A Hybrid I/0 Virtualization Framework
for RDMA-capable Network Interfaces

Jonas Pfefferle*, Patrick Stuedi*, Animesh Trivedi*,
Bernard Metzler*, Ioannis Koltsidas* and Thomas R. Gross?

IBM Research*, ETH Zuerich?*
{jpf,stu,atr,bmt,iko}@zurich.ibm.com, trg@inf.ethz.ch

Abstract

RDMA-capable interconnects, providing ultra-low latency
and high-bandwidth, are increasingly being used in the con-
text of distributed storage and data processing systems.
However, the deployment of such systems in virtualized
data centers is currently inhibited by the lack of a flexi-
ble and high-performance virtualization solution for RDMA
network interfaces.

In this work, we present a hybrid virtualization architec-
ture which builds upon the concept of separation of paths for
control and data operations available in RDMA. With hybrid
virtualization, RDMA control operations are virtualized us-
ing hypervisor involvement, while data operations are set up
to bypass the hypervisor completely. We describe HyV (Hy-
brid Virtualization), a virtualization framework for RDMA
devices implementing such a hybrid architecture. In the pa-
per, we provide a detailed evaluation of HyV for different
RDMA technologies and operations. We further demonstrate
the advantages of HyV in the context of a real distributed
system by running RAMCloud on a set of HyV-enabled vir-
tual machines deployed across a 6-node RDMA cluster. All
of the performance results we obtained illustrate that hybrid
virtualization enables bare-metal RDMA performance inside
virtual machines while retaining the flexibility typically as-
sociated with paravirtualization.

1. Introduction

RDMA-capable interconnects like Infiniband or iWARP are
increasingly being considered in deployments of large dis-
tributed data processing systems. Examples of this sort are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

VEE ’15, March 14-15, 2015, Istanbul, Turkey.

Copyright © 2015 ACM 978-1-4503-3450-1/15/03. .. $15.00.
http://dx.doi.org/10.1145/2731186.2731200

17

RAMCloud [22], FaRM [5] and Pilaf [18]. RDMA networks
provide ultra-low latency and high-bandwidth — two proper-
ties that are of highest interest when processing large data
sets under time constraints.

As of today, all of the existing systems we are aware of
that use RDMA networks in larger deployments do so in
a strictly bare-metal environment. This is unfortunate since
many of the systems would benefit from the advantages of
virtualization (higher utilization of physical resources due
to hardware multiplexing, flexibility due to virtual machine
migration, snapshotting, etc.) [3, 12].

Currently, virtualization support for RDMA network in-
terfaces is available in the form of single-root I/O virtual-
ization (SR-IOV) [25]. SR-IOV delivers close to bare-metal
performance in virtualized environments but lacks some of
the flexibility aspects one typically associates with virtual-
ization. For instance, SR-IOV requires device and platform
support, which, compared to software solutions, has higher
development costs and is harder to maintain. Additionally,
setting up SR-IOV is inherently static which complicates vir-
tual machine migration later on (see Section 2.2).

In this paper, we argue that the very nature of RDMA’s
separation of control and data path allows for virtualizing
RDMA capable NICs entirely in software while still achiev-
ing bare-metal performance. We introduce the notion of hy-
brid virtualization, a I/O virtualization scheme for RDMA
interconnects. With hybrid virtualization, virtual RDMA de-
vices running in the guest interact with the hypervisor using
a paravirtual interface solely for control operations such as
when creating network resources like queue pairs or comple-
tion queues. These network resources are then mapped into
the guest virtual machine for direct access. Consequently,
any subsequent access to these resources during data trans-
mission and reception bypasses the hypervisor completely.

We present HyV, a virtualization framework for RDMA-
capable network interfaces implementing such a hybrid ar-
chitecture for the Linux kernel virtual machine (KVM). We
show that HyV is able to achieve highest performance while
still retaining maximum flexibility. As an example, HyV per-
mits applications in one virtual machine to read or write

memory from remote virtual machines on different physical
hosts within 1-2 microseconds.

By using the HyV framework, virtual RDMA devices can
be implemented very similar to implementing paravirtual de-
vices. Thereby, the key challenge in HyV was (1) to separate
the hardware-dependent part from the hardware-independent
part and (2) to facilitate and ease the effort for vendors to
implement their own virtual RDMA NICs with very little ef-
fort. The paper presents the design and implementation of
HyV and discusses three specific RDMA devices which we
virtualized using HyV.

To demonstrate the advantages of HyV for real applica-
tions, we have deployed RAMCloud — a DRAM-based dis-
tributed key-value store — on a set of HyV-enabled virtual
machines. Our measurements show that by leveraging HyV
we can achieve native throughput and latency on the cluster
with no change to the application.

In summary, this paper’s contributions include (1) a hy-
brid I/O architecture to virtualize RDMA network devices,
(2) the design and implementation of HyV as a generic
framework for virtual RDMA devices, and (3) the demon-
stration of how to use HyV to achieve bare-metal latency and
throughput between virtual machines interconnected with a
RDMA capable network.

2. Background

In this section we provide the relevant background on
RDMA networking and network virtualization.

2.1 Remote Direct Memory Access (RDMA)

RDMA capable network interface controllers or RNICs of-
fer high-bandwidth, ultra low-latency network operations for
accessing data in remote memories. The performance ad-
vantages of RDMA are mainly achieved by separating the
control path from the data path while completely eliminat-
ing the OS/CPU involvement from the latter. This separa-
tion of paths frees network I/O from overheads otherwise as-
sociated with resource management, multiplexing, schedul-
ing etc. [6]. Instead, network and application resources are
pre-allocated and registered with the RNIC on the control
path. A control path to the RNIC consists of calls to setup
resources and context in the device that — during data path
operations — enable moving data in a zero-copy fashion be-
tween the network and an application buffer. This separation
philosophy is also reflected in the way applications inter-
act with the RNIC. Applications typically identify and cre-
ate necessary resources upfront and outside of performance
critical sections, but benefit from fast RDMA data opera-
tions when performance really matters. In comparison, the
traditional BSD socket interface has intertwined control and
data paths where resources are allocated, associated, used
and then released all as part network I/O operations.

Thus, the critical aspect of RNIC’s is that the control
paths are used to directly map device provided, connection-

18

specific, structures into an applications address space. For
example, RDMA gives each application its own private and
virtual network interface consisting of transmission (TX)
and reception (RX) work queues called gueue pairs (QP).
This approach eliminates software and protection overheads,
however, it also entangles application code with device de-
tails that are usually encapsulated by an OS device driver.
To mitigate this burden and ensure portability a device’s spe-
cific memory layout and protocol for interaction is encapsu-
lated by a vendor provided user-level library. The library ex-
poses a standardized RDMA interface (verbs) to the applica-
tion while managing and interacting with mapped structures
unique to a particular device [9, 11]. To issue a data transfer,
applications use the verbs interface to asynchronously post
I/O requests on the QP. These 1/O requests contain pointers
to application buffers that are accessed by the RNIC through
DMA. I/O completion events are put on a separate notifica-
tion queue which applications can poll or block on.

2.2 Network I/0 Virtualization

Virtualization enables efficient hardware utilization by mul-
tiplexing server hardware among virtual machines (VMs).
As virtual machines can be created, snapshotted, replicated,
and resumed very quickly, they give great flexibility in re-
source planning, provisioning and administration to handle
workload spikes. Despite many advantages, one of the key
challenges in virtualization is efficient network I/O virtu-
alization. The two most prominently used techniques for
network I/O virtualization are (a) direct device assignment
and (b) paravirtualization. Direct device assignment can be
achieved by passthrough or hardware assisted virtualization
(e.g. PCIe SR-IOV). In both cases a dedicated NIC instance
is exclusively assigned to a virtual machine. While this mode
avoids any involvement of the hypervisor, it lacks flexibility.
For example, setting up direct device assignment is typically
a static task where the number of NIC instances need to be
configured upfront and cannot be changed thereafter. This
requires careful consideration to not waste resources on the
hardware for unused virtual interfaces. Further, direct de-
vice assignment needs special platform support for memory
translation and complicates VM live migration [24].

In contrast to hardware-assisted virtualization, a paravir-
tualized network stack offers great flexibility at lower perfor-
mance. It uses a split driver model with a frontend driver in
the virtualization aware guest OS and a backend driver on the
host. Frontend and backend driver interact over a dedicated
communication channel[7]. With paravirtualization, the soft-
ware network state is maintained in the hypervisor which
simplifies migrating and checkpointing of the network state.
These flexibility aspects of paravirtualization are the main
reason why paravirtualization is widely used in todays virtu-
alization environment. The downside of paravirtualization is
that crossing the guest/hypervisor boundaries imposes some
overhead during data path operations.

140

paravirtual-NIC —3 ——
120 RDMA-NIC EXXX]
—~ 100
]
ERE:)
o
S 60
2 R
= 40
20
0 L llwavavavil
4 16k
Size (byte)
Figure 1: Performance gap between paravirtualized

socket/tcp, and bare-metal verbs/rdma

In the following, we discuss our hybrid virtualization
scheme tailored to RDMA-capable interfaces. Hybrid virtu-
alization inherits some of the flexibility advantages of par-
avirtualization, but at the same time, achieves a performance
comparable to hardware-assisted virtualization.

3. Hybrid RDMA Virtualization
Architecture

Paravirtualized network devices use a single channel to com-
municate between the guest and the host operating system.
Both data and control transfer funnel through the channel
and many layers of abstractions, requiring data copies, hy-
pervisor accesses, scheduling, network buffer allocation and
management etc. This design originates from the fact that
traditional network controllers do not implement a suffi-
cient form of isolation and context to allow network re-
sources to be multiplexed across hypervisor/guest bound-
aries. A trusted entity (i.e. hypervisor) has to process data
and control operations in software before transfer to or from
untrusted guests (Figure 2a). This is in a sharp contrast to
RDMA operations where the data and control paths are com-
pletely separated even at the device interface level (Figure
2b). The separation helps to deliver high-performance with
isolation to the applications. Consequently, there exists a
large performance gap between RDMA performance and the
performance of a paravirtualized network stack (Figure 1).
To enable RDMA performance inside virtual machines, it
will therefore be absolutely key to continue separating the
control from the data path. The traditional paravirtualized
architecture is not sufficient since it does not include the no-
tion of path separation, and as such cannot deliver the full
performance advantages of RDMA.

Design: A natural way to extend RDMA’s philosophy of
separation of paths into virtualization is to virtualize RDMA
network devices at the function interface of RDMA verbs,
instead of at the level of the PCI device. We define a hybrid
virtualization architecture for RDMA interfaces in which
verbs-level control operations are virtualized in a paravirtual
fashion, while data operations are executed on guest-private
data channels (Figure 2c).

19

3.1 Paravirtualized Control Path

On the control path, network resources are mapped to and
from the RDMA controller into the application memory in-
side a VM. With hybrid virtualization, these network re-
sources are created using a frontend/backend driver pair.
Control operations issued from an RDMA-enabled appli-
cation — such as create_gp() to create a queue pair, or
create_cq() to create a completion notification queue — are
executed by performing a system call into the frontend driver
running in the guest. This mechanism is similar to the one
used for control operations in the native RDMA stack. After
having intercepted the call, the frontend driver forwards the
control operation to the backend driver using a paravirtual
communication channel. The backend driver, if needed, en-
forces the isolation, security and resource limits for VMs by
modifying/filtering operations before forwarding them to the
unmodified host device driver. After approval from the host
OS, the host device driver creates the requested network re-
sources on the RNIC. Finally, the backend driver maps the
newly created resource (e.g., queue pair) into the address
space of the guest RDMA application. Application resources
such as memory buffers are also registered (reg_mr()) with
the RNIC using the split drivers.

In order for hybrid virtualization to work together with
unmodified host RDMA drivers, some control operations —
in particular the ones that interact with the memory manage-
ment subsystem — require modifications in the host. Specif-
ically, extra memory translations are needed in two direc-
tions:

1. Top Down: Translating guest virtual memory areas into
the host address space such that they can be used with the
host device driver and RNIC.

2. Bottom Up: Mapping host physical memory areas to
guest virtual memory such that it can be used by a guest
application to directly access the RNIC.

These two kinds of mappings cover scenarios for both
data path setup and user memory registration. However, the
implementation depends on how the hypervisor handles vir-
tual machine memory as well as on the interface to the host
device driver, details of which are discussed in the Section
4.2.

3.2 Direct Data I/0O Path

The data path consists of posting I/O requests and reaping
completion notifications from the RNIC. With hybrid vir-
tualization, this is achieved by directly reading and writing
memory-mapped hardware queues from within the guest.
The RDMA application in the guest OS prepares an 1/O re-
quest and writes it in the queue pair using the post_send ()
or post_recv () verbs call. Since the queue pair is mapped
into guest memory, the unmodified user-space device-driver
can be used for posting I/O requests.

ol 2 Application ol S Application
0n|> 0> A
Qf _ | | _ H
8 g Paravirtual 8 g Paravirtual
g Frontend Driver @ Frontend Driver
| > 1
| H
ol = ol® $ A ol = J
3 g Paravirtual 2 i @ g Paravirtual Traditional
9 Backend Driver g * @ Backend Driver i
T|> S E T~ ; single path
£ I Control path
v v v v v .
[Device] [Device] [Device] : Data path
(a) Paravirtualization (b) RDMA (c) Hybrid virtualization

Figure 2: Virtualization architectures

A transmission work request triggers the RNIC to pre-
pare and transmit data from the pre-registered application
buffer inside the guest OS in a zero-copy manner. For in-
coming packets, the destination memory is resolved by the
RDMA controller after RDMA protocol processing and data
is directly DMA’ed into the final application buffer. Since
network and packet processing, multiplexing etc. happens
in the RDMA controller, the hypervisor (as well as the
guest/host OS) is completely eliminated from the fast data
path. Upon the I/O completion, the RNIC generates a work
completion (WC) element and puts that into the comple-
tion queue. The application can poll (poll_cq()) or block
(get_cq_event ()) on this queue to receive completion no-
tification. The blocking mode requires further support from
the underlying virtualization framework to raise events for
notifications. Event notification is discussed in more detail
in Section 4.

3.3 Advantages

Hybrid virtualization has advantages over both direct assign-
ment based virtualization and paravirtualization. Clearly,
when compared to paravirtualization, the advantage of hy-
brid virtualization is the improved performance due to less
hypervisor involvement. By eliminating the guest OS and
the hypervisor from the fast data path, the hybrid virtualiza-
tion architecture can deliver a performance that is very close
to the network hardware limits.

On the other hand, when compared to direct devices as-
signment, the advantage of hybrid virtualization is that it
puts the hypervisor back in charge of network resource
creation, management and accounting on the RNIC. Now
these operations can be implemented by taking any neces-
sary operating system and virtual machine state into consid-
eration. Consequently, the hypervisor can enforce various
firewall, quota, and isolation rules while creating network
resources on the RNIC. The hybrid architecture is also more
resource efficient. Instead of statically partitioning network
resources between virtualized instances, in the hybrid archi-
tecture these resource can be assigned on-demand to VMs.
For example, SR-IOV with IOMMU requires allocation and

20

pinning of all memory of the guest VM for DMA. With
hybrid virtualization, only application buffers which are in-
volved in RDMA are pinned.

4.

We developed HyV, a proof-of-concept implementation of
the hybrid virtualization architecture. HyV offers an easy to
use, flexible, and generic RDMA virtualization framework
implemented for the Linux kernel virtual machine (KVM)
as the hypervisor [14]. The system runs on the x86-64 ar-
chitecture, however, our source code does not have any ar-
chitecture dependencies and, although not tested, should run
on other platforms as well. The ultimate goal of HyV is to
provide a virtualization solution for RDMA that fulfills the
following requirements:

Implementation

1. Direct hardware access: For full performance, applica-
tions inside a VM should be able to directly access the
RDMA network interface.

2. Standardization and extensibility: The framework should
make it easy for vendors of RDMA hardware to get their
devices virtualized.

3. Unmodified kernel and userspace components: Existing
native RDMA applications should run unmodified in a
HyV-enabled virtual machine.

Requirement (1) is achieved by implementing the hybrid
virtualization architecture as discussed in the previous sec-
tion. Requirements (2) and (3) are achieved through a mod-
ular implementation of HyV. In the following, we first pro-
vide a brief overview of the software architecture of HyV,
and then discuss several aspects in more detail.

4.1 Overview

HyV is implemented as a plugin component for the Linux
OFED RDMA software stack. OpenFabrics is an effort by
different vendors to integrate RDMA interconnect technolo-
gies and provide a standard RDMA verbs programming

interface [19]. Their OpenFabrics Enterprise Distribution
(OFED) is a widely used RDMA software stack which
spans both user- and kernel-space. User-space applications
link against the libibverbs library which forwards control
verbs operations to the OFED core in the kernel; from there
they are further forwarded to a device-specific kernel-driver.
Data verb calls are forwarded to a device-specific user-space
driver where network resources are directly accessed, by-
passing the operating system. By programming against the
OFED provider API, vendors can enable their devices with
a user- and kernel-space driver.

Figure 3 shows the architecture of HyV as it is embedded
in the OFED stack. HyV allows the unmodified OFED stack
to be used by both guest and host OS. Applications inside a
virtual machine will use the regular components comprising
of libibverbs, OFED core and user-space device drivers.
Instead of running the real kernel-level provider, however,
HyV requires a virtual provider to be loaded inside the guest.
The virtual provider interacts with the HyV frontend to relay
verbs control operations to the hypervisor. At the hypervisor,
a HyV backend receives the control operations and feeds
them into the OFED core at the host.

The virtual provider loaded in the guest is device-specific
and is the only component in HyV that needs to be imple-
mented to virtualize a given RDMA network interface. A
virtual provider inside the guest is necessary because set-
ting up the memory-mapped data path during control op-
erations is device-specific. Vendors of RDMA hardware
develop a virtual provider by implementing the standard
OFED function calls that are otherwise implemented by their
real kernel-device driver. For instance, by implementing the
create_gp() interface, a vendor is given the opportunity
to implement a device specific mapping of the QP resource.
The HyV framework provides a set of API functions which
makes the development of a virtual provider for a given hard-
ware easier. As an example, HyV provides generic functions
to map and unmap host memory into the guest address space.
Later, we discuss the implementation of virtual providers for
one Infiniband and two iWARP RDMA devices.

As discussed earlier and also illustrated in Figure 3, only
control operations are relayed through the hypervisor (via
virtual provider), data operations are executed directly on the
RDMA hardware using the previously established mapped
resources in the guest.

Control Path: We use the virtio paravirtualization frame-
work as a basic mechanism to pass control operations from
the guest to the hypervisor [29]. virtio uses a queue abstrac-
tion for the transport layer, called virtqueue, which allows
buffers to be exchanged between guest and host. Hypercalls
are used to notify the host of newly available buffers that
are ready to be transmitted, and injected interrupts are used
to notify the guest of newly received data buffers. On x86,
notifications require VM exits and therefore add some extra

21

Application

libibverbs

TDevice Userlib
1

OFED core

@ Virtual Provider
g 1
¥

User

Guest

HyV
Frontend
1

HyV
Backend
1

OFED core
I
v v)
[Device]

Network resource
(e.g. QP/CQ)

Memory region

Host
Kernel

Control path

E Data path

Figure 3: HyV architecture

latency. We will evaluate the effect of interrupt injection and
hypercall VM exits in Section 5.

Data Path Work Completions: Remember that RDMA of-
fers two ways of notifying the application about a com-
pleted RDMA operation, polling and blocking. With HyV,
no hypervisor interactions are necessary when polling is
used. In the case of blocking, the situation is different. Here,
the application is put to sleep and woken up as soon as
work completions are put on the CQ. One possible way
to implement such a notification mechanism is to forward
callback operations using the virtio framework. However,
we found the virtio framework to be inefficient at handling
small buffer events (e.g., completion events of 4 bytes).
Namely, virtio uses extra work queues to notify a guest
of a consumed buffer which adds latency to the perfor-
mance critical event path. Consequently, we decided to use
a shared ring-buffer instead of virtqueue buffers to forward
events to the guest. The ring-buffer is an implementation of
a single consumer/producer queue [15] which is protected
by guest and host private locks to allow for multiple con-
sumers/producers. These additional locks are necessary be-
cause Linux defers interrupt processing to software inter-
rupt handlers which can run in parallel on different CPU
cores [17].

4.2 Resource Mapping

The fundamental task of RDMA control operations like
create_gp() or reg.mr () is to map resources (e.g., queue
pair, or user memory) either from the host into the applica-
tion inside the virtual machine, or, from the guest application
to the host.

Our observation with RDMA devices is that there are
two basic schemes used to setup such a resource mapping:
bottom up - the application reserves virtual memory in the
form of a memory map call to a special file and the kernel
device driver backs them by physical pages (e.g. DMA-

- @
S
=
‘t;">
Q
S
I ;/@);!
2
z
o
©
S
£
i > @
I
o
Tis
)
@
>
2
S

Figure 4: Bottom up memory mapping

enabled pages or PCI I/O memory); fop down - memory is
allocated in the application and pinned by the kernel device
driver to enable DMA transfers.

It turned out that implementing such a mapping function-
ality in case of virtualization is challenging due to several as-
sumptions made by the OFED host drivers. In the following
we describe the challenges and explain how we addressed
them in HyV. Note that we cannot use an IOMMU to per-
form these mappings because we share a single device across
virtual machines with different physical address spaces. De-
vices can initiate DMAs to any address spaces at any time.

Bottom up: The provider on the host expects a contiguous
(host) virtual memory region, ready to back it with physical
pages. Unfortunately, a contiguous virtual memory region
in the guest might not be contiguous in the host virtual
memory (HVM). This is because in KVM virtual machines
are essentially regular Linux processes, each of which with
its own virtual address space.

To overcome this problem in HyV, we remap guest phys-
ical memory (GPM) to the actual physical pages of the net-
work resource. The various steps of this process are illus-
trated in Figure 4. First, the application performs the map-
ping as is (step 1), which ends up in the virtual provider.
From there the call is forwarded to the HyV frontend where
the reserved virtual memory region is backed by physical
pages (step 2). Subsequently, the HyV frontend passes the
list of physical pages and the initial mapping parameters to
the HyV backend where the pages are translated to the cor-
responding virtual memory regions on the host (offset calcu-
lation). Using the initial mapping parameters, the HyV back-
end creates a mapping into host virtual memory (HVM) to
extract the physical pages of the network resources by walk-
ing the page table (step 3). Finally, the backend remaps the
virtual memory regions that correspond to the mapping in
the guest, to the extracted pages of the actual network re-
source (step 4). The HVM mapping is not needed anymore
and can be destroyed.

Top down: Here, the provider also expects a contiguous
(host) virtual memory region, but unlike in bottom up it

22

virtual

Guest

physical

virtual

Host

physical

Figure 5: Top down memory mapping

does not back the region itself but relies on the operating
systems to do so. Thus, the provider only pins the memory
to ensure that the pages can be used for DMA transfers and
extracts them for installation on the device. Unfortunately,
in the virtualized environment we have the same problem as
in bottom up that the virtual memory region from the guest
is not contiguous on the host.

Again, in HyV we implement a memory remapping be-
tween the guest and host. The various steps are illustrated in
Figure 5. This time we have to use the underlying physical
pages that back the virtual memory region in the guest (step
1). Thereafter, we pin the physical pages in both the guest
and the host in order to create a new contiguous mapping
into HVM (step 2). This mapping can then be used by the
provider to extract and pin the physical pages as described
previously. After registration the HVM mapping can be de-
stroyed. HyV does not need to perform a remapping into
contiguous HVM if the memory region is already contigu-
ous, i.e. contiguous in GPM. Currently, we do not fully lever-
age this fact, but avoid remapping if the memory region fits
inside a single page.

4.3 RDMA Devices Supported by HyV

A virtual provider for a specific RDMA network interface
needs to implement various handlers for verb control oper-
ations like create_qp() or create_cq(). These handlers
are invoked by the OFED runtime everytime an applica-
tion issues a corresponding verb control operation. A vir-
tual provider can implement a given handler in two ways.
Either — for instance when implementing the reg_mr () han-
dler — it can relay the operation directly to the real kernel-
level provider by using the matching relay API function
available in HyV. Or — for instance when implementing the
create_gp() handler — a provider may use the mapping
API functions available in HyV to map network resources
into the guest in a device specific way. Table 1 shows the
most important API functions available in HyV for imple-
menting virtual providers.

To emphasize the framework aspect of HyV and to show
that it is not limited to a particular interconnect technology

API functions
hyv_reg mr ()
hyv_create_gp()
hyv_mmap_gvirt ()

\ Description

forward reg_mr () operation
forward create_qp() operation
top down memory mapping
bottom up memory mapping

hyv_mmap_hphys ()

Table 1: Most prominent HyV API for implementing virtual
providers

we implemented virtual providers for both Infiniband and
iWARP devices. With these providers we are able to support
the following devices:

Mellanox ConnectX-1/2/3 VPI/Pro: The ConnectX de-
vice supports Infiniband [9] and RDMA over converged Eth-
ernet (RoCE) [10]. Its driver allocates resources in the user-
space driver and requires a top-down mapping in the virtual
provider. Additionally, its driver requires a user accessible
region (UAR), e.g. used for doorbells. The UAR is allocated
in a bottom up manner and can be easily mapped by the pro-
vided mapping APL.

Chelsio Terminator 4/5: This is a 10GbE NIC with a fully
offloaded RDMA iWARP [27] engine. iWARP implements
RDMA functionality on top of a TCP/IP transport. The T4/5
device allocates network resource in a bottom up manner.
Therefore, the resource mappings for T4/5 could easily be
implemented using the aforementioned mapping API avail-
able in HyV.

SoftiWARP: This device is a software implementation of
iWARP on top of kernel TCP sockets [30]. Applications us-
ing SoftiWARP benefit from zero-copy data transmission.
However, data operations do involve the kernel and require a
system call to kick of processing. This system call is imple-
mented by a special post_send() operation to the kernel.
The virtual provider for SoftiWARP therefore has to virtual-
ize the post_send () operation which is done by forwarding
the operations the same way as control operations. Unfortu-
nately, this also adds extra latency during data operations.
We are going to evaluate the latency overhead of virtualized
SoftiWARP in Section 5.

5. Evaluation

In this section we evaluate HyV at the level of raw RDMA
operations. We demonstrate HyV in two different experi-
mental setups.

Experimental setup (A): A 6-node Infiniband cluster where
each machine contains a dual Intel Xeon E5-2650 v2 (2.6Ghz,
20MB Cache) CPU and 160GB DDR3 RAM. The machines
are connected using a dual port Mellanox ConnectX-3 VPI
56Gb/s FDR Infiniband RNICs. We use two back-to-back
connected interfaces on different physical machines for mi-
crobenchmarks. Experiments in Section 6 use all machines
with both ports connected through a Mellanox SX6036

23

ConnectX3 1

6 ~ SRIOV-ConnectX3 EXXxx] —
HyV-ConnectX3 EEEEEs

5 B T

Time (ms)

B

10 100

Size (entries)

Figure 6: Create QP

Switch. On these systems we use the KVM hypervisor of a
3.13.11 vanilla Linux kernel with a QEMU frontend [4]. All
virtual machines are configured with six virtual CPUs and
16GB memory and they run a 3.13.11 vanilla Linux kernel
with KVM_GUEST kernel configuration enabled. We com-
pare three configurations: native, SR-IOV and with HyV.

Experimental setup (B): Two machines with dual Intel
Xeon E5-2690 (2.9Ghz, 20MB Cache) CPU and 96GB
DDR3 RAM. The machines are connected using Chelsio
T420-CR 10GbE RNICs with jumbo frames (9K MTU).
The NICs are connected through an IBM G8264 Switch.
Kernel versions and configuration are the same as above.

5.1 Control Path

In the following, we quantify the performance overhead of
control operations in HyV which is required to enable com-
plete bypass on the data path. All experiments are performed
using experimental setup (A).

The create_gp() verbs call creates a queue pair and in-
stalls it on the RNIC for direct access. In this test we create
QPs that can hold 10, 100 and 1000 work request entries
and compare the virtual device’s control path to the control
path of the native device. We measure the performance by
counting the number of transactions (creating and destruct-
ing QPs) over a period of 10 seconds. As can be observed
from Figure 6, HyV shows slightly lower performance than
native, as it has to double pin and remap the QP memory
(top-down mapping, cf. Section 4). This shows that creation
time is actually dominated by installing the resource on the
device. SR-IOV has similar but slightly worse performance
than HyV. We suspect more complex communication and
resource management on the device when dealing with vir-
tual functions (VF) to account for lower performance on the
control path.

The reg mr () verbs call registers a memory region for
later use, causing the NIC driver to pin the memory re-
gion and install its physical pages onto the NIC. Figure 7
shows the registration cost for memory regions with sizes
from 1KB to 256MB. Memory allocation and population
cost is not included in the measurement. For sizes smaller
or equal to 64KB, the memory registration time is more or

[ConnectX3 ——
[SRIOV-ConnectX3 ——
HyV-ConnectX3 —*—

10000

1000 r
1 >

[
o
o

Time (usec)

10 F

A
*

Zf_ <

2,
* 5

G,f_ »(‘,9 7/9 J% 6‘7/9 9\5\@9
Size (byte)

[
%

Figure 7: Memory Registration

less constant and is determined by the cost of processing
the system call and manipulating the process address space.
Except for SR-IOV where, as above, registering seems to
be limited by communication overhead with the device. For
larger sizes, the registration cost is dominated by the num-
ber of pages being registered. Registering a MR with HyV-
ConnectX3 takes approximately 2 times as long as with na-
tive ConnectX3. For small sizes this overhead mainly comes
from forwarding the command over the paravirtual con-
trol path. For larger transfer sizes the overhead can be ac-
counted to the double-pinning of pages (guest and host) as
well as to the cost of remapping memory. SR-IOV takes
approximately 4 times as long as compared to native Con-
nectX3. To get a better understanding if this is a general
PCI passthrough/SR-IOV issue we conducted the same ex-
periments on a passthrough-T4 device (not shown) and ob-
served that this setup only shows minor performance over-
head on the control path. We plan to further investigate the
exact cause that limits the ConnectX-3 SR-IOV control path
performance.

A memory region (MR) can be unregistered with the
dereg_mr () verbs, which unpins the memory and removes
the physical page list from the NIC. We have also measured
the cost of unregistering memory regions, but we omit dis-
cussing these results in detail as they were very similar to the
results we got for memory registration.

5.2 1/O Performance

One key metric of interest is the raw I/O performance of
HyV in terms of RDMA data operations. In the following,
we look at throughput and latency of RDMA operations
in HyV, and compare the results with the performance ob-
tained natively and with passthrough. The benchmarks are
performed either VM-to-VM or host-to-host.

Latency: To measure latency we use RDMA read oper-
ations with 4B and 16KB message size respectively. The
reported numbers are round-trip times, i.e. work comple-
tions of read operations are generated after the remotely read
memory has been stored locally. To determine the comple-
tion of a RDMA operation we use CQ polling. Experiments

24

lasts 10 seconds and numbers reported are the average over
5 runs.

As can be observed from Figure 8a, the three different
configurations, native, SR-IOV and HyV using experimental
setup (A) show very similar performance for both 4B and
16KB message size. This is because in all three cases, the
network resources (queue pairs, completion queues) are be-
ing accessed directly from the application in the guest, with
no operating system or hypervisor involvement.

Figure 8c compares read latency of 4B and 16KB mes-
sage size for the native and HyV-enabled T4 device when
polling for completions using experimental setup (B). As
seen in the previous Section, due to complete bypass of the
hypervisor HyV-T4 is able to achieve equal to native laten-
cies.

Throughput: To measure throughput we use RDMA write
operations with message sizes from 1B to 64KB. The test
starts with 10 outstanding work requests and posts a new
work request each time a request has completed. The inten-
tion behind the small number of outstanding work requests
is to capture a potential overhead introduced by the virtual
environment. Benchmarks in Figure 9a are performed on ex-
perimental setup (A). We observe that HyV does not im-
pose any overhead in terms of throughput. Due to hypervisor
bypassing, passthrough and HyV show equal performance
compared to their native counterpart. In each of the cases
linespeed is reached at 4KB message size.

Throughput tests using experimental setup (B) with HyV-
T4 (not shown) confirmed the above results. T4 is able to
reach linespeed at 2KB transfer size as native (10 outstand-

ing).
5.3 Virtualization Overheads

VM exits are one of the main sources of overhead in I/O vir-
tualization in general. With HyV, VM exits occur as part
of forwarding control operations or when using comple-
tion events. Fortunately, RDMA semantics allow completion
event interrupts per operation, in contrast to traditional net-
working where in the worst case, interrupts are generated per
packet.

Completion Events: Figure 8b shows the RDMA read la-
tency with 4B and 16KB message sizes for the case where
blocking is used instead of CQ polling on experimental setup
(A). As can be seen, both SR-IOV and HyV show equal
latency for 4B message size, but their latencies are higher
compared to the latency in the native setup. For 16KB mes-
sage size, HyV shows slightly higher latency than SR-IOV.
The performance overhead for completion events can be ex-
plained by the need for an emulated advanced programmable
interrupt controller (APIC) to allow interrupt injection with
the current x86 architecture [8]. This introduces VM exits
to inject interrupts into the VM on each completion event
(see Section 4). However, as expected, the interrupt injec-
tion latency of 3us for 4B remains constant with increasing

e
o N

®

Latency (usec)

r ConnectxX3 —J
SRIOV-ConnectX3 ©355d
L HyV-ConnectX3 s

1
-
N

1
-
o

o

X
Lo
dotole!

v,v
X

X%
oo}

oo

%

‘v
%

%

X

o
3%
o’

RRX

o

o

%
o

020!

Latency (usec)

4 16K
Size (byte)

(a) Infiniband — Polling

Figure 8: RDMA Read Latency

= ConnectX3 ——
SRIOV-ConnectX3 &35
L HyV-ConnectX3 s

T T
TRRRRIZLY
RRIRRI
RRRRRKKKS

XS
S

B
RO

%

R
%S
5

&
e %
K
{52
K
e %
K
e %
K
{2
K
K
Ve %
K
{52
K
&
e %
K
{52
K
[
5
e %
K
152
K
[
K
{52

v,v
335
KRS

IS

Size (byte)
(b) Infiniband — Events

Latency (usec)

35
30
25

T4
HHyV-T4 22

T
BT
TIIIIZLS

%%

<
2%

000 %%
RRRRRR

Size (byte)
(c) iWARP - polling

50 L ConnectX3 —+— 50 L ConnectX3 —+— 50 - ConnectX3 —+—
SRIOV-ConnectX3 —>— SRIOV-ConnectX3 —>— SRIOV-ConnectX3 —>— g

? HyV-ConnectX3 —*— [HyV-ConnectX3 —*— [HyV-ConnectX3 —*—
& 40 g 40 2 40
e g g /
5 30 5 30 5 30
a a a
< < <
g g P g
3 20 3 20 3 20
£ = =
[[=

10 10 10

0 (/a/ 0 (/;/’ o e,au/‘

VT O e O o % % Yo 994—6‘74_ VRO e O S % % Yo 994_@74_ VRTS8 D O o % % Yo "’94,674,
Size (byte) Size (byte) Size (byte)

(a) Polling — 10 outstanding

(b) Events — 10 outstanding

(c) Events — 18 outstanding

Figure 9: RDMA Write Throughput on Infiniband

message size and thus, becomes negligible for large message
sizes.

We further investigate the effect of CQ blocking on
RDMA write throughput. Figure 9b-c shows write through-
put for the two different batch sizes. In a configuration with
just 10 outstanding work request, ConnectX3 reaches line-
speed at 8KB. The performance gap for up to 8KB between
the native and virtualized environment is due to interrupt in-
jection overhead, cf. above. As we increase the number of
outstanding work requests to 18, the overhead is amortized.

Memory footprint: The size of the memory footprint is an
important metric in a virtualized environment and directly
affects the level of consolidation that can be achieved. We
ran an experiment where we register a memory region of
IMB and count the the number of pinned pages in the sys-
tem. What we observed is that with the passthrough config-
uration the entire virtual machine memory was locked and
held in the host RAM. In particular, we noticed that the vir-
tual machine resident set size was 16GB, which is the max-
imum RAM the VM was permitted to use in the given con-
figuration. The reason for this behavior is that passthrough
requires locking of the complete guest physical memory to
support direct DMA anywhere into the VM memory.

For the same experiment, but using a HyV-enabled VM,
we observed only 1IMB of memory being pinned and a res-

25

ident set size of 205MB (guest application + kernel). HyV
allows for a more efficient memory usage because all the
RDMA memory (which is DMA’able) is explicitly regis-
tered through the hypervisor. Consequently, HyV has a much
lower memory footprint than passthrough, and thereby al-
lows packing more VMs on to a single physical machine.

CPU load: CPU load is also an important metric to be
considered in the context of I/O virtualization. Table 2 shows
the host CPU load during RDMA operations (initiating side)
for different configurations (100% is equivalent to 1 loaded
core).

All configurations fully load a single CPU if RDMA op-
eration are used in combination with polling. When using
events, the CPU load is generally much lower since the ap-
plication is temporarily put to sleep (as opposed to execut-
ing a busy wait polling loop). However, events lead to in-
terrupt injections in a virtualized environment and therefore
increase the CPU load for both passthrough and HyV.

5.4 Software Devices

In the following we show that VMs can directly benefit from
HyV-enabled software RDMA devices where hardware is
not available.

In Figure 10a we compare native and virtualized TCP re-
quest/response performance against Software RDMA send/

160 - TCP_RR 1 SEND/RECV = m 80 -

= -

40 4

80 -
40

60
50 -
40
30

60

Latency (usec)
o
VM exits/Transaction

20 -

| .
0 0

SEND/RECV (SoftiWARP) —*— 80 -
TCP_RR (virtio-net) —=— 70 -

SEND/RECV (SoftiWARP) —¥—
TCP_RR (virtio-net) —=—

VM exits/Transaction
»
o
T

'\n/ 10 F

Native Virtualized

(a) 4B (bottom) and 16KB (top) message sizes

e S Y% S e Dy O, 5 Da S Y o
Tt Yo o % 9‘94-\%4-1‘)4-/9 %
Size (byte)

(b) Interrupt Injections

0
Y e e G e D O, s on S Y o
T S Y e T W, N5, Yo, Y
T E S Yo or
Size (byte)

(c) Hypercalls

Figure 10: Send/receive on Software RDMA compared to TCP request/response

read latency write throughput

polling events | polling events

ConnectX3 100% 4% 100% 46%
sriov-ConnectX3 | 100% 35% 100% 96%
HyV-ConnectX3 | 100% 22% 100% 98%

Table 2: CPU load

receive on experimental setup (B). RDMA send/receive has
similar semantics to socket write()/read(). All config-
urations run on a Chelsio T4 (RDMA offloading disabled)
NIC. For virtualized TCP we use the virtio-net device with
a vhost kernel backend. As software RDMA device we use
SoftiWARP a iWARP implementation on top of kernel TCP
sockets. HyV is used to virtualize the SoftiWARP device.

Our results show that SoftiWARP is capable of delivering
lower latencies than TCP sockets. In the virtualized setup
this performance benefit over TCP becomes more significant
as HyV-SoftiWARP only introduces an overhead of approx-
imately 10us. In contrast virtio-net is up to 2.5 times slower
than native TCP and, thus, can be outperformed by HyV by
a factor of 2. This can be explained by additional copies
in virtio-net and network stack traversals on both guest and
host. In contrast, HyV offloads the TCP/IP processing onto
the host.

We show interrupt injection exits in Figure 10b, hypercall
exits in Figure 10c. HyV only requires two VM exits for in-
terrupt injection per transaction, i.e. one for each operation
(send/receive), independent of the transfer size. Moreover,
HyV-SoftiWARP requires only one hypercall exit per oper-
ation. In contrast, the packet-based nature of virtio-net re-
sults in much larger numbers of VM exits. Note that Virtio-
net does implement a certain level of batching to mitigate
this problem, nevertheless the interrupt rate and VM exits is
much higher compared to HyV.

These results show the direct benefit of having Software
RDMA devices in a virtualized environment. While interrupt
injection and hypercalls add up to a large amount of VM ex-
its respectively computation overhead on a traditional par-
avirtual NIC, HyV can totally avoid interrupt exits on data

26

Device Provider | Virtual provider
ConnectX1/2/3 | 9165 357
SoftiWARP 7923 279
Chelsio T4/5 11483 536

Table 3: Virtual provider lines of code

operations if polling is used, and even when using events
only one VM exit per operation is required.

5.5 Virtualization Effort

As discussed, to virtualize a device with HyV, a vendor has
to write a virtual provider. Table 3 shows lines of code for the
original provider (running in the host) and their virtual coun-
terpart for Mellanox ConnectX1/2/3, SoftiWARP and Chel-
sio T4/5. In all cases, the code size of the virtual providers
is less than 5 percent of the original provider. Due to the
framework API available in HyV, the virtual providers are
easy to implement and do not require a deep understanding
of the original provider. For example, it took us only 3 days
to implement a virtual provider for the Chelsio T4/5 RDMA
NIC.

6. Application: RAMCloud

RAMCloud [23] is a distributed DRAM-based key-value
store. Durability and availability are provided by fast failure
recovery from disks, instead of main-memory replication,
due to cost and energy [21]. RAMCloud is built for large
scale and low latency. The latter is achieved by performing
RPCs over RDMA. This allows, for example, to execute a
100B read in under 5us. RAMCloud’s cluster architecture
consists of three components: master and backup, coordina-
tor and client. A storage server runs a master which holds
all the data in DRAM and, typically, a backup of the data
on disk. The coordinator is a centralized service managing
metadata and cluster membership. Clients perform RPCs to
the coordinator and to masters. In our experiments we run
masters without backup, as our focus is on network I/O. We
evaluate RAMCloud on experimental setup (A), cf. Section

1.8 :
16 <
14
1.2

0.8
0.6
0.4

TR RN]

123 456 7 8 9101112

Aggregated Read Throughput (Gbps)
L
o - N w S v (o)) ~N <]
>10usecs (%)

Number of Clients

(a) Aggregated system read throughput

Native (median) 1
HyV (median) &3
Native (99.9%
HyV (99.9%) mmmm—m

XN

100 ¢

0%

T

OO0 T OO0 T T OO OZTOTOTOTOTOTOT

10

Latency (usec)

%3

E::
5:
1

K 10K
Size (byte)

100K M

(b) Single client read latency

Figure 11: RAMCloud deployed in virtual machines using HyV

5, both in a native deployment and virtualized with HyV.
Two aspects of the system are measured: aggregated read
bandwidth and single client latency.

Aggregated Read Bandwidth: In this experiment we run
12 masters and 1 coordinator co-located on 6-machines
leveraging all 12 IB ports available. Each master is ini-
tialized with one table holding one entry with a 30B key
and 100B payload. Clients perform random reads across all
servers. We run clients co-located to the masters on all 6-
machines with increasing number to show the scalability of
the system network I/O. For HyV we use two VMs per phys-
ical machine and give each machine access to one IB port.
Figure 11a shows aggregated read throughput (lines/left)
and the percentage of operations which take longer than
10us (bars/right). RAMCloud’s performance increases lin-
early with the number of clients, and HyV shows near native
performance. The higher percentage of operations which
finished after 10 microseconds with HyV can be explained
by general virtualization overhead (e.g. scheduling [13, 20],
APIC [8], etc.).

Single Client Latency: Figure 11b shows single client read
latency of varying object sizes (30B key) in a single server
setup. HyV is able to achieve equal to native latencies. The
99.9 percentile in the virtualized environment is slightly
higher due to general virtualization overhead, cf. above.

Summary and Experience: In the above experiments we
show that HyV imposes a minimum performance overhead
on a distributed RAMCloud deployment by retaining key
performance properties of RDMA. Such deployments could
directly benefit from virtualization, e.g. by putting standby
nodes for recovery in VMs. These nodes can be booted in
seconds and moved around at system administrator’s discre-
tion. Moreover, by leveraging the VM image provisioning
feature, which is only made possible by putting RAMCloud
inside a VM, we significantly reduced the system setup and
deployment time.

27

7. Related Work

vRDMA is a paravirtual RDMA device for the OFED
RDMA stack [1]. Like HyV, vRDMA allows direct access
to application buffers in VMs by RDMA NICs. However,
in contrast to HyV, vRDMA uses a paravirtual communi-
cation channel to perform data operations. That is, VRDMA
cannot completely bypass the hypervisor on data operations.
The benefit of such a design is that no device specifics have
to be exposed to the VM which may simplify VM check-
pointing or VM migration. Additionally, there is no need
for memory remapping in VRDMA because it directly uses
the OFED kernel Verbs API on the host to forward work re-
quests from the guest to the NIC’s work queue. However, it
trades these properties for performance (especially latency).
From our experience with SoftiWARP we estimate a perfor-
mance overhead of 3us on the send path. On the receive path
polling for completions cannot be implemented trivially. Ei-
ther events have to be used on the host or both host and
guest have to perform polling which significantly increases
the CPU load. In any way, we estimate a total performance
overhead of 4us, in the best case, which e.g. results in up to
4 times higher read latency with IB.

The closest to our solution is “High-performance VMM-
bypass I/O in Virtual Machines* [16]. It uses a paravirtual
approach to support complete bypass of the hypervisor on
data operations. Our work on HyV contributes the follow-
ing: (1) memory mapping API to allow using unmodified
drivers on both guest and host, (2) generic, interconnect in-
dependent, RDMA verbs forwarding API to ease develop-
ment of lightweight virtual providers, (3) demonstration of a
real distributed application on a HyV-enabled cluster

Paradice is a I/O paravirtualization framework to virtual-
ize devices that use a (unix-style) device file interface to ap-
plications [2]. Like HyV, Paradice virtualizes at a high-level
interface (“paravirtualization boundary”) to target a larger
number of devices in a generic way. Isolation between VMs
is achieved by assigning the device to a dedicated driver VM
(requires IOMMU) and runtime checks on memory opera-
tions. Unfortunately, device drivers have to be modified to
perform these checks (tool assisted).

Direct |[Hypervisor [Resource |Virtualization
I/O Path |Awareness |Efficiency |Features
Paravirtualization X v 1%t 15°
HyV v v ond ond
SR-IOV v X 37 37

Table 4: Comparison of virtualization architectures.

8. Discussion and On-Going Work

In the evaluation, we have quantified certain advantages of
HyV compared to paravirtualization and direct assignment
(e.g., better memory consolidation). In this section, we are
discussing both, limitations and potential further advantages
of HyV, in the context of traditional virtualization aspects
such as resource management, security, isolation or VM mi-
gration. Table 4 summarizes some of the findings discussed
in this section.

Efficient Resource Management: In comparison to SR-
IOV, one key advantage of HyV is its efficient resource
management. While it is the explicit resource management
of RDMA that allows for efficient resource management in
the first place, it is the fact that HyV re-instantiates the hy-
pervisor’s role as the global resource manager which extends
this feature to virtual machines. RDMA requires explicit re-
source management where all networking resources such as
memory regions, queue pairs, and completion queues etc.,
are created, managed, and destroyed by the applications run-
ning inside a VM. By relaying these resource management
calls on the paravirtualized control path, HyV explicitly in-
forms hypervisor of a VM’s networking requirements. This
is beneficial, considering that hypervisors often struggle to
predict a VM’s resource usage. For example, as demon-
strated, HyV’s VM memory footprint can be accounted ac-
curately and efficiently in comparison to SR-IOV/IOMMU’s
static memory assignment. Similarly, the numbers of QPs —
representing connections associated offloaded state on the
NIC - can be created and assigned dynamically on-demand
to a VM based upon its requirement. Hence, a connection-
heavy VM will end up consuming more networking re-
sources on NIC than a connection-light VM. This explicit
resource awareness in the hypervisor can also be used for a
better VM scheduling and provisioning.

Security and Isolation of VMs: By virtualizing an RDMA
NIC, HyV brings the NIC into the security domain of the vir-
tualized infrastructure. HyV depends upon RDMA security
mechanisms, which are similar in spirit to what can be found
in modern operating systems. All RDMA resources belong
to an application allocated protection domain. RDMA hard-
ware enforces isolation by identifying associated protection
domains for every resource and restricting access to it, if
necessary. Memory access rights (read or write, local or re-
mote etc.) are controlled by the application and enforced by
RDMA hardware. The hypervisor can check the validity of

28

these rights at memory registration time. Certain implemen-
tation related bugs such as a buggy DMA engine etc., can be
contained by using platform virtualization technologies such
as IOMMU.

To achieve performance isolation, RDMA provides a
number of settings at different granularity depending on the
interconnect technology [28]. These facilities can be used to
provide QoS, rate limiting etc. among VMs [26] and we are
currently exploring similar ideas in the context of HyV.

VM Migration and Checkpointing: VM migration and
checkpointing remain challenging issues even for HyV. The
complexity arises from the blackbox nature of the offloaded
I/O processing in the network card. Clean checkpointing can
be achieved by moving a VM into a stable state, where no
more offloaded I/O operations are in progress. This state
can be achieved by unmapping RDMA resources (or making
them read only) inside the VM, and then waiting until all
I/O operations and associated completion/error notification
events are generated by the RNIC.

VM migration requires explicit support from the RNIC
and involves moving network state (QPs, CQs) as well as
memory resources (registered memory areas and STAGS).
A device-specific hypervisor driver can assist with the state
export, migration, and import logic. An alternative approach
is to recreate RDMA state and resources on the newly mi-
grated machine [31]. However, implementation complex-
ity of such approaches prohibits their deployment in a dis-
tributed, general-purpose virtualized infrastructure.

To our knowledge, neither checkpointing nor VM migra-
tion is supported by any RDMA vendor yet. However, we
believe that a HyV-like hybrid virtualization architecture re-
taining control in the hypervisor will be beneficial for imple-
menting these features in the future.

9. Conclusion

RDMA networks — due to their ultra-low latency and high
bandwidth — are attractive not only in the HPC domain but
also for distributed systems processing cloud workloads in
data centers. In this work, we presented HyV, a virtualization
framework that unleashes the full performance advantages of
RDMA interconnects to virtual machines. HyV implements
a hybrid virtualization architecture where network resources
are mapped into the guest VM for direct access. We have
shown that HyV achieves close-to bare-metal performance
inside virtual machines. We further demonstrated the useful-
ness of HyV in the context of a real distributed system such
as RAMCloud, which we deployed on a HyV-enabled clus-
ter equipped with RDMA interconnects.

References

[1] Adit Ranadive and Bhavesh Davda. Toward a Paravirtual
vRDMA Device for VMware ESXi Guests. VMware, 2012.

[2] Ardalan Amiri Sani, Kevin Boos, Shaopu Qin, and Lin Zhong.
I/O Paravirtualization at the Device File Boundary. In Pro-
ceedings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, ASPLOS 14, pages 319-332, New York, NY, USA,
2014. ACM.

Nadav Amit, Dan Tsafrir, and Assaf Schuster. VSwapper: A
Memory Swapper for Virtualized Environments. In Proceed-
ings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’14, pages 349-366, New York, NY, USA, 2014.
ACM.

[4] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In Proceedings of USENIX Annual Technical Confer-
ence, pages 41-46, 2005.

[5] Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Cas-
tro, and Orion Hodson. FaRM: Fast Remote Memory. In //th
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14), pages 401-414, Seattle, WA, April
2014. USENIX Association.

[6] Thorsten Von Eicken, Anindya Basu, Vineet Buch, and
Werner Vogels. U-net: A user-level network interface for par-
allel and distributed computing. In In Fifteenth ACM Sympo-
sium on Operating System Principles, 1995.

[3

—

[7] Keir Fraser, Steven H, Rolf Neugebauer, lan Pratt, Andrew
Warfield, and Mark Williamson. Safe hardware access with
the Xen virtual machine monitor. In In st Workshop on Op-
erating System and Architectural Support for the on demand
IT InfraStructure (OASIS), 2004.

[8] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda,
Alex Landau, Assaf Schuster, and Dan Tsafrir. ELI: Bare-
metal Performance for I/O Virtualization. In Proceedings
of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS XVII, pages 411422, New York, NY, USA, 2012.
ACM.

[9] InfiniBand Trade Association. InfiniBand Architecture Spec-
ification, Volume 1, Release 1.2.1. 2007.

[10] InfiniBand Trade Association. Annex A16: RDMA over Con-
verged Ethernet (RoCE). 2010.

[11] J. Pinkerton J. Hilland, P. Culley and R. Recio. RDMA Pro-
tocol Verbs Specification. http://www.rdmaconsortium.
org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.
pdf, 2003.

[12] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joonwon Lee,
and Seungryoul Maeng. Demand-based Coordinated Schedul-
ing for SMP VMs. In Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, pages 369—
380, New York, NY, USA, 2013. ACM.

[13] Hwanju Kim, Hyeontack Lim, Jinkyu Jeong, Heeseung Jo,
and Joonwon Lee. Task-aware Virtual Machine Scheduling
for I/O Performance. In Proceedings of the 2009 ACM SIG-

29

PLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, VEE 09, pages 101-110, New York, NY,
USA, 2009. ACM.

[14] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony
Liguori. kvm: the Linux Virtual Machine Monitor. In Pro-
ceedings of the Linux Symposium, volume 1, pages 225-230,
Ottawa, Ontario, Canada, June 2007.

[15] L. Lamport. Proving the correctness of multiprocess pro-
grams. [EEE Trans. Softw. Eng., 3(2):125-143, March 1977.

[16] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K.
Panda. High Performance VMM-bypass I/O in Virtual Ma-
chines. In Proceedings of the Annual Conference on USENIX
06 Annual Technical Conference, ATEC 06, pages 3-3,
Berkeley, CA, USA, 2006. USENIX Association.

[17] Matthew Wilcox. I'll Do It Later: Softirqs, Tasklets, Bot-
tom Halves, Task Queues, Work Queues and Timers. In
Linux.Conf.Au, 2003.

[18] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using
One-sided RDMA Reads to Build a Fast, CPU-efficient Key-
value Store. In Proceedings of the 2013 USENIX Conference
on Annual Technical Conference, USENIX ATC’13, pages
103-114, Berkeley, CA, USA, 2013. USENIX Association.

[19] OFED. The Open Fabric Alliance, at https://www.
openfabrics.org/.

[20] Diego Ongaro, Alan L. Cox, and Scott Rixner. Scheduling I/O
in Virtual Machine Monitors. In Proceedings of the Fourth
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE 08, pages 1-10, New York,
NY, USA, 2008. ACM.

[21] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John
Ousterhout, and Mendel Rosenblum. Fast Crash Recovery in
RAMCloud. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, SOSP ’11, pages 29—
41, New York, NY, USA, 2011. ACM.

[22] John Ousterhout, Parag Agrawal, David Erickson, Christos
Kozyrakis, Jacob Leverich, David Mazieres, Subhasish Mitra,
Aravind Narayanan, Diego Ongaro, Guru Parulkar, Mendel
Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan
Stutsman. The Case for RAMCloud. Commun. ACM,
54(7):121-130, July 2011.

[23] John Ousterhout, Parag Agrawal, David Erickson, Christos
Kozyrakis, Jacob Leverich, David Mazieres, Subhasish Mi-
tra, Aravind Narayanan, Guru Parulkar, Mendel Rosenblum,
Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman. The
Case for RAMClouds: Scalable High-performance Storage
Entirely in DRAM. SIGOPS Oper. Syst. Rev., 43(4):92-105,
January 2010.

[24] Zhenhao Pan, Yaozu Dong, Yu Chen, Lei Zhang, and Zhijiao
Zhang. CompSC: Live Migration with Pass-through Devices.
In Proceedings of the 8th ACM SIGPLAN/SIGOPS Confer-

ence on Virtual Execution Environments, VEE ’12, pages
109-120, New York, NY, USA, 2012. ACM.

[25] PCI SIG. Single Root I/O Virtualization, at https://www.
pcisig.com/specifications/iov/single_root/.

[26] A Ranadive, A Gavrilovska, and K. Schwan. FaReS: Fair
Resource Scheduling for VMM-Bypass InfiniBand Devices.

In Cluster, Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on, pages 418-427,
May 2010.

[27] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. A
Remote Direct Memory Access Protocol Specification. RFC
5040, October 2007.

[28] S. A. Reinemo, T. Skeie, T. Sodring, O. Lysne, and O. Trud-
bakken. An Overview of QoS Capabilities in Infiniband, Ad-
vanced Switching Interconnect, and Ethernet. Comm. Mag.,
44(7):32-38, September 2006.

[29] Rusty Russell. virtio: Towards a De-facto Standard for Virtual
I/O Devices. SIGOPS Oper. Syst. Rev., 42(5):95-103, July
2008.

30

[30] Animesh Trivedi, Bernard Metzler, and Patrick Stuedi. A case
for RDMA in clouds: turning supercomputer networking into
commodity. In Proceedings of the Second Asia-Pacific Work-
shop on Systems, APSys ’11, pages 17:1-17:5, New York, NY,
USA, 2011. ACM.

[31] Vangelis Tasoulas. Prototyping Live Migrationn
With SR-IOV Supported InfiniBand HCAs. http:
//wuw.bsc.es/sites/default/files/public/mare_
nostrum/2013hpcac-04.pdf, 2012.

Notes: IBM is a trademark of International Business Ma-

chines Corporation, registered in many jurisdictions world-

wide. Intel and Intel Xeon are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United

States and other countries. Linux is a registered trademark of

Linus Torvalds in the United States, other countries, or both.

Other products and service names might be trademarks of

IBM or other companies.

