combination of read-only sharing and access control
mechanisms, I/O-lite allows server applications, the file system, the cache/buffer, and the network-
ing stack to concurrently share a single physical copy of the data. FlashNet’s data page sharing
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Table 4. Comparison of Related Work for Networked Storage Access in an End-to-End Manner

Remote
Flash

Access

Server
Involved?

Byte I/O
High-Perf.
Properties

API Comments

sendfile Yes Yes Yes No file with socket Only deals with
the TX side issues

NASD [26] Yes No Yes No distributed object
store

Only deals with
the server-side
issues

SAN [12, 13] Yes No No No block I/O Benefits limited to
the block layer

NAS [16, 59] Yes No Yes No NFS, file I/O Application must
copy data to/from
fs bufs

BGAS [23, 77] No N/A Yes Yes RDMA queues Limited to local
flash access

Corfu [4] Yes No Yes No distributed shared
log

Uses custom flash
access protocol

RDMA [19, 48, 70] No N/A Maybe Maybe KV, distributed
memory

Do not involve
remote storage
access

NVMeF [35, 69] Yes No No No RDMA queues Block-level remote
flash access using
RDMA

FlashNet Yes No Yes Yes RDMA queues Byte-level remote
flash access using
RDMA

Byte I/O means whether a client-side I/O request needs to rerform a read-modify-write cycle or the remote target accepts

byte-level I/O requests.

mechanism between the flash controller, RDMA controller, and file system follows this principle.
Many OSes designs such as Exokernel [21, 47], and the recently proposed Dataplane OSes (e.g.,
Arrakis [73] and IX [7]) focus on eliminating or reducing unnecessary kernel involvement by
reducing its role to resource management only. However, their networking and storage stacks still
run in isolation, without a cross-stack, end-to-end focus on performance for networked storage
accesses.

Many file- and block-level distributed storage systems have been developed to deliver high-
performance to applications. The Network-Attached Secure Disk (NASD) [26, 27] project elimi-
nates many server-side CPU and OS overheads by connecting storage disks directly with the net-
work controller. However, it relies on custom disk and networking hardware, and does not reduce
overheads at the client side. BGAS [23, 77] uses RDMA operations but only to access local flash stor-
age. Corfu [4] provides a distributed, shared log abstraction over a cluster of flash devices that can
be directly attached to the network with the help of FPGA devices. The FPGA devices run the FTL
and the network controllers. Unlike FlashNet, which supports a complete set of RDMA operations
(not tied to any storage abstraction) on any flash device, Corfu requires SSD devices to implement
specific operations, e.g., a seal, and write-once operations. Recent work in storage disaggregation
has identified network and storage protocol processing related overheads to be a performance bot-
tleneck [28, 51]. Naturally, there are previous works on improving performance of block-level [12,
43, 56, 66, 99] and file-level storage accesses [16, 32, 96] and even the integration of RDMA in them
[13, 14, 54, 59]. Distributed file systems, such as DAFS [62, 63], DFS [17], and NFS [59], GlusterFS
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[30], and so on, also use RDMA and present a file system interface. Commercial systems such as
Violin Memory use RDMA to access flash in an appliance setting with the SMB protocol [44].

In comparison to the aforementioned NAS/SAN approaches, FlashNet only provides a mecha-
nism to unify storage and network processing concerns without imposing its usage. Similarly to
any application of RDMA API, FlashNet can be used to integrate into both SAN or NAS types of
accesses. Previous efforts that tried to integrate RDMA into existing storage stacks showed limited
gains due to (a) a limited scope of integration, i.e., to the block or file, not to the end-to-end appli-
cation level; (b) a lack of unified concerns, for example, it is not possible to share in-kernel RDMA
transport buffers of NFS with an application to avoid data copies when performing a file I/O; and
(c) a transparent integration of RDMA to avoid a complete re-write of the stack. However, recent
efforts have demonstrated that a careful consideration is required to leverage the full potential
of RDMA in native [19, 25, 48, 70] as well as JVM-based distributed systems [61, 84]. Distributed
data platforms such as Apache Crail [37, 84] can use FlashNet’s RDMA operations to transparently
access remote flash using one-sided RDMA operations. And in this context, FlashNet provides a
way to leverage RDMA-knowhow and apply it in the context of networked-storage to deliver the
best possible performance. RDMA has also been used as an optimized networking technology for
distributed operations on persistent memory to build a shared-memory abstraction [79], repli-
cation [103], transactions [94], and so on. Their use of RDMA operation is limited to emulated
persistent memory buffers in DRAM. With the use of FlashNet, these RDMA operations can be
extended to flash/NVM locations as well. In general, applying RDMA to remote storage/persistent
memory brings additional challenges, which are discussed at length by Hoefler et al. [33].

More recently, Project Donard [6] and NVMe over Fabrics (NVMeF) [35, 69] transport NVMe
commands to a remote server using RDMA and can even transfer data to an RDMA device directly
using peer-to-peer PCI transactions. These efforts share many key properties and design princi-
ples with FlashNet, which validates our choices. However, by using the RDMA verbs API, FlashNet
exposes a generic, device independent interface with richer RDMA semantics (one-sided opera-
tions, byte-addressability, asynchronous I/O, etc.) for remote storage access, whereas NVMe and
hence NVMeF as well currently only support block-level device accesses. Hence, for unaligned
requests, an application must emulate a read-modify-write cycle over the network. The current
FlashNet design also includes a file system design, hence offering a NAS-level data sharing. Fur-
thermore, FlashNet abstracts all device-specific management operations and leaves device man-
agement as an orthogonal task. Since FlashNet keeps the media access protocol local to the stor-
age device, it omits the need to introduce another wire protocol for each new class of storage
devices.

Looking beyond block-level accesses, there have been recent efforts to support byte-level local
and remote NVM accesses. The Persistent Memory Programming (PMEM) project (www.pmem.
io) aims to build new programing abstractions for byte-level, directly addressable NVM storage.
These abstractions are used for the Direct Access (DAX) feature for multiple file systems including
ext4. The project also includes support for remote persistent memory using RDMA operations.
PMEM and FlashNet share the same common goal of providing byte-level remote persistent storage
accesses, albeit, using different levels of abstractions. The use of FlashNet can enable PMEM to
access the current-generation of block-level NVMe devices too.

Like FlashNet, ReFlex [52] takes a holistic approach towards optimizing network as well as
storage I/O for remote flash accesses. It proposes a server design that is integrated with the IX
OS for the best performance in terms of QoS, isolation, and efficiency. In comparison, FlashNet
aims to extend RDMA operations on commodity OSes to access remote flash storage, and leaves
applications to use these operations as they see fit. FlashNet’s on-demand memory pinning can
be augmented with the recently proposed page fault support from RDMA NICs [58]. However,
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FlashNet’s on-demand mechanism is also used to track heat and access information about flash
pages, which is then used to supplement the garbage collection for superior flash management.

9 CONCLUSION

In this article, we have presented FlashNet, a unified software I/O stack that provides direct, high-
performance access to remote flash storage. The unified stack delivered 1.22M IOPS to clients,
which is only limited by the network performance. FlashNet achieves this performance by adopting
the well-known path separation principle from RDMA networks and extending it to storage by co-
designing a flash controller and a file system with it. As a demonstration of FlashNet’s capabilities
and its API, we have developed a Key-Value store, and ported an existing RDMA-ready distributed
sorting application on it. They both perform well. For example, the performance of the KV store
is nearly doubled from 242K to 456K IOPS, and the Sorter experienced minimal overheads when
using FlashNet’s one-sided RDMA operations. As RDMA networking and API gain wide-spread
usage, FlashNet opens the door to integrate storage as a first-class citizen in the high-performance
I/O hierarchy, and unifies efforts across the network and storage stacks.
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