
FlashNet: Flash/Network Stack Co-Design

Animesh Trivedi1, Nikolas Ioannou1, Bernard Metzler1, Patrick Stuedi1,
Jonas Pfefferle1, Ioannis Koltsidas1, Kornilios Kourtis1, and Thomas R. Gross2

1IBM Research and 2ETH
Zurich, Switzerland

ABSTRACT
During the past decade, network and storage devices
have undergone rapid performance improvements, deliver-
ing ultra-low latency and several Gbps of bandwidth. Nev-
ertheless, current network and storage stacks fail to deliver
this hardware performance to the applications, often due
to the loss of IO efficiency from stalled CPU performance.
While many efforts attempt to address this issue solely on
either the network or the storage stack, achieving high-
performance for networked-storage applications requires a
holistic approach that considers both.

In this paper, we present FlashNet, a software IO stack
that unifies high-performance network properties with flash
storage access and management. FlashNet builds on
RDMA principles and abstractions to provide a direct, asyn-
chronous, end-to-end data path between a client and remote
flash storage. The key insight behind FlashNet is to co-
design the stack’s components (an RDMA controller, a flash
controller, and a file system) to enable cross-stack optimiza-
tions and maximize IO efficiency. In micro-benchmarks,
FlashNet improves 4kB network IOPS by 38.6% to 1.22M,
decreases access latency by 43.5% to 50.4 µsecs, and pro-
longs the flash lifetime by 1.6-5.9× for writes. We illustrate
the capabilities of FlashNet by building a Key-Value store,
and porting a distributed data store that uses RDMA on
it. The use of FlashNet’s RDMA API improves the perfor-
mance of KV store by 2×, and requires minimum changes
for the ported data store to access remote flash devices.

CCS Concepts
•Information systems → Storage network architec-
tures; Flash memory; •Networks→ Network perfor-
mance evaluation; •Software and its engineering →
Operating systems;

Keywords
RDMA; Netwoked Flash; Performance; Operating Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SYSTOR’17, May 22-24, 2017, Haifa, Israel
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5035-8/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3078468.3078477

1. INTRODUCTION
Modern distributed applications such as data processing

stacks (Spark or MapReduce), web services, databases, etc.
routinely store, access, and analyze Terabytes of data stored
across hundreds of storage servers. Consequently, their per-
formance depends considerably on the IO performance of
the many storage and network devices involved. Thank-
fully, the IO performance of network and storage devices has
been dramatically improved over the last decade. Ethernet
has evolved from 1 to 10, 40, and now 100 Gbps data rates
with single-digit microsecond link latencies. Flash storage
has delivered 2-4 orders of magnitude bandwidth and la-
tency improvements over HDDs, while recent advancements
in non-volatile memory technologies [55] promise to improve
performance further by one or more orders of magnitude.

However, translating these raw IO performance improve-
ments into application-level gains remains a challenge due
to multiple factors. First, traditional IO stacks1 are de-
signed assuming slow IO and fast CPUs, which is no longer
true [55]. Consequently, the cost of maintaining generic
OS abstractions, IO interfaces, scheduling, context switches,
implementation-related inefficiencies, etc., contributes sig-
nificantly to the loss of IO efficiency. Second, recent im-
provement efforts either target the network [29, 49, 22] or
the storage stack [66, 83, 4, 35] exclusively, but not the
combination of both. As a result, remote data accesses over
the network typically involve costly application-level coordi-
nation across network, storage, and file system operations.
Last, many established solutions in this space, such as NFS
or iSCSI, aim to deliver data only up to the file (NAS) or
block (SAN) level. Hence, they still leave last-mile, end-host
inefficiencies between data and clients, as we demonstrate in
the next section. In conclusion, there is a need for a holistic
approach that tackles both network and storage challenges
to enable high-performance remote data accesses (not just
file, block, or device) between servers and their clients.

In this paper, we present FlashNet, a co-designed IO stack
that delivers high-performance data access to networked
clients. The FlashNet stack builds upon the data and con-
trol path separation philosophy of Remote Direct Memory
Access or RDMA networks. RDMA networks have already
shown to deliver high network performance to various appli-
cations [69, 33, 57, 52, 14], and related concepts [7, 82] and
even APIs [74] are explored in the storage domain as well.
In FlashNet, we unify these fragmented efforts across the IO
stacks, and extend the path separation philosophy of RDMA
networks to storage with the help of a co-designed flash file

1collectively referring to the network and storage stacks.

http://dx.doi.org/10.1145/3078468.3078477


system and a flash device controller. This extension enables
FlashNet to establish an end-to-end network data path be-
tween clients and data on remote flash devices, thus elim-
inating any last-mile, end-host inefficiencies, which is the
hallmark of RDMA networking. Furthermore, a co-designed
storage/network stack also means that FlashNet can target
optimizations across the stacks to reduce overheads. For ex-
ample, FlashNet issues flash IO directly from the network
stack, tracks dirty data between network and storage stacks
in a unified manner, uses network access statistics to better
manage flash devices, etc. As a result, FlashNet delivers
1.22M IOPS (100% of 40Gbps network bandwidth perfor-
mance), decreases access latencies by 43.5% to 50.4 µsecs,
and improves the flash lifetime by 1.6-5.9× for writes.

To illustrate the benefits of FlashNet’s RDMA API, we
have built one application, and ported one RDMA-ready
application on it. Our first application is a Key-Value (KV)
store that uses RDMA operations to access data from a re-
mote flash storage in a disaggregated setting. We chose this
workload because previous work in this space has identified
network and last-mile inefficiencies with heavy-weight pro-
tocols such as iSCSI to be a bottleneck [36]. By using Flash-
Net’s one-sided RDMA read/write operations, the KV store
delivers 490K IOPS, representing a 102.4% improvement
from the baseline number of 242.7K IOPS achieved over
sockets and files. Our second application is a distributed
in-memory data store called RStore [73], which uses RDMA
to access data from remote DRAMs. We have ported it and
one of its applications, a distributed Sorter, to FlashNet.
The porting process requires minimum changes to RStore.
In comparison to the original in-memory version, FlashNet
imposes no performance overheads to the run-time, and the
ported Sorter delivers a performance which is the sum of its
in-memory run-time and flash read/write time.

Our specific contributions include (a) proposing and ex-
tending the path separation philosophy of RDMA for remote
flash storage accesses; (b) FlashNet, a co-designed proto-
type IO stack that consists of a RDMA network controller,
a file system, and a flash controller; (c) evaluating FlashNet
in a distributed setting, showcasing that it reduces CPU
overheads to deliver peak IO performance, helps in translat-
ing raw performance into application-level performance, and
adds minimum overheads to RDMA-ready applications.

2. MOTIVATION
We first quantify overheads associated with remote data

accesses. We consider a storage server that serves client re-
quests to access data from a storage device over the network
(e.g., an iSCSI storage node, or a key-value server). The
server’s peak performance depends on the efficiency of both
the network and the storage operations. Our setup consists
(for details see Section 5) of a server with three off-the-shelf
PCIe NVMe drives in a software RAID-0 configuration and
an ext4 file system on top. The server is connected to clients
over 40 Gbits/sec Ethernet. The clients issue 4kB random
reads from remote NVMe devices over the network. We mea-
sure the peak IO operations per second (IOPS) delivered by
the server for the following configurations:

• iSCSI: 3 NVMe devices as iSCSI targets (partitioned be-
tween clients) using in-kernel iSCSI drivers, tuned as [36].

• NFS: An in-kernel NFS server that accesses data via an
ext4 file system on top of the software RAID-0 device.

1,290 1,329

420.63

139.23 79.26 7.82
0

200

400

600

800

1000

1200

1400

1600

KI
O
ps

spec block iscsi key-value nfs hdfs

Figure 1: Random 4kB read IOPS performance.

• Key-Value: We evaluate the performance of Aerospike
KV, a state-of-the-art NoSQL store [68]. Aerospike is con-
figured to run over the raw block device and recommended
high-performance configuration (see Section 5.2.1).

• HDFS: We measure Hadoop file system (HDFS) clients
accessing a random 4kB block in a private 8GB file.

We generate load for file and block IO with fio [16]. We
include performance numbers from the device specification
marked as spec and local block-level IO performance. The
specification for each device is 430K IOPS, reaching an ag-
gregate of 1.29M IOPS. There are three key points in our
results (Figure 1). First, none of the configurations were
able to deliver the raw NVMe device performance to clients
across the network. iSCSI peaks at 420.6K, NFS at 79.2K,
Aerospike at 139.2K, and HDFS at 7.8K IOPS. Second, in
most of the configurations, the performance is limited by the
CPU performance. In Figure 2 we illustrate various IO paths
involved between a server and a client. Along these lines,
the CPU has to to do network processing, IO buffer man-
agement, file system execution, block IO, scheduling, and
execute generic OS services and abstractions. In line with
previous findings [36], our analysis of iSCSI reveals that per-
formance is limited by CPU load. For NFS, overheads come
from the protocol/buffer management, RPCs, and file sys-
tem related overheads where the NFS server has to serve files
from the ext4 file system. Application-level workloads, i.e.
KV and HDFS, are more involved than a simple block or file-
level access, requiring multiple round-trips over the network.
Hence, their peak performance is driven by the application
logic, which in absence of a direct access remote storage API,
requires the server application to be actively scheduled to
orchestrate the data flow. The cost of scheduling, context
switches, cache flushes, IO resource management (as they
are tied to the process abstraction), etc., becomes an over-
head. And lastly, though efforts have been made to remedy
exactly these overheads, they only focus on either network
or storage, but not both. In networking, for example, the
use of RDMA has been proposed to reduce end-host over-
heads [52, 14, 77, 34]. Similarly, on the storage side, multiple
projects advocate to eschew the OS in the data access path
in favor of a leaner and faster access to flash storage [7, 42].
FlashNet is built on similar principles, but goes a step fur-
ther taking a holistic approach for building a network- and
storage-wide solution for fast data accesses.

3. DESIGN OF FLASHNET
FlashNet is a unified software stack that consists of three

logical components: a flash controller, a file system (Con-



Figure 2: IO paths taken by data in tested settings.

tigFS), and an RDMA controller. These components are
co-designed to eliminate IO inefficiencies in an end-to-end
manner when data flows between a remote flash device and
a client buffer. Figure 3 shows the setup and interaction
among these components. Applications use FlashNet by
programming against a familiar RDMA API, and Flash-
Net transparently extends RDMA operations (originally in-
tended for DRAM buffers) to flash devices. Applications
already using RDMA require minimum changes to access
data from remote flash devices. The design of FlashNet is
guided by three principles:

1. Eliminate application involvement from IO flows:
FlashNet leverages the path separation philosophy of
RDMA, extending it to storage devices to completely
eliminate an application’s involvement on data transfers.

2. Minimize system overheads: FlashNet utilizes a file sys-
tem with a simple file layout so that costly file system
operations (e.g., inode look-ups, checks, location transla-
tions, etc.) are eliminated from the data path between
the network and storage controllers.

3. Keep application interface simple and clean: FlashNet
leverages traditional files and mmap-based IO, to au-
tonomously and efficiently manage data transfers over
RDMA networks. An RDMA-ready application does not
have to use any new interface or abstraction.

3.1 The Flash Controller
A key part of the FlashNet architecture is its flash con-

troller design. A flash controller manages the performance
and packaging idiosyncrasies of flash devices. However,
prevalent embedded flash controller designs are too restric-
tive for the FlashNet architecture due to multiple reasons.
First, with high-speed networks, a flash page containing hot
data may experience bursts of concurrent small writes from
the network within a small time frame (a few µsecs). Even
though the networking stack contains pertinent information
which could be useful to absorb the bursty, concurrent na-
ture of network IO, there is no standard way to pass this
information to the flash controller for better flash manage-
ment. Second, flash devices are exposed as conventional
block devices where the logical block management is tied
with the flash storage management. Previous research in the
field has demonstrated that decoupling these two can lead to
performance improvements with a much simpler file system
layout [31]. A simpler file layout enables removing the file
system from network data transfers. And lastly, the one-
controller-per-device design cannot leverage multiple flash
devices present in a system.

To alleviate the aforementioned restrictions and to jointly
optimize the flash controller with the rest of the stack, we
have designed and implemented a software-defined flash ar-

Figure 3: FlashNet stack illustrating the network-
storage setup and the end-to-end data flow path.

ray controller that builds on top of virtualized flash storage
works [78, 31]. The controller decouples the logical block
management from the flash storage management and ex-
ports a large 64-bit block address space using a virtualized
Flash Translation Layer (FTL). The FTL dynamically maps
logical block addresses (LBAs) to physical block addresses
(PBAs) over a virtual device array made out of one or more
flash devices. An LBA entry in the FTL contains the loca-
tion of the data on a flash device (its PBA) and its location
in a DRAM buffer (if the data is present in the system).
This design ensures that all concurrent accesses (networked
or local via the file system) are given the same DRAM page
or PBA location. All accesses to data happen through a
get/put page interface (see Table 1). This interface also al-
lows the flash controller to track heat and access frequency
information related to data/page accesses.

Dirty data is always written out-of-place while keeping
track of new LBA to PBA mappings in the FTL. Updates
to the FTL are appended to the flash device asynchronously
with the data and are synced when instructed by an ap-
plication or a remote RDMA access. The controller uses
a log-structured allocation strategy to allocate PBA blocks
across multiple devices. It ensures uniform wear leveling,
and employs advanced data placement and efficient garbage
collection (GC) policies to reduce write-amplification. Our
GC algorithm employs a greedy policy [11], using a per-block
reference count for validity tracking and a reverse map for
blocks that are not fully invalid. Under non-uniform (i.e.,
skewed) workloads, the controller segregates data into three
data streams based on their update frequency to reduce data
relocation overheads [26]. Our controller performs a three-
level data segregation scheme based on (a) the logical origin
of data blocks; (b) their age in the system; (c) their fre-
quency and heat of updates tracked with the get/put API.

To protect against crashes, the flash controller logs up-
dates to the mapping table (LBA-to-PBA). Upon initializa-
tion, it first checks whether it was cleanly shut down using
checksums and unique session identifiers written during the
LBA-to-PBA dumps. If a clean shutdown is detected, the
mapping table is fully restored from a fixed location. Other-
wise, the mapping table is re-constructed by scanning all the
log metadata pages, based on back-pointers and timestamps.

3.2 Contiguous File System (ContigFS)
As storage devices get faster, the constant and unneces-

sary involvement of a file system in every aspect of IO (local
or networked) operations generates a significant amount of
overhead [7, 40]. In the IO path, one of the key file system
operations is the translation of a file offset to a device block
location. With the current extent-based file layouts, it is dif-
ficult to reduce the file system involvement from the IO path



due to their sophisticated extent management logic. How-
ever, by co-designing the file system together with the stor-
age controller (with its virtual 64-bit FTL address space),
we can simplify the file system design by using a range-based
rather than an extent-based file layout. A range-based file
layout stores a complete file in contiguous device block ad-
dresses. This layout enables a trivial file offset to device
location translation by adding the file offset to the start lo-
cation of the file on the device. This translation can also be
done by the network controller, hence removing the file sys-
tem and application involvement from the networked IO. As
an alternative, raw block IO can be used to remove the file
system from the IO path. However, this option eliminates
many applications that use hierarchical naming and access
control (e.g., HDFS directories) from running on FlashNet.

To realize our idea, we design a POSIX file system called
Contiguous file system or ContigFS that does contiguous file
allocations on top of the virtualized FTL address space. The
files that are stored in a contiguous LBA address range can
grow and shrink by manipulating their mappings in the FTL
address space. Like any other file system, ContigFS provides
the full file system API to applications. To exert full control
over data buffering and sharing to/from flash devices, Con-
tigFS co-manages (with the flash controller) its own pool of
DRAM pages. Data is staged for access and dirty data is
written out from pages in the pool. Pages from the pool are
also given to serve page faults in mmap’ed memory regions. In
a similar spirit to the IO-lite system [58], ContigFS ensures
(in collaboration with the flash controller) that there is only
a single physical and consistent copy of data in the system
that is shared between the storage controller, the network
controller, and applications.

3.3 The RDMA Controller
The RDMA controller of FlashNet extends the data and

control paths [80, 76] of RDMA networks to include the file
system and the flash controller as well. Similarly to the orig-
inal path separation idea, applications, file systems, and, to
a large extent, the OS, are eliminated from the extended
data flow path. In order to achieve this, FlashNet translates
necessary abstractions in advance from a RDMA access to
the data location on a flash device. This means that an
RDMA access to a memory address can be mapped to its
flash LBA directly by the controller without having to con-
sult the application or the file system.

A key operation on the extended control path is the
RDMA buffer registration process. In the buffer regis-
tration process, every data source or sink buffer is pre-
registered with the RDMA stack to generate a buffer iden-
tifier called Steering Tag or STag. This STag is used in
subsequent RDMA operations to identify network source or
sink buffers without involving the application to steer data
flows. FlashNet uses the same mechanism to identify files
and offsets to resolve data locations which are involved in
a network operation. ContigFS files, which are involved in
RDMA network operations, are registered with the Flash-
Net RDMA controller by passing their mmap’ed area. At this
point, with the help from the ContigFS, the RDMA con-
troller translates the memory area to the start LBA of the
file. As files are contiguously allocated in the LBA address
space, further offset calculations during network operations
are done entirely by the RDMA controller and then passed
to the flash controller for reading/writing data from/to in-

Figure 4: Abstraction translations inside FlashNet.

volved LBAs. Hence, on the fast data path, the file system is
eliminated and the two device controllers talk to each other
to manage data flows. Figure 4 shows the end-to-end trans-
lation process between these abstractions on the extended
control and the data path.

We cannot leverage existing RDMA NICs (RNICs) be-
cause they require pages to be immediately pinned. This
setup (a) does not allow the system to track dirty data from
RDMA access (as they happen in hardware and are trans-
parent to the system) and ensure it is flushed properly; (b)
does not allow scaling beyond the system DRAM size; (c)
is wasteful to the system DRAM. To overcome these limita-
tions, the RDMA controller of FlashNet is implemented in
software and supports on-demand memory pinning. With
on-demand memory pinning, during the memory registra-
tion (happens only for memory segments backed from a Con-
tigFS file), the controller only allocates necessary metadata,
locks, and data structures to hold DRAM page pointers, but
does not pin pages yet. The pages are populated and pinned
on-demand on the extended data path when an RDMA re-
quest accesses them. Types of access to these pages (read
or write) are told to the flash controller to track dirty data.
These pages are also shared concurrently (without creating
copies) between an application, the network, and the storage
stack using RDMA buffer ownership rules.

3.4 The Life of an IO Operation
In this section, we illustrate an example where a server

serves data to a networked client using FlashNet’s one-sided
RDMA read operation in Figure 5. The server application
first starts by creating files on ContigFS (not shown) us-
ing fallocate. While processing the file allocation request,
ContigFS requests a contiguous LBA address range from
the flash controller to store data. Upon a successful file cre-
ation, the server process then mmaps these files into its ad-
dress space (step ¶). It then registers the mmap address with
the FlashNet RDMA controller to prepare it for RDMA op-
erations (step ·). The controller resolves the passed region
to be a ContigFS-file region and hence, only translates map-
pings and saves the LBA address of the memory region by
adding the mmap offset to the starting LBA address of the
file (step ¸). The controller then generates a valid STag.
The server then communicates the relevant RDMA creden-
tials that include permissions, mmap addresses, and STags to
a client. Steps ¶–¸ constitute the extended control path
of the FlashNet stack where the file system, the flash con-
troller, and the RDMA controller work in unison to establish
mappings and translate abstractions.

On the extended data path (steps ¹–¾), a client, after
having acquired right RDMA credentials from the server
process, issues an RDMA read request. Upon receiving an
incoming RDMA read request, the RDMA controller first
resolves the flash buffer using the STag present in the re-
quest. The controller then calculates the flash LBA address
by adding the offset (present in the RDMA request) to the
previously saved base LBA address of the registered region



Figure 5: The life of a FlashNet RDMA read.

(step º). The flash pages in the identified region are then
populated (see Section 4.2) with the help of the flash con-
troller (steps » and ¼). Upon completion of the RDMA
request processing (step ½), the involved LBA pages are
given back to the flash controller (step ¾). Meanwhile, the
incoming RDMA response data is directly deposited in the
client’s buffer by the RDMA controller. The server-side data
processing does not involve any active involvement or coor-
dination from the server application.

4. IMPLEMENTATION OF FLASHNET
The components of the FlashNet stack are implemented

in software as Linux kernel modules and do not rely on any
specific hardware support. The implementation of the vir-
tualized flash controller is based upon the SALSA software
flash controller [28], which is extended to support the in-
place, DRAM-based page sharing, and callback based non-
blocking IO API. ContigFS hooks into the VFS layer of the
kernel and talks to the flash controller for the block manage-
ment. The RDMA controller of FlashNet is derived from the
open-sourced SoftiWARP RDMA controller [50, 72], which
provides complete iWARP RDMA features and semantics.
It uses memory-mapped IO queues and non-blocking ker-
nel TCP sockets with per-core kernel threads to perform
asynchronous network IO on behalf of user processes. Softi-
WARP is enhanced to interact with ContigFS and the flash
controller to support lazy memory management while main-
taining the compatibility with current RDMA RNICs for
mixed RNIC-FlashNet deployments. The whole FlashNet
framework does not require any changes to the kernel.

4.1 File Management
ContigFS file management is similar to the Direct File

System [31, 71]. One key difference being that with the cur-
rent prototype we do not reserve LBA ranges to provide large
unassigned LBA ranges to files and let them grow in that.
Instead, ContigFS performs remapping on the FTL as the
file size grows out of its current allocation size. The current
size is set by a fallocate call, which commits LBA space for
the given file size. The size of an LBA block is configurable
(default is 4kB). The file can grow and shrink by reallocing
its LBA address in the FTL. If necessary, files can be relo-
cated in the FTL address space without physically moving
the data on the devices by updating the FTL mappings of
the new LBA range to the old PBA entries. The LBA space
is managed using the buddy allocation technique [38].
ContigFS Layout: ContigFS splits the 64-bit virtual FTL

API functions Description

is contigfs vma(va, len) is vma a ContigFS mmap’ed area
get LBA(addr, len, flags, cb*) gets DRAM pool pages for IO
put LBA(addr, len, flags, cb*) puts pool pages in a LBA range

Table 1: The flash controller (abridged) API.

address space into two regions, saving file metadata and data
separately. The metadata region provides a mapping from
inode numbers to 32 bytes of metadata that include the
data LBA address (on the second region), the file size, file
permissions, and flags. For directories, the data LBA ad-
dress contains the directory entries. The metadata region
is implemented as a file, and can be expanded as needed.
Metadata changes are made persistent synchronously with
respect to file modifications. The ContigFS design is opti-
mized for the FlashNet workloads, targeting large files and
shallow directory hierarchies.

4.2 Flash Page and Buffer Management
Data from flash devices is buffered and shared on DRAM

pages from the pool, which is co-managed by ContigFS and
the flash controller. These pages are populated using a set
of asynchronous get and put based interfaces (Table 1) to
the flash controller. The get_LBA call takes a start LBA
address, size, and type of request (r/w) with flags, and pro-
vides DRAM pages from where data can be read from or
written to. Obviously, a request for a write access marks
the page dirty. After usage, these pages are put back to the
flash controller using the put_LBA call. Both calls are byte-
addressable and take a callback pointer (marked as cb) to
indicate the completion of an operation.
Flash Page State Machine: To ensure that no two en-
tities in the system see different data, the flash controller
implements a state machine with atomic transitions (shown
in Figure 6) for every flash LBA page. The state of an LBA
page is stored with its FTL mapping. An uninitialized flash
LBA page starts in an Invalid state. At the time of the
first write, the controller allocates a PBA address, maps it
to the LBA page, and updates the LBA entry state in the
FTL from an Invalid to a PBA state. For a get request, the
flash controller checks the state of the LBA pages involved to
determine if any page has previously been brought into the
system (i.e., contains an LBA entry in the FTL that points
to a DRAM page in the buffer pool or a device PBA). For
LBA pages that are not in the buffer pool (indicated by the
PBA state), the flash controller allocates new DRAM pages
from the pool, issues DMA requests for them, and atom-
ically updates their status to IN_FLIGHT. When the DMA
is finished (IO_DONE), the associated DRAM page is atomi-
cally installed in the FTL and a callback is executed with the
DRAM page address. Any subsequent read or write get re-
quests on this LBA is given the same DRAM location while
maintaining usage and frequency counters on a per-page ba-
sis. These counters are used by the flash garbage collector
to identify the hot and cold LBA pages. For LBAs which
were already in the buffer pool, the flash controller imme-
diately issues callbacks to the requesting entity (either the
RDMA controller or ContigFS) with a valid DRAM page
pointer. Consequently, depending upon the status of the
pages involved in a request, callbacks can be issued in any
order. After processing, references to pages are put down
by calling put_LBA. Additionally, for dirty pages, a call to
put_LBA can optionally generate a callback when the LBA



Figure 6: The state machine of a flash LBA page.

was made persistent (i.e., transitioned to a PBA state). Con-
current small writes are absorbed by the same DRAM page,
and only the last put call triggers a dirty data write out.
The current flash controller prototype does not cache data.
A selected form of time-bounded caching is done for pre-
fetching. The pre-fetching logic is similar to the get_LBA,
but without the callbacks.

4.3 Data Access and Concurrency
Local data accesses happen using mmap or POSIX read

or write calls on ContigFS. When a process calls an mmap

(path 1 in the figure), the Linux kernel allocates a contigu-
ous virtual memory area (VMA) within the process address
space and passes it to ContigFS. Upon receiving the call,
ContigFS does sanity and permission checks and registers
itself as the page fault handler for this area. When the pro-
cess accesses the data and a page fault happens, ContigFS
is notified and it calculates the LBA from the faulting ad-
dress. It then calls get_LBA with the LBA, and installs the
DRAM page from the pool provided in the callback into the
application address space. For read or write calls (path 2
in the figure), the same LBA calculation step from a file off-
set is followed and data is copied into the process provided
user buffers. Pages are put back to the pool after copying
or when the process calls munmap.

Remote networked clients access data by issuing RDMA
operations. As outlined in Section 3.3, the RDMA controller
also calculates the target LBA address by the simple offset
calculation based on the address present in the RDMA re-
quest (path 3 in the figure). The RDMA controller uses this
LBA address to issue asynchronous get_LBA. If the target
LBA address is not present in the pool, the RDMA network
processing can be stalled. A stalled connection is resumed
after receiving callbacks form the flash controller. However,
as explained in the previous section, these callbacks can hap-
pen in any order whereas the RDMA specification requires
in-order data processing. In order to keep track of out-of-
order page callbacks, FlashNet takes advantage of the fact
that RDMA requires pre-allocation and registration of flash
VMAs. At the time of registration, FlashNet allocates an
atomic counter (separately from the flash controller) on a
per-page basis to store the validity of the page. In a call-
back, this counter is increased and before calling a put on
the page, the counter is decreased. FlashNet checks the
readiness of a region by scanning for the longest sequence
of non-zero atomic counters and only processes data in that
ready region. After the processing, the pages are put back.

The flash controller is the serialization point that provides
the LBA’s mapping to local and remote accesses. It utilizes
the compare-and-swap primitive to implement atomic LBA

Figure 7: Semantics of a page sharing between (1)
mmap; (2) POSIX IO; (3) remote RDMA accesses.

mapping state transitions (Section 4.2) on aligned 64-bit
FTL mapping entries. Thus, concurrent accesses to an LBA
will observe coherent values of its mapping (PBA, Dirty,
etc.). However, no consistency is guaranteed for the data
itself other than what the RDMA semantics dictate.

4.4 Dirty Data Write-Outs
One issue with the use of RDMA one-sided operations to

write data is when/how to instruct the storage stack to make
data persistent. Recall that there is no application involve-
ment while servicing these one-sided RDMA write requests,
and hence it cannot be notified to trigger data write-outs.
For this purpose, FlashNet defines Semantics STags, which
are like normal STag, but they carry additional operational
semantics with them. These semantics are masked in lower
8-bits (reserved for application use by the RDMA specifica-
tion) of a 32-bits STag to set sync or async flags provided by
FlashNet. With this extension, upon encountering a sync

flag in an STag, the RDMA controller does not process fur-
ther incoming RDMA operations on a particular connection
until dirty data from the last operation is written to the flash
device (indicated by the put_LBA callback). Consequently,
no work completion notifications are generated on the client
side. Whereas async write processing continues immediately
without waiting for the put callbacks, and a client-side work
completion is generated immediately. Independently of the
way incoming RDMA writes are processed, the client-side
RDMA queues always remain asynchronous. Applications
built on top of FlashNet requiring strong durability guaran-
tees can utilize the sync Stag ; it provides similar guarantees
to the REQ FLUSH block request flag in Linux.

5. EVALUATION
We evaluate FlashNet on a cluster of 17 machines with

dual Xeon E5-2690 CPUs, 256 GB of DRAM, and Chelsio
T5 40 Gbps NICs, running Linux 3.19 on Ubuntu 15.04. One
machine has three off-the-shelf, enterprise-level NVMe PCIe
flash devices on which we run FlashNet. The remaining ma-
chines run clients that repeatedly request the server for data
stored in flash. Clients use SoftiWARP as a software RDMA
device [50]. All numbers reported here are the average of of
3 runs, each lasting 60 seconds. FlashNet experiments are
done with the files on ContigFS while other configurations
use the ext4. The key performance highlights are:

• FlashNet successfully delivers high performance to net-
worked clients for remote NVMe accesses. It scales well
with the number of clients, and with 256 clients saturates
the 40 Gbps network with 1.22M 4kB IOPS.



0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128 192 256

KI
O

ps

#connections

FlashNet read
socket/file read
40Gbps limit

Figure 8: 4kB random read performance.

• The direct end-to-end data path of FlashNet helps to re-
duce the network read latency of a 4kB flash page from
89.2 µsecs to 54.9 µsecs, a 38.4% improvement. This la-
tency can be reduced further by a margin of 8.2% to 50.4
µsecs in a mixed RNIC-FlashNet setup.

• By efficiently managing the flash device using the access,
heat, and frequency data provided by the flash controller’s
API, FlashNet reduces the write amplification by 38–83%
under skewed write workloads.

• The use of FlashNet’s RDMA API helps applications to
deliver performance close to the hardware. The KV store
delivers 460K get IOPS, a close to 2× improvement over
its socket/file-based variant. For ported distributed sort-
ing application of RStore, FlashNet adds negligible over-
heads to access data from remote flash devices.

5.1 Micro-Benchmarks
We first evaluate the performance of FlashNet using

micro-benchmarks. We use netperf [53] which we augment
in two ways: (1) support for RDMA operations; (2) support
for accessing flash via POSIX read/write calls. Our objec-
tive is to eliminate protocol or implementation-related con-
cerns from SAN/NAS solutions, and focus solely on IO op-
erations while highlighting the potential raw performances.

5.1.1 Peak IOPS Scaling
We first revisit our key experiment from Section 2. Fig-

ure 8 shows the performance of FlashNet/RDMA opera-
tions in comparison to socket/file-based operations in net-

perf. On the X-axis we have a number of clients and the
Y-axis shows the number of 4kB random read IOPS deliv-
ered. The horizontal bar shows the network performance
limit. For a single client, in comparison to a socket/file-
based client performance of 33.6K IOPS, FlashNet delivers
42.2K IOPS as peak IOPS. However, for 2 clients, the perfor-
mance drops due to uneven balancing with 3 NVMe devices
and 2 CPU nodes, where one devices gets twice the amount
of requests as the other two do. The performance is recov-
ered again after that, and, as evident, both approaches scale
well with the number of clients. The socket/file-based ap-
proach stops scaling linearly around 64 clients, and hits the
peak at 256 clients and delivers 880.9K IOPS. At this point,
the server CPU is fully saturated. In comparison, FlashNet
is able to deliver 1.22M IOPS, an improvement of 38.6%
over a socket/file-based client, and 190% better than the
peak iSCSI performance of 420.6K IOPS. The FlashNet per-
formance is only limited by the peak network performance
which is saturated at 40 Gbps when delivering 1.22M 4kB

net. sto. IO sched. kernel proc. misc.

socket/file 19.3% 7.3% 6.7% 15.8% 40.1% 4.7% 6.1%
FlashNet 20.6% 0.8% 6.4% 8.4% 46.7% 11.7% 5.4%

Table 2: Breakdown of CPU cycles.

IOPS. Hence, FlashNet reaches its first objective of deliver-
ing full storage performance across the network.

Table 2 breaks down the CPU cycles into network (net.),
storage (sto.), device drivers (IO), scheduling (sched.), ker-
nel, request processing (proc.), and miscellaneous (misc.).
We focus on the cycles spent in storage, scheduling, and re-
quest processing. The storage column includes routines from
the ext4 file system, the generic VFS layer, and the block
layer, etc. Most of these routines are executed for every
network-storage request. Furthermore, the traditional IO
stack architecture experiences high context switching and
scheduling related overheads. This is because most of the
IO resources (e.g. network sockets, buffers, etc.) are tied
to the process abstraction. These resources need to be valid
during the IO processing and hence require the application
process to be scheduled for IO processing and data move-
ment orchestrations. As a result, not many CPU cycles are
left for actual request processing. With FlashNet’s design,
the file system and most of the generic storage stack is elim-
inated from the core IO path and request processing does
not require server process scheduling. The CPU cycle gains
from here are then used in the request processing.

5.1.2 Latency and Bandwidth
One key benefit of RDMA networking is low latency net-

work operations. A FlashNet/netperf client is able to read
and write a single 4kB random block to a remote flash device
in 59.8 µsecs and 83.3 µsecs, respectively. In comparison,
the socket/file-based client takes 89.2 µsecs and 114.9 µsecs,
respectively. The read performance numbers can be further
improved to 54.9 µsecs when we configure the FlashNet de-
vice in the latency mode with polling. In the polling mode,
the server CPU polls for a few more micro-seconds in an-
ticipation of the next request before going to sleep. We
configure this time to be around network RTT.

FlashNet also delivers good bandwidth to its clients. For
the bandwidth test, clients read and write 1MB data blocks
to a large file. A single socket/file-based client observes 13.6
and 17.4 Gbps of read and write bandwidth, respectively.
In comparison, FlashNet delivers 24.4 Gbps (gains: 79.4%)
and 25.6 Gbps (gains: 47.1%) of read and write bandwidth,
respectively. As we increase the number of clients, both
approaches hit the networking bandwidth limits and are able
to deliver close to 40 Gbps bandwidths to their clients.

5.1.3 The Cost of Flash Buffer Registration
We now evaluate the cost of buffer registration for Flash-

Net, which is one of the costliest operation in RDMA [18].
The key difference between standard RDMA and FlashNet
registration is the lack of page allocation and pinning costs
from the latter. However, per-page metadata are still al-
located. Figure 9 shows the cost of mmaping a ContigFS
file and registering the obtained mmap area with the Flash-
Net RDMA device. In comparison, we also show the per-
formance of mmap on ext4 with MAP_POPULATE flag, and its
registration cost. FlashNet can register and prepare 64GB
of flash in about 90 msecs (6 msec for mmap, 84 msecs
for registration). In contrast, a DRAM buffer registration



1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

64M 128M 256M 512M 1G 2G 4G 8G 16G

Ti
m

e 
(u

se
cs

)

mmap ext4 register RNIC
mmap ContigFS register FlashNet

Figure 9: mmap and buffer registration cost.

takes almost 5 secs (3.3 secs for mmap, 1.7 secs for registra-
tion), where the majority of the time is spent in page alloca-
tion, bringing data in from the flash devices, and allocating
RDMA metadata in the RNIC driver, and then installing
DMA IO descriptors. FlashNet avoids this cost because it
does not allocate any DRAM pages during mmap. DRAM
pages are allocated only at the time of page faults from the
flash controller managed pool of DRAM pages.

5.1.4 Efficiency of Flash Management
The flash controller segregates data in three levels based

on their heat, age, and origin during data placement. As
described earlier in Section 4.2, the get/put API of the con-
troller enables it to extract write-heat information (i.e., up-
date frequency) about a page from its usage counter. A
high get count implies a hot data page. The data segrega-
tion and greedy GC scheme of the flash controller exhibit a
significant reduction in write amplification in the common
case with skew write patterns. Under Zipfian write work-
loads of 80/20 (80% accesses to 20% flash area) and 95/20
(95% accesses to 20% flash area), the flash controller reduces
the write amplification by 38% and 83% and improves the
flash lifetime by 1.6× and 5.9×, respectively, compared to a
greedy-window GC scheme without data segregation.

5.1.5 Mixed RNIC-FlashNet Deployment
One key advantage of keeping the iWARP packet format is

that FlashNet is compatible with the current iWARP RNIC
hardware. In this section, we evaluate this mixed setup us-
ing Chelsio’s T5 RNIC. We use an offload RDMA engine in
one of the client’s T5 NIC and measure the read and write
latencies for a 4kB page. For a read configuration, FlashNet
transmits data from a flash page to the client. For a write
configuration, the T5 RNIC is used to transmit data from
the client to the FlashNet server. We measured potential la-
tency improvements from this mixed setup, which are shown
in Table 3. On average, a mixed setup delivers additional
4.2% to 8.2% performance gains to FlashNet. These gains
come from by-passing the full client-side software stack, and
represent a realistic FlashNet deployment scenario.

5.2 Applications
We demonstrate the applicability of FlashNet using two

applications: a Key-Value Store, and a distributed Sorting
workload. Currently open-sourced RDMA applications e.g.,
HERD or RAMCloud, (without extensive modifications) are
misfits for FlashNet due to two implementation-related con-
cerns. First, these applications do not differentiate between
RPC and data buffers, where both are managed by a unified

TX-side RX-side 4kB/poll Gains

Read
FlashNet SoftiWARP 54.9 µs

8.2%
FlashNet T5 RNIC 50.4 µs

Write
SoftiWARP FlashNet 72.4 µs

4.2%
T5 RNIC FlashNet 69.3 µs

Table 3: 4kB IO latencies in mixed configurations.

memory manager. Naturally, high-performance RPC buffers
should be kept in DRAM. Second, FlashNet currently only
supports the newer OFED RDMA/CM API [61], and not
the older InfiniBand API, which is used by these systems.

5.2.1 Key-Value (KV) Store
Key-Value (KV) stores is one of the most popular ap-

plications which is known to benefit from RDMA opera-
tions. Multiple stores have been proposed, e.g., Pilaf [52],
HERD [33], FaRM [14], etc.,which explore the trade-offs and
semantics in the design space. We have also implemented a
distributed KV store that supports get and put operations.
The main data structure is a hopscotch hash table [23] with
fixed size keys and values, and a bucket size of 16; each hash
table entry holds the key along with some metadata. To re-
duce the lookup cost, we separate the keys from the values in
two tables that are indexed the same way. The whole hash
table is mmap’ed over the capacity of a file (e.g., an ext4 file,
or a block device). Concurrent accesses to the hash table are
supported with the use of the compare-and-swap primitive.

Upon a put, the key is hashed into a 64-bit value that is
used to index the hash table, and we iterate over the hop-
scotch bucket until a free entry is found. When a free entry
is found, the full key is copied in the table entry, and the
data is copied at the value table, on the same index as the
free entry. If the bucket is full, we first try to displace one
of the other entries in the same bucket, and if that is unsuc-
cessful, we push the entry into a victim bucket. On a get,
the matching bucket is searched until the key is found; if not
found, we repeat the search over the victim bucket. If the
key is found in the KV store, then we read the associated
data from the value table. In terms of IO amplification on
random operations, the KV store has the following amor-
tized behavior: a put operation will result in a read IO for
the bucket and two write IOs (one for the table entry and
one for the value); a get operation will result in two read
IOs (one for the table entry and one for the value).

We implemented two network back-ends to the KV store:
one over sockets and one over RDMA on FlashNet. The
socket back-end uses socket operations over TCP: the
control-path server runs on the storage node with 3 NVMe
devices and creates a separate thread (data-path server) and
socket to handle each new client connection; the client nodes
create one or more threads, each creating a separate connec-
tion to the data server, and then perform data-path opera-
tions using blocking socket IO. The data-path servers oper-
ate on the shared KV hash table that has been mapped over
storage. A client get/put involves four network operations
each: a send and recv on the client and matching recv

and send on the data-path server. The RDMA back-end
uses one-sided RDMA operations to the KV store for the
data path: the clients read and write directly to the remote
flash (essentially by running the server data path locally);
the storage node only spawns a control path server to mmap

the FlashNet file and handle the client connections. A client
get involves two remote operations: one read for reading the



58.39

204.13 222.44

139.23

242.73

456.26

0

100

200

300

400

500

Aerospike socket/file FlashNet

K
IO
ps

put get

Figure 10: Performance of 4kB puts and gets.

bucket, and one read for reading the value. A put involves
four remote operations: one read for the bucket, one RDMA
compare-and-swap to lock the key, and two writes; one for
value and one that updates the key and unlocks it.

We evaluate the KV store against Aerospike, a state-of-
the-art NoSQL store in terms of performance and functional-
ity [68]. We deployed Aerospike over the same storage as our
KV store, using their recommended configuration (raw block
device and 128K write-block-size). We used the Aerospike
C client library benchmark to generate load for Aerospike.
We performed random puts and gets of 10M keys for 4KiB
key-value size; we used 4KiB to match the block size char-
acteristics of the underlying storage and illustrate IO am-
plification. We drop the caches before starting each experi-
ment. Figure 10 shows our results. For puts, FlashNet/KV
achieves 222.4K IOPS, an improvement of 3.8× and 1.1×
over Aerospike and socket/file variant, respectively. For get
operations, the use of FlashNet’s RDMA operations result in
delivering 456.2K IOPS, an improvement of 3.2× and 1.8×
over Aerospike and socket/file, respectively. Hence in con-
clusion, the potent combination of storage and RDMA op-
erations in FlashNet API lets us develop applications that
enjoy significant performance benefits over their traditional
counterparts in the ways remote storage is accessed.

5.2.2 Distributed Sorting on FlashNet
We have modified and ported RStore [73], an RDMA-

enabled distributed in-memory data store, to Flash-
Net. RStore uses a centralized master and distributed
server/client model. In this model, servers donate parts
of their DRAM to store data by preparing and registering
memory buffers with RNICs. This information is then re-
layed to the centralized master from where the capacity al-
location and distribution happens. The nodes communicate
using RPC implementation on two-sided send/recv RDMA
operations, and all data accesses between clients and servers
happen using one-sided RDMA read/write operations.

To port RStore on FlashNet, we modified less than 100
lines (out of 15k) of code, the majority of these modifica-
tions are focused on acquiring RDMA-ready data buffers
by mmaping ContigFS files. With these modifications in
place, RStore now supports storing data on remote flash de-
vices as files together with the currently supported DRAM
buffers. No client-side changes were required and clients
always accessed data transparently using one-sided RDMA
operations. We evaluate RStore using one of its applica-
tions, a distributed key-value Sorter. The Sorter imple-
ments a two-phase external merge sort which reads the in-
put data from flash files, processes it in distributed DRAM

13.3
22.4

41.9

91.4

7.1 12.5
19.7

48.3

0

20

40

60

80

100

16G 32G 64G 128G

Ti
m

e 
(s

ec
)

Dataset Size

in-memory FlashNet

Figure 11: Distributed sorting performance.

buffers, and writes out the sorted data to flash files. We run
these experiments on 4 machines from our testbed where we
re-distributed NVMe devices to put one in each machine.
These machines run RStore data servers as well as Sorter
clients. We use one additional machine to run the master.

We compare the performance of Sorter/FlashNet with its
in-memory variant that read, sorts, and writes data com-
pletely in memory and uses RNIC to access data. Figure 11
shows our results. On the Y-axis is the runtime in seconds,
and on the X-axis is the amount of data sorted. The key
observation here is that, in comparison to the identical in-
memory execution of RStore/sorter, the FlashNet version of
Sorter mostly adds the time of IO from the flash devices and
does not incur any additional overheads. This observation
can be verified by calculating the time difference and amount
of data that is read from and written to the NVMe devices.
For example, in the 128GB run, the time difference between
an in-memory run and over-FlashNet run is 43.1 secs, which
is close to the expected NVMe device performances. With a
simple calculation, we can verify that the read time should
be 14.5 secs (128GB/(4 devices × 2.2 GB/sec/device)) and
the write time should be 35.5 seconds (128GB/(4 devices
× 0.9 GB/sec/device)). That calculation gives us a total
time of 50 seconds, whereas RStore/FlashNet adds 43.1 sec-
onds to the in-memory run. The FlashNet is faster due to
bursty read/write performance being higher than what we
measured in the steady state. To conclude, FlashNet (a) en-
ables us to port an RDMA-ready system with minimal effort;
and (b) imposes minimum overheads when using FlashNet’s
one-sided RDMA operations to access remote flash storage.

6. RELATED WORK
Inefficiencies in end-host networking stacks have first been

discussed in the 1990s and have led to the design of high-
performance networking stacks [76, 80, 6, 5]. RDMA net-
works such as InfiniBand or iWARP are the latest incar-
nation of these principles and are being used both in su-
percomputers as well as in data centers [57, 69, 52, 14,
33]. Meanwhile, commodity network and storage software
stacks are constantly being optimized to eliminate ineffi-
ciencies. For example, networking efforts have focused on
providing better locality [59], abstractions/APIs [22, 62],
scalability [29], specialization [49, 67], per-packet process-
ing [45, 27], etc. In parallel, the storage community has also
targeted offloading [7], direct hardware access [35], special-
ization [64, 42], fast IO paths [66], scalability [4], interrupt
coalescing [1], and polling [83, 65], etc. Many of these ef-
forts take a very network-alike approach towards reducing
storage overheads [74]. FlashNet is built on such common



Remote Flash
Access?

Server
Involved?

Byte
I/O

High-Perf.
Properties

API Limitations/Comments

sendfile yes yes yes no file with socket only deals with the TX side issues
NASD [20] yes no yes no dist. object store only deals with the server-side issues
SAN-level [8, 9] yes no no no block I/O benefits limited to the block layer
NAS-level [44, 12] yes no yes no NFS, file I/O apps. must copy data to/from fs bufs
BGAS [63, 17] no N/A yes yes RDMA queues limited to local flash access
RDMA Sys. [57, 14, 33] no N/A maybe maybe KV, Dist. Mem. do not involve remote storage access

FlashNet yes no yes yes RDMA queues remote flash access using RDMA

Table 4: Comparison of related work for networked storage access in an end-to-end manner.

high-performance IO properties from both, networking and
storage, and unifies them in a single stack. In a system-
wide approach, Exokernel [15, 32], and the recently proposed
Arrakis [60] and IX [3] OSes contain high-performance IO
stacks. These OSes eliminate overheads from the kernel by
limiting its role to resource management only. Nonetheless,
these isolated stack-specific efforts do not address end-to-end
data transfer challenges solved by FlashNet.

Network-Attached Secure Disk (NASD) [20, 21] project
eliminates many server-side CPU and OS overheads by con-
necting storage disks directly with the network controller.
However, it relies on custom disk and networking hardware,
and does not reduce overheads at the client side. BGAS [63,
17] uses RDMA, but only to access local flash storage. Re-
cent work in storage disaggregation has identified network
and storage protocol processing related overheads to be a
performance bottleneck [36]. Naturally, there are previous
works on improving performance of block-level [81, 30, 8, 41,
51], and file-level storage accesses [79, 12, 24], and even the
integration of RDMA in them [10, 39, 44, 9]. Distributed
file systems, such as DAFS [48, 47], DFS [13], and NFS [44],
GlusterFS [19], etc., also use RDMA and present a file sys-
tem interface. Commercial systems such as Violin Memory,
use RDMA to access flash in an appliance setting with the
SMB protocol [75]. In comparison to the aforementioned
NAS/SAN approaches, FlashNet only provides a mechanism
to unify storage and network processing concerns without
imposing its usage. Similar to any application of RDMA
API, FlashNet can be used to integrate into both SAN or
NAS types of accesses. Previous efforts that tried to in-
tegrate RDMA into existing storage stacks showed limited
gains due to (a) a limited scope of integration, i.e., to the
block or file, not to the end-to-end application level; (b) a
lack of unified concerns, for example, it is not possible to
share in-kernel RDMA transport buffers of NFS with an ap-
plication to avoid data copies when performing a file IO; and
(c) a transparent integration of RDMA to avoid a complete
re-write of the stack. However, recent efforts have demon-
strated that a careful consideration is required to leverage
the full potential of RDMA in native [18, 14, 33, 57] as well
as JVM-based distributed systems [70, 46]. Distributed data
platforms such as Crail [70] can use FlashNet’s RDMA oper-
ations to transparently access remote flash using one-sided
RDMA operations. And in this context, FlashNet provides
a way to leverage RDMA-knowhow and apply it in the con-
text of networked-storage to deliver the best possible per-
formance. Applying RDMA to remote storage brings addi-
tional challenges, discussed at length by Hoefler et al. [25].

More recently, Project Donard [2] and NVMe over Fab-
rics (NVMeF) [54, 56] transports NVMe commands to a re-
mote server using RDMA and can even transfer data to an
RDMA device directly using peer-to-peer PCI transactions.

These efforts share many key properties and design princi-
ples with FlashNet, which validates our choices. However,
by using the RDMA verbs API, FlashNet exposes a generic,
device independent interface with the richer RDMA seman-
tics (one-sided operations, byte-addressability, asynchronous
IO, etc.) for remote storage access, whereas NVMe and
hence NVMeF as well currently only supports block-level de-
vice access. The current FlashNet design also includes a file
system design, hence offering a NAS-level data sharing. Fur-
thermore, FlashNet abstracts all device specific management
operations and leaves device management as an orthogonal
task. Since FlashNet keeps the media access protocol local
to the storage device, it omits the need to introduce another
wire protocol for each new class of storage devices.

Like FlashNet, ReFlex [37] takes a holistic approach to-
wards optimizing network as well as storage IO for remote
flash accesses. It proposes a server design that is integrated
with the IX OS for the best performance in terms of QoS,
isolation, and efficiency. In comparison, FlashNet aims to
extend RDMA operations on commodity OSes to access re-
mote flash storage, and leaves application to use these opera-
tions as they see fit. FlashNet’s on-demand memory pinning
can be augmented with the recently proposed page fault
support from RDMA NICs [43]. However, FlashNet’s on-
demand mechanism is also used to track heat and access
information about flash pages, which is then used to supple-
ment the garbage collection for superior flash management.

7. CONCLUSION
In this paper, we have presented FlashNet, a unified soft-

ware IO stack that provides direct, high-performance access
to remote flash storage. The unified stack delivered 1.22M
IOPS to clients, which is only limited by the network perfor-
mance. FlashNet achieves this performance by adopting the
well-known path separation principle from RDMA networks
and extending it to storage by co-designing a flash controller
and a file system with it. As a demonstration of FlashNet’s
capabilities and its API, we have developed a Key-Value
store, and ported an existing RDMA-ready distributed sort-
ing application on it. They both perform well. For exam-
ple, the performance of the KV store is nearly doubled from
242K to 456K IOPS, and the Sorter experienced minimal
overheads when using FlashNet’s one-sided RDMA oper-
ations. As RDMA networking and API gain wide-spread
usage, FlashNet opens the door to integrate storage as a
first-class citizen in the high-performance IO hierarchy, and
unifies efforts across the network and storage stacks.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd,

Edward Bortnikov, for their helpful reviews and comments.



9. REFERENCES
[1] I. Ahmad, A. Gulati, and A. Mashtizadeh. vIC:

Interrupt Coalescing for Virtual Machine Storage
Device IO. In Proceedings of the 2011 USENIX
Conference on USENIX Annual Technical Conference,
ATC ’11, pages 45–58, 2011.

[2] S. Bates. Donard: NVM Express for Peer-2-Peer
between SSDs and other PCIe Devices,
http://www.snia.org/sites/default/files/SDC15
presentations/nvme fab/StephenBates Donard NVM
Express Peer-2 Peer.pdf.

[3] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Throughput
and Low Latency. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’14, pages 49–65, 2014.

[4] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet.
Linux Block IO: Introducing Multi-queue SSD Access
on Multi-core Systems. In Proceedings of the 6th
International Systems and Storage Conference,
SYSTOR ’13, pages 22:1–22:10, 2013.

[5] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W.
Felten, and J. Sandberg. Virtual Memory Mapped
Network Interface for the SHRIMP Multicomputer. In
Proceedings of the 21st Annual International
Symposium on Computer Architecture, ISCA ’94,
pages 142–153, 1994.

[6] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich,
and J. Wilkes. An Implementation of the Hamlyn
Sender-managed Interface Architecture. In Proceedings
of the Second USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’96, pages
245–259, 1996.

[7] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson. Providing Safe, User
Space Access to Fast, Solid State Disks. In Proceedings
of the Seventeenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, pages 387–400,
2012.

[8] A. M. Caulfield and S. Swanson. QuickSAN: A
Storage Area Network for Fast, Distributed, Solid
State Disks. In Proceedings of the 40th Annual
International Symposium on Computer Architecture,
ISCA ’13, pages 464–474, 2013.

[9] M. Chadalapaka, H. Shah, U. Elzur, P. Thaler, and
M. Ko. A Study of iSCSI Extensions for RDMA
(iSER). In Proceedings of the ACM SIGCOMM
Workshop on Network-I/O Convergence: Experience,
Lessons, Implications, NICELI ’03, pages 209–219,
2003.

[10] L. Chai, X. Ouyang, R. Noronha, and D. K. Panda.
pNFS/PVFS2 over InfiniBand: Early Experiences. In
Proceedings of the 2nd International Workshop on
Petascale Data Storage: Held in Conjunction with
Supercomputing ’07, PDSW ’07, pages 5–11, 2007.

[11] L.-P. Chang, T.-W. Kuo, and S.-W. Lo. Real-time
Garbage Collection for Flash-memory Storage Systems
of Real-time Embedded Systems. ACM Trans. Embed.
Comput. Syst., 3(4):837–863, Nov. 2004.

[12] B. Cully, J. Wires, D. Meyer, K. Jamieson, K. Fraser,

T. Deegan, D. Stodden, G. Lefebvre, D. Ferstay, and
A. Warfield. Strata: Scalable High-performance
Storage on Virtualized Non-volatile Memory. In
Proceedings of the 12th USENIX Conference on File
and Storage Technologies, FAST’14, pages 17–31, 2014.

[13] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent,
D. Noveck, T. Talpey, and M. Wittle. The Direct
Access File System. In Proceedings of the 2nd
USENIX Conference on File and Storage
Technologies, FAST’03, pages 175–188, 2003.

[14] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast Remote Memory. In
Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’14, pages 401–414, 2014.

[15] D. R. Engler, M. F. Kaashoek, , and J. O. Jr.
Exokernel: An Operating System Architecture for
Application-level Resource Management. In
Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, SOSP ’95, pages
251–266, 1995.

[16] Flexible I/O tester, https://linux.die.net/man/1/fio.

[17] Fitch, Blake G. and others. Blue Gene Active Storage
(BGAS) for High Performance BG/Q I/O and
Scalable Data-centric Analytics, https://www.
fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/
slides/bgas/bgas-fitch.pdf? blob=publicationFile.

[18] P. W. Frey and G. Alonso. Minimizing the Hidden
Cost of RDMA. In Proceedings of the 2009 29th IEEE
International Conference on Distributed Computing
Systems, ICDCS ’09, pages 553–560, 2009.

[19] GlusterFS, http://www.gluster.org/.

[20] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W.
Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
and J. Zelenka. A Cost-effective, High-bandwidth
Storage Architecture. In Proceedings of the Eighth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS VIII, pages 92–103, 1998.

[21] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri,
E. Riedel, D. Rochberg, and J. Zelenka. File Server
Scaling with Network-attached Secure Disks.
SIGMETRICS, 25(1):272–284, June 1997.

[22] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A New Programming Interface for Scalable
Network I/O. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’12, pages 135–148, 2012.

[23] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch
hashing. In Proceedings of the 22nd International
Symposium on Distributed Computing, DISC ’08,
pages 350–364, 2008.

[24] D. Hildebrand and P. Honeyman. Exporting Storage
Systems in a Scalable Manner with pNFS. In
Proceedings of the 22nd IEEE / 13th NASA Goddard
Conference on Mass Storage Systems and
Technologies, MSST ’05, pages 18–27, 2005.

[25] T. Hoefler, R. B. Ross, and T. Roscoe. Distributing
the Data Plane for Remote Storage Access. In 15th
Workshop on Hot Topics in Operating Systems
(HotOS XV), May 2015.

http://www.snia.org/sites/default/files/SDC15_presentations/nvme_fab/StephenBates_Donard_NVM_Express_Peer-2_Peer.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/nvme_fab/StephenBates_Donard_NVM_Express_Peer-2_Peer.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/nvme_fab/StephenBates_Donard_NVM_Express_Peer-2_Peer.pdf
https://linux.die.net/man/1/fio
https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas/bgas-fitch.pdf?__blob=publicationFile
https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas/bgas-fitch.pdf?__blob=publicationFile
https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/bgas/bgas-fitch.pdf?__blob=publicationFile
http://www.gluster.org/


[26] X.-Y. Hu, R. Haas, and E. Eleftheriou. Container
Marking: Combining Data Placement, Garbage
Collection and Wear Levelling for Flash. In
Proceedings of the 2011 IEEE 19th Annual
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems, MASCOTS ’11, pages 237–247, July 2011.

[27] Intel. DPDK: Data Plane Development Kit,
http://dpdk.org/.

[28] N. Ioannou, I. Koltsidas, R. Pletka, S. Tomic,
R. Stoica, T. Weigold, and E. Eleftheriou. SALSA:
Treating the Weaknesses of Low-cost Flash in
Software. In as a poster in 6th Annual Non-Volatile
Memories Workshop, 2015.

[29] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: A Highly Scalable
User-level TCP Stack for Multicore Systems. In
Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’14, pages 489–502, 2014.

[30] A. Joglekar, M. E. Kounavis, and F. L. Berry. A
Scalable and High Performance Software iSCSI
Implementation. In Proceedings of the 4th Conference
on USENIX Conference on File and Storage
Technologies, FAST’05, pages 267–280, 2005.

[31] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li.
DFS: A File System for Virtualized Flash Storage. In
Proceedings of the 8th USENIX Conference on File
and Storage Technologies, FAST’10, pages 85–100,
2010.

[32] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M.
Briceño, R. Hunt, D. Mazières, T. Pinckney,
R. Grimm, J. Jannotti, and K. Mackenzie. Application
Performance and Flexibility on Exokernel Systems. In
Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles, SOSP ’97, pages 52–65,
1997.

[33] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA Efficiently for Key-value Services. In
Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, pages 295–306, 2014.

[34] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST:
Fast, Scalable and Simple Distributed Transactions
with Two-sided (RDMA) Datagram RPCs. In
Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’16, pages 185–201, 2016.

[35] H.-J. Kim, Y.-S. Lee, and J.-S. Kim. NVMeDirect: A
User-space I/O Framework for Application-specific
Optimization on NVMe SSDs. In 8th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 16), June 2016.

[36] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and
S. Kumar. Flash Storage Disaggregation. In
Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys ’16, pages 29:1–29:15,
2016.

[37] A. Klimovic, H. Litz, and C. Kozyrakis. ReFlex:
Remote Flash == Local Flash. In Proceedings of the
Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, pages 345–359, 2017.

[38] K. C. Knowlton. A Fast Storage Allocator. Commun.
ACM, 8(10):623–624, Oct. 1965.

[39] E. Koukis, A. Nanos, and N. Koziris. GMBlock:
Optimizing data movement in a block-level storage
sharing system over Myrinet. Cluster Computing,
13(4):349–372, 2010.

[40] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2FS: A
New File System for Flash Storage. In Proceedings of
the 13th USENIX Conference on File and Storage
Technologies, FAST’15, pages 273–286, 2015.

[41] E. K. Lee and C. A. Thekkath. Petal: Distributed
Virtual Disks. In Proceedings of the Seventh
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS VII, pages 84–92, 1996.

[42] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and A. Arvind.
Application-managed Flash. In Proceedings of the 14th
Usenix Conference on File and Storage Technologies,
FAST’16, pages 339–353, 2016.

[43] I. Lesokhin, H. Eran, S. Raindel, G. Shapiro,
S. Grimberg, L. Liss, M. Ben-Yehuda, N. Amit, and
D. Tsafrir. Page Fault Support for Network
Controllers. In Proceedings of the Twenty-Second
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’17, pages 449–466, 2017.

[44] B. Li, P. Zhang, Z. Huo, and D. Meng. Early
Experiences with Write-Write Design of NFS over
RDMA. In IEEE International Conference on
Networking, Architecture, and Storage., pages
303–308, July 2009.

[45] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A Holistic Approach to Fast In-memory
Key-value Storage. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’14, pages 429–444, 2014.

[46] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda.
High-performance Design of Apache Spark with
RDMA and its Benefits on Various Workloads. In
IEEE International Conference on Big Data, pages
253–262, 2016.

[47] K. Magoutis, S. Addetia, A. Fedorova, and M. I.
Seltzer. Making the Most Out of Direct-Access
Network Attached Storage. In Proceedings of the 2nd
USENIX Conference on File and Storage
Technologies, FAST ’03, pages 189–202, 2003.

[48] K. Magoutis, S. Addetia, A. Fedorova, M. I. Seltzer,
J. S. Chase, A. J. Gallatin, R. Kisley,
R. Wickremesinghe, and E. Gabber. Structure and
Performance of the Direct Access File System. In
Proceedings of the 2002 USENIX ATC, pages 1–14,
2002.

[49] I. Marinos, R. N. Watson, and M. Handley. Network
Stack Specialization for Performance. In Proceedings
of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, pages 175–186, 2014.

[50] B. Metzler et al. SoftiWARP: Software iWARP kernel
driver and user library for Linux at
https://github.com/zrlio/softiwarp, accessed
February, 2017.

[51] J. Mickens, E. B. Nightingale, J. Elson, K. Nareddy,
D. Gehring, B. Fan, A. Kadav, V. Chidambaram, and

http://dpdk.org/
https://github.com/zrlio/softiwarp


O. Khan. Blizzard: Fast, Cloud-scale Block Storage
for Cloud-oblivious Applications. In Proceedings of the
11th USENIX Conference on Networked Systems
Design and Implementation, NSDI’14, pages 257–273,
2014.

[52] C. Mitchell, Y. Geng, and J. Li. Using One-sided
RDMA Reads to Build a Fast, CPU-efficient
Key-value Store. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference, USENIX
ATC’13, pages 103–114, 2013.

[53] Netperf: A network performance benchmark.
http://www.netperf.org.

[54] NVM Express over Fabrics Specification 1.0,
http://www.nvmexpress.org/wp-content/uploads/
NVMe over Fabrics 1 0 Gold 20160605-1.pdf.

[55] M. Nanavati, M. Schwarzkopf, J. Wires, and
A. Warfield. Non-volatile Storage. Queue,
13(9):20:33–20:56, Nov. 2015.

[56] W. Noureddine. Implementing NVMe over Fabrics,
http://www.snia.org/sites/default/files/SDC15
presentations/networking/WaelNoureddine
Implementing %20NVMe revision.pdf.

[57] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang.
The RAMCloud Storage System. ACM Trans.
Comput. Syst., 33(3):7:1–7:55, Aug. 2015.

[58] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-lite: A
Unified I/O Buffering and Caching System. In
Proceedings of the Third Symposium on Operating
Systems Design and Implementation, OSDI ’99, pages
15–28, 1999.

[59] A. Pesterev, J. Strauss, N. Zeldovich, and R. T.
Morris. Improving Network Connection Locality on
Multicore Systems. In Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys
’12, pages 337–350, 2012.

[60] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the Control Plane.
In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’14, pages 1–16, 2014.

[61] RDMA communication manager API,
https://linux.die.net/man/7/rdma cm.

[62] L. Rizzo. Netmap: A Novel Framework for Fast
Packet I/O. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX
ATC’12, pages 101–112, 2012.

[63] F. Schürmann et al. Rebasing I/O for Scientific
Computing: Leveraging Storage Class Memory in an
IBM BlueGene/Q Supercomputer. In Supercomputing,
volume 8488 of Lecture Notes in Computer Science,
pages 331–347. Springer International Publishing,
2014.

[64] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker,
A. De, Y. Jin, Y. Liu, and S. Swanson. Willow: A
User-programmable SSD. In Proceedings of the 11th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, pages 67–80, 2014.

[65] D. I. Shin, Y. J. Yu, H. S. Kim, J. W. Choi, D. Y.
Jung, and H. Y. Yeom. Dynamic Interval Polling and

Pipelined Post I/O Processing for Low-latency
Storage Class Memory. In Proceedings of the 5th
USENIX Conference on Hot Topics in Storage and
File Systems, HotStorage’13, 2013.

[66] W. Shin, Q. Chen, M. Oh, H. Eom, and H. Y. Yeom.
OS I/O Path Optimizations for Flash Solid-state
Drives. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference,
USENIX ATC’14, pages 483–488, 2014.

[67] Solarflare Communications Inc. OpenOnload at
http://www.openonload.org/, 2013.

[68] V. Srinivasan, B. Bulkowski, W.-L. Chu,
S. Sayyaparaju, A. Gooding, R. Iyer, A. Shinde, and
T. Lopatic. Aerospike: Architecture of a Real-time
Operational DBMS. Proc. VLDB Endow., pages
1389–1400, 2016.

[69] P. Stuedi, A. Trivedi, and B. Metzler. Wimpy Nodes
with 10GbE: Leveraging One-sided Operations in
soft-RDMA to Boost Memcached. In Proceedings of
the 2012 USENIX Conference on Annual Technical
Conference, USENIX ATC’12, pages 347–353, 2012.

[70] P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica,
B. Metzler, N. Ioannou, and I. Koltsidas. Crail: A
High-Performance I/O Architecture for Distributed
Data Processing. IEEE Bulletin of the Technical
Committee on Data Engineering, 40(1):40–52, March
2017.

[71] N. Talagala. Native Flash Support for Applications, at
Flash Memory Summit http:
//www.flashmemorysummit.com/English/Collaterals/
Proceedings/2012/20120823 S304B Talagala.pdf,
2012.

[72] A. Trivedi, B. Metzler, and P. Stuedi. A Case for
RDMA in Clouds: Turning Supercomputer
Networking into Commodity. In Proceedings of the
2nd APSys, pages 17:1–17:5, 2011.

[73] A. Trivedi, P. Stuedi, B. Metzler, C. Lutz,
M. Schmatz, and T. R. Gross. RStore: A
Direct-Access DRAM-based Data Store. In 35th IEEE
International Conference on Distributed Computing
Systems (ICDCS), pages 674–685, June 2015.

[74] A. Trivedi, P. Stuedi, B. Metzler, R. Pletka, B. G.
Fitch, and T. R. Gross. Unified High-Performance
I/O: One Stack to Rule Them All. In Presented as
part of the 14th Workshop on Hot Topics in Operating
Systems, 2013.

[75] Violin and Microsoft’s High-Performance, All-Flash
Enterprise Storage, http://www.violin-memory.com/
blog/violin-and-microsoft-windows-flash-array/2/.

[76] T. von Eicken, A. Basu, V. Buch, and W. Vogels.
U-Net: A User-level Network Interface for Parallel and
Distributed Computing. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, pages 40–53, 1995.

[77] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast
In-memory Transaction Processing Using RDMA and
HTM. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, pages
87–104, 2015.

[78] Z. Weiss, S. Subramanian, S. Sundararaman,
N. Talagala, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. ANViL: Advanced Virtualization for

http://www.netperf.org
http://www.nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605-1.pdf
http://www.nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605-1.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/networking/WaelNoureddine_Implementing_%20NVMe_revision.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/networking/WaelNoureddine_Implementing_%20NVMe_revision.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/networking/WaelNoureddine_Implementing_%20NVMe_revision.pdf
https://linux.die.net/man/7/rdma_cm
http://www.openonload.org/
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120823_S304B_Talagala.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120823_S304B_Talagala.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2012/20120823_S304B_Talagala.pdf
http://www.violin-memory.com/blog/violin-and-microsoft-windows-flash-array/2/
http://www.violin-memory.com/blog/violin-and-microsoft-windows-flash-array/2/


Modern Non-volatile Memory Devices. In Proceedings
of the 13th USENIX Conference on File and Storage
Technologies, FAST’15, pages 111–118, 2015.

[79] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,
B. Mueller, J. Small, J. Zelenka, and B. Zhou.
Scalable Performance of the Panasas Parallel File
System. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies, FAST’08, pages
2:1–2:17, 2008.

[80] J. Wilkes. Hamlyn - an Interface for sender-based
communications. Technical Report HPL-OSR-92-13,
Hewlett-Packard Laboratories, 1992.

[81] D. Xinidis, A. Bilas, and M. D. Flouris. Performance
Evaluation of Commodity iSCSI-Based Storage
Systems. In Proceedings of the 22nd IEEE / 13th
NASA Goddard Conference on Mass Storage Systems
and Technologies, MSST ’05, pages 261–269. IEEE
Computer Society, 2005.

[82] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi,
Z. Guz, A. Shayesteh, and V. Balakrishnan.
Performance Analysis of NVMe SSDs and Their
Implication on Real World Databases. In Proceedings
of the 8th ACM International Systems and Storage
Conference, SYSTOR ’15, pages 6:1–6:11, 2015.

[83] J. Yang, D. B. Minturn, and F. Hady. When Poll is
Better Than Interrupt. In Proceedings of the 10th
USENIX Conference on File and Storage
Technologies, FAST’12, pages 25–32, 2012.

Notes: IBM is a trademark of International Business Ma-
chines Corporation, registered in many jurisdictions world-
wide. Intel and Intel Xeon are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the
United States and other countries. Linux is a registered
trademark of Linus Torvalds in the United States, other
countries, or both. Other products and service names might
be trademarks of IBM or other companies.


	Introduction
	Motivation
	Design of FlashNet
	The Flash Controller
	Contiguous File System (ContigFS)
	The RDMA Controller
	The Life of an IO Operation

	Implementation of FlashNet
	File Management
	Flash Page and Buffer Management
	Data Access and Concurrency
	Dirty Data Write-Outs

	Evaluation
	Micro-Benchmarks
	Peak IOPS Scaling
	Latency and Bandwidth
	The Cost of Flash Buffer Registration
	Efficiency of Flash Management
	Mixed RNIC-FlashNet Deployment

	Applications
	Key-Value (KV) Store
	Distributed Sorting on FlashNet


	Related Work
	Conclusion
	Acknowledgments
	References

