DaRPC: Data Center RPC

Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfefferle
IBM Research
{stu, atr, bmt, jpf} @zurich.ibm.com

Abstract

Remote Procedure Call (RPC) has been the cornerstone
of distributed systems since the early 80s. Recently, new
classes of large-scale distributed systems running in data
centers are posing extra challenges for RPC systems in terms
of scaling and latency. We find that existing RPC systems
make very poor usage of resources (CPU, memory, network)
and are not ready to handle these upcoming workloads.

In this paper we present DaRPC, an RPC framework
which uses RDMA to implement a tight integration between
RPC message processing and network processing in user
space. DaRPC efficiently distributes computation, network
resources and RPC resources across cores and memory to
achieve a high aggregate throughput (2-3M ops/sec) at a very
low per-request latency (10us with iWARP). In the evalua-
tion we show that DaRPC can boost the RPC performance
of existing distributed systems in the cloud by more than an
order of magnitude for both throughput and latency.

Categories and Subject Descriptors D.4.4 [Operating Sys-
tems]: Communications Management — Network Communi-
cation; D.4.4 [Operating Systems]: Organization and De-
sign — Distributed Systems

General Terms Design, Performance, Measurements

Keywords Remote Procedure Call, RDMA

1. Introduction

Remote Procedure Call (RPC) has been a key building block
of distributed systems ever since the early 80s [5]. However,
the emergence of new classes of large-scale distributed sys-
tems running in data centers has added extra pressure on
RPC systems. For instance, systems like HDFS, Zookeeper

Copyright (© 2014 by the Association for Computing Machinery, Inc. (ACM). Permis-
sion to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SoCC ’14, 3-5 Nov. 2014, Seattle, Washington, USA.

ACM 978-1-4503-3252-1.

http://dx.doi.org/10.1145/2670979.2670994

RPC RPC+Network|

user Stack

space) 5 = ﬁ (]

Ko ST RPC

SE?CZ Network . buffer
Stack . network
HH i queue

CPUs,NICs

OO Oy CRusN

Figure 1. (left) Traditional separation of networking and
RPC processing, (right) joint optimization of RPC process-
ing and networking in DaRPC.

or OpenFlow contain centralized RPC services (e.g., namen-
ode, scheduler, controller) that are asked to process high
volumes of RPC requests per second. Moreover, some re-
cent systems offering low-latency data access, like RAM-
Cloud [16] or Tango [3], demand ultra-low RPC latencies
while still requiring the RPC system to scale to high vol-
umes of requests.

Unfortunately, current RPC implementations used in to-
day’s cloud-based systems have difficulties meeting these
requirements. For instance, RPC services in HDFS and
Zookeeper can typically process 100-200K operations per
second at latencies between 200 and 500us. Other systems
like the one used in Tango are performing better (600K op-
s/sec at 60-70us), but in all these cases the performance
of the RPC system is considerably below what the hard-
ware (CPUs, network) can deliver. In fact, we observe that
these systems neither manage to saturate the network nor the
CPU. Recently, similar inefficiencies have been discussed at
the level of the network stack. To overcome these problems
it has been suggested to implement the network stack in user
space with reduced overhead [9].

In this work, we take this idea one step further and in-
tegrate RPC processing with network processing in user
space by using Remote Direct Memory Access (RDMA).
We present DaRPC, a high-throughput low-latency RPC
framework tailored to improve the performance of large-
scale distributed systems in data centers. The key idea used
in DaRPC is to coordinate the distribution of compute and

memory resources for both RPC processing and networking
within a many-core system. This approach is in contrast to
the classical way RPC systems are built, where RPC mes-
sage processing is implemented in isolation from the net-
work processing in the kernel (see Figure 1). By looking
at RPC processing and networking as a joint optimization
problem we can avoid context switches, cache misses and
achieve a high degree of parallelism as well as ultra-low
latency.

Aside from its scalability and latency characteristics,
DaRPC also provides an application interface which makes
it easy to use for existing cloud based distributed systems
for multiple reasons. First, DaRPC is implemented entirely
in Java and is thereby pushing its performance advantages
directly into the managed runtime of systems like Hadoop,
Zookeeper or Spark. Second, DaRPC provides a purely
asynchronous programming interface, allowing applications
to handle RPC operations with very few context switches
and minimal cache pollution. Internally, DaRPC takes ad-
vantage of the asynchronous nature of the RDMA network
stack to map RPC operations to network operations with the
utmost efficiency.

In the paper, we evaluate DaRPC on a 17-node cluster,
both as a standalone system and in the context of an ex-
isting distributed system like HDFS. We demonstrate that
on a single server system, DaRPC can process up to 2.4M
RPC reg/sec with a latency as low as 10us on Ethernet-based
RDMA adapters. This is an order of magnitude better than
the performance of some of the RPC systems used in prac-
tice today. We further show that similar throughput gains
(with some latency penalties) can be achieved in a configu-
ration with standard Ethernet adapters (without RDMA sup-
port) used at the clients. This is appealing considering that
data centers are mostly built from commodity equipment.

In summary, this paper’s contributions include (1) an
analysis of the scalability limits and latency overheads of
RPC systems used today (2) the design of DaRPC, which
demonstrates how RPC and RDMA network resources can
be jointly optimized to maximize throughput and minimize
latency of RPC request processing, and (3) the demonstra-
tion of how to use DaRPC in a real cloud workload.

2. Motivation

We use HDFS and Zookeeper to highlight the shortcom-
ings of some of the built-in RPC systems available in to-
day’s cloud services. The RPC performance of these systems
has been looked at before, but these studies are all based on
deployments on top of a Gigabit Ethernet network [2, 22].
While Gigabit Ethernet is still the pre-dominant network
technology used in data centers today, 10Gbit/s Ethernet is
becoming increasingly popular. In a deployment using Giga-
bit Ethernet, the performance of an RPC service may be lim-
ited by the network bandwidth. In this work we are interested
in investigating the full potential of an RPC system. There-

T TT T T T T T
throughput, hdfs —
o throughput, zookeeper == i
= latency, hdfs —x— 2
0 latency, zookeeper 2
S 120K - 1 | 4600 5
g 80K Il I I I | Jishaanssl | 400 E
40K Al SR S 1200
It :

124 10 20 30 40 50 60

clients
30 T T T T 30
= cpu usage, hdfs —— -
= Ccpu usage, zookeeper mmmm I
[J) bandwidth, hdfs —<— =
§ 15 bandwidth, zookeeper —=— 15 B
g E
> c
Q ©
S I 8
0 ER RS Wb B B U DTS DN ANl B 0

124 10 20 30 40 50 60
clients

Figure 2. (top) Throughput and latency of RPC operations
in HDFS and Zookeeper, (bottom) bandwidth and CPU con-
sumption of RPC operations in HDFS and Zookeeper.

fore, we ran a series of tests on a 17-node testbed composed
of dual-socket 8-core Intel Xeon servers interconnected by a
10 Gbit/s Ethernet network. Figure 2 shows throughput and
latency of getBlockLocation () operations in HDFS
and exist () operations in Zookeeper. In terms of through-
put both Zookeeper and HDFS namenode scale up to 100-
130K ops/sec, until a saturation point is reached. At the same
time, the average latency per client increases constantly from
initially 200us up to 500us.

Interestingly, these numbers are in the same ballpark
(considering the read-only workload for Zookeeper) as the
performance numbers measured on a Gigabit network de-
ployment with less powerful server machines [2, 22]. From
that, one can assume the performance not being limited by
either the network bandwidth or the CPU consumption at the
server. This is also confirmed by our measurements, show-
ing a maximum of 1.6% of the bandwidth being used with
the CPU load never exceeding 15% (1 core = 100 %).

Given that both the CPU and the network at the server are
not fully used, inefficiencies in I/O processing are a potential
remaining bottleneck. Examples of I/O inefficiencies are
cache misses, excessive interrupt processing or uneven load
balancing among server threads. We found that for both
the Zookeeper and the HDFS scenario the cache miss rate
was between 25-30% and around 2 context switches were
executed per RPC operation. Later in the paper, we show
that DaRPC operates with very few context switches and
also uses fewer cache misses, both effects leading to higher
RPC throughput and lower latencies.

3. Background

At this point, we want to briefly give some background on
RDMA networking. DaRPC uses jVerbs [23], a low-latency

RDMA stack for the Java Virtual Machine!. jVerbs exposes
RDMA network hardware resources directly to the JVM
through a standardized interface and provides Java processes
with the well-known RDMA features like kernel bypass and
zero-copy network I/O when transferring data between two
networked JVMs.

jVerbs provides a rich set of operations of which
post_send () /post_recv () operations are most rele-
vant for RPC messaging. With these operations, the sender
sends a message, while the receiver pre-posts an application
buffer, indicating where it wants to receive data.

Applications use jVerbs to create hardware resources on
the network interface such as send, receive and completion
queues. For each physical queue on the NIC, a queue ob-
ject in the host’s I/O memory is allocated which is mapped
into the JVM and can be accessed directly by the application
using jVerbs. Applications asynchronously post requests for
data transfers into the send/receive queues. A data transfer
request (also sometimes called work-request) identifies the
type of operation (e.g., send or receive) and points to a mem-
ory buffer that can be accessed from within the JVM. The
RDMA NIC processes requests in send/recv queues (often
referred to as “queue pair” (QP)) and places a completion
notification into the completion queue once the operation
has finished. A completion queue (CQ) can be shared by
multiple queue pairs, and it can be queried by the applica-
tion in either polling mode or in blocking mode. During data
transfer, the user memory referenced by data requests is ac-
cessed by the RDMA NIC directly via DMA in a zero-copy
fashion. For this to work safely, application data buffers are
required to be registered with the RDMA subsystem using
the reg_mr API call available in jVerbs. By doing so, the
RDMA subsystem will make sure the memory is pinned and
cannot be swapped out. In addition, it is required that all
buffers used for jVerbs data operations are of type “direct”
buffer. Java provides explicit API calls to allocate “direct”
buffers in a dedicated area of the heap that is not managed
by the garbage collector. This is essential for jVerbs since we
cannot have the garbage collector interfering with RDMA
data operations.

A special feature of jVerbs are Stateful Verb Calls (SVCs).
SVCs eliminate any overhead that occurs during repetitive
data operations. A typical data operation like post _send ()
or post_recv () requires the application to prepare an ar-
ray of work requests which in turn will have to be serialized
by jVerbs when placing the work request into the proper
queue. With SVCs, the entire state of a jVerbs operation
down to the serialized work request can be cached by the ap-
plication and re-used on repetitive operations. This reduces
both the CPU consumption as well as the latency of jVerbs
RDMA operations.

1jVerbs is available as part of the IBM SDK, Java Technology Edition,
Version 7

4. Design of DaRPC

The ultimate goal of this work is to create a RPC system
which fulfills the following three requirements:

1. High throughput: The system should be able to process
large volumes of RPC requests per second. This property
is key in the context of large-scale distributed systems
operating with centralized components (e.g., locking ser-
vice, OpenFlow controller, etc.). A single RPC service
may have to process millions of RPC requests coming
from thousands of servers.

2. Low latency: The latencies of individual RPC operations
should be close to the raw network latencies, even in
times where the RPC server is loaded. This property is
essential in cases where a RPC operation is part of a
series of serialized operations that need to be completed
in a short time frame (e.g., RPC for metadata lookup in a
storage system).

3. Cloud integration: The system should be easy to use for
cloud-based distributed systems.

With DaRPC, we meet the first two requirements by
jointly optimizing RPC processing and RDMA networking
in user space. And we meet the last requirement by offering
a powerful programming interface that provides zero-copy
RPC from and to application buffers inside a JVM. We will
describe the application programming interface of DaRPC
in section 5. Here, we first focus on the key components in
the design of DaRPC. We start off by illustrating the basic
interplay of RDMA and RPC processing in a single client-
server scenario. In a second step we look at how to scale the
server-side of DaRPC to efficiently process large volumes of
RPC requests. And finally, we describe the principles used
at the client-side to sustain low RPC latencies even under
concurrent accesses.

4.1 Single Client-Server RPC

Figure 3 illustrates the basic steps involved in a simple RPC
operation in DaRPC between a single client and a server.
First, the client marshals input parameters and potential
protocol data into a pre-registered RPC buffer and triggers
a post_send () to transmit a message to the server. At
the server, the message is DMAed into a RPC receiving
buffer by the NIC and a work completion is placed into the
server’s completion queue. Upon detecting the work com-
pletion event, the server unmarshals the message, executes
the RPC call, marshals the response value into an outgo-
ing RPC buffer and triggers a post_send () on its own
in order to transmit the response message. Once the client
detects a new work-completion event it knows the response
message has arrived and has been DM Aed into its user space
RPC buffer. The client then de-marshalls the response value
and completes the RPC call.

In DaRPC, we take advantage of jVerbs’s stateful verb
calls (SVCs) to avoid any overhead in serializing work re-

buffers ...
memory DMS
mapped | éﬂ@
work-request--.. 22 send, recy,
i’ completion
memory qgueues
request
hardware @L
queues respor
reﬁonse

RDMA NIC

Figure 3. A single-client RPC operation in DaRPC (server-
side only): (1) registration of RPC buffers, (2) posting of
receive operation, (3) blocking on CQ event, (4+5) incoming
RPC request, (6) polling of work completion, (7) execution
of RPC service, (8+9+10) transmission of response.

quests when transmitting RPC requests or responses. Specif-
ically, for each network buffer used for sending and receiv-
ing RPC data, DaRPC keeps a pre-serialized SVC object
around which encodes the given operation and can be placed
into a RDMA send or receive queue immediately.

In such a single client-server RPC message exchange, the
RDMA advantages of zero-copy network I/O and kernel-
bypass naturally translate into low RPC response times. For
instance, DaRPC provides latencies of 10us for RPC oper-
ations in an isolated client-server scenario. This is just 1us
above the raw RDMA send/recv latency we measured on the
same deployment.

4.2 Server-Side Processing

With regard to the server side, the key challenge is to paral-
lelize RPC request processing in a many-core system while
avoiding I/O inefficiencies such as context switches, locking
or cache misses.

In the following, by modifying the server side of the
basic RPC mechanism described in the previous section, we
present several design options and discuss their advantages
and limitations. We illustrate the effect on RPC throughput
for each option in Figure 5. The RPC benchmark we use
along with this section is implementing a “null” operation
with no application level code being executed at the server.
All experiments are run on our 17-node cluster described in
Section 2.

Simple completion queue scaling: A simple way of ex-
tending the single-client setup to multiple clients is to pro-
vision a separate completion queue for each connection ac-
cepted by the server. Separate server threads can be used to
query these completion queues, process RPC messages and
transmit responses back to the clients. Similar approaches
have been implemented with regular socket based network
stacks and are known to scale badly due to heavy context
switching between the server threads [17, 27]. In addition,

DaRPC cluster Cluster-head
" (event
send, recv, i connection " processing)
queues ||| FHHReO) || 1
; T buf resource
completion’ - manager
queue T i i =

—
: i
DRAM ﬁu_u
core

Figure 4. DaRPC architecture illustrated on a 4-socket (s1-
s4) NUMA machine.

the approach imposes high memory consumption due to
replicated resources in server threads.

Our measurements (Figure 5) show that by using simple
completion queue scaling, DaRPC can serve 16 clients firing
an aggregated volume of 480K RPC requests per second.
Although this is more than a factor 3 better than what we
have seen previously in HDFS and Zookeeper, adding more
clients caused contention at the server and performance de-
graded quickly.

Completion queue sharing: Contention among large
numbers of server threads can be avoided by having indi-
vidual client connections share a single completion queue
at the server. A single server thread can be used to query
the completion queue and dispatch events to a bounded pool
of processing threads. Such an approach resembles the ar-
chitecture of scalable web systems where a load balancer
dispatches requests to different nodes in the cluster. As can
be seen from Figure 5, compared to simple completion scal-
ing, completion queue sharing improves the RPC throughput
at the server by another factor of 3.

Completion queue clustering: One problem with com-
pletion queue sharing is that a single completion queue can
become the bottleneck very quickly. First, the size of a com-
pletion queue is limited, therefore it might fill up under a
heavy load. Second, a completion queue can only be pro-
cessed by a single dispatcher thread (only one thread can en-
ter the blocking call), potentially making that thread the bot-
tleneck. And third, the approach adds extra context switches
as worker threads need to be scheduled after event dispatch-
ing. To mitigate these problems in DaRPC, we use comple-
tion queue clustering. In this approach, a pool of completion
queues is created with each queue being shared by a subset
of the accepted connections at the server. We refer to a group
of connections associated with a single completion queue to
as a completion queue cluster.

Each cluster contains a cluster-head taking care of the
CQ event processing. Essentially, a cluster-head processes

4M

3M -

M -

request/sec

N
=<
I

|

]

N
]

DAY < . P
% y 9&,5 % S, %,
e . & G
0/ 7 /O
o ©

Figure 5. Effect of different design decisions and configu-
rations in DaRPC.

RPC requests, as illustrated in Figure 3, on behalf of a set of
connections. New connections get assigned to a dedicated
cluster at connection acceptance time. DaRPC constantly
monitors the load of each cluster based on the CQ polling
history and assign connections accordingly. The architecture
of DaRPC using clustering is illustrated in Figure 4.

The clustering approach has two advantages. First, clus-
ters can be assigned to dedicated cores in order to distribute
the load. And second, RPC requests can now be processed
in-place in the context of the cluster-head rather than dis-
patching the requests to separate worker threads. This saves
a context switch and reduces the CPU load. In our testbed we
configured DaRPC to use a pool of 4 completion queue clus-
ters. As can be seen from Figure 5, with such a configuration
we managed to process up to 2M RPC req/sec.

Work stealing and load balancing: Maintaining an
equal number of connections per cluster may not lead to a
uniform load distribution among the cores of a RPC server.
In fact, some clusters might experience a higher load than
others (due to loaded connections) even though the cluster
contains fewer connections. To mitigate this problem, we
continuously monitor the load of each cluster and always
assign new connections to the least loaded cluster. Here,
the history of polling cycles serves as a good indication of
the load of a cluster. Typically, a cluster-head — after hav-
ing processed a RPC request — will re-poll the completion
queue and keep processing as long as outstanding requests
are found, before eventually entering the blocking mode
again. A cluster can be considered loaded if its cluster-head
hardly ever falls back to blocking mode. We therefore use
the number of consecutive successful polls on the comple-
tion queue as a measure of the load of a cluster.

Unfortunately, the load distribution among clusters may
change dynamically even in cases where no connections are
added or removed, simply because the load of the connec-
tions changes over time. In DaRPC we use work-stealing to
protect against short term load spikes in clusters. A cluster-
head, if its load (based on the metric just discussed) ex-

ceeds a certain threshold, will place some of the incoming
RPC requests into a global queue which is accessible by all
cluster-heads in the system. At the same time, other cluster-
heads poll and potentially process the global queue every
time before polling their own completion queue. This ap-
proach makes sure that spikes in one cluster are consumed
by other less loaded clusters.

Memory locality: Modern many-core systems typically
provide NUMA-like memory access where the memory ac-
cess time depends on the memory location relative to the
processor core. Even though all cores can access all the
memory, access to local memory is generally faster than ac-
cess to remote memory. Therefore, we want to make sure
that all memory resources used within a cluster are resid-
ing in the local memory of the core running the cluster-
head. Examples of memory resources are queue pairs, com-
pletion queues, work completion events or RPC message
buffers. In DaRPC, NUMA-like data locality is implemented
as follows. First, each cluster is assigned a resource man-
ager which is pinned to the same core as the cluster-head.
Second, memory resources requested by cluster-heads and
connections will be allocated through the cluster’s own re-
source manager. Typically, operating systems allocate mem-
ory local to the requesting thread, in which case all clus-
ter resources are allocated local to the core executing the
cluster-head event loop.

Figure 5 shows the throughput performance of DaRPC
in a configuration with data locality enabled. As can be
seen from Figure 5, such a configuration improves the RPC
throughput by another 300K req/sec.

Multiple NICs: Server systems often comprise multiple
network interfaces. DaRPC is designed to run on multiple
interfaces through the use of instances. A DaRPC instance
refers to a pool of completion queue clusters which is bound
to a specific network interface. RPC applications request a
DaRPC instance to be created on a given pool of CPU cores
for a given network interface. Multiple DaRPC instances
can be created for multiple network interfaces. A typical ap-
proach for a RPC service is to partition the available cores
and use each partition to create a separate DaRPC instance.
Client requests can be load balanced over the different in-
stances either using DNS or ARP.

We ran tests with two DaRPC instances. Each instance is
composed of 4 clusters and all clusters are scheduled on sep-
arate cores. The first instance is bound to a Chelsio T5 NIC,
the second instance is bound to a Chelsio T4 NIC. This con-
figuration delivers up to 3.2M RPC req/sec. This number al-
most exactly matches the sum of the RPC throughput perfor-
mance we have seen in isolated experiments using just one
NIC. For instance, with a single DaRPC instance attached to
the less powerful T4 NIC we were able to drive 790K RPC
req/sec.

Hardware Limits: In our experiments, the Chelsio T5
NIC delivers 2.4M RPC requests/sec. To put this number in

tt,..t t

1'72'" "

%{ & b 1d
CQ CQs
He BB
HH| op HH||EH| - [HH| ps
a) b)
th,t ttt
\tf N\t
dsp dsp
T
cQ CQs
T T % T
HH| op HH| [EH]-|EH| qps
9) d)

Figure 6. Different modes for client-side CQ processing in
configurations with multiple application threads. (a) direct
CQ access with a single connection, (b) direct CQ access
with multiple connection, (c) CQ dispatching with a single
connection, (d) CQ dispatching with multiple connections.
CQ: completion queue, QP: queue pair, dsp: dispatcher, (t1-
tn): application threads.

perspective consider the raw packet rate of 14.8M packet-
s/sec that a 10Gbits/s NIC should support>. However, in or-
der to sustain this packet rate modern NICs deliver packets
in bursts or batches to amortize the cost of DMA, PCle trans-
actions, interrupts, and CPU processing etc. MICA [12] uses
packet burst size of 32 (RouteBrick [6] also recommends
a similar batch size) to sustain packet rates of 8.2 —9.6M
packets/sec per NIC. In comparison, T5’s performance of
2.4M requests/sec is without any batching. With a modest
batch size of 8 (see Section 6.1), DaRPC delivers 8.8M re-
g/sec. Additionally, DaRPC’s performance is further gov-
erned by the specific implementation of the RDMA NIC. As
we have observed earlier, different RNIC generations (e.g.,
between T4 and T5) have different RDMA processing ca-
pacities.

4.3 Client-Side Processing

While at the server-side DaRPC is exclusively processing
events from the network, at the client-side actions are trig-
gered both from the network as well as from the application.
Again, one key challenge is to be as efficient as possible with
regard to context switches, locking, etc. Moreover, special
attention is required to handle concurrent accesses from dif-
ferent application threads. We identify two possible design
options for the client-side of DaRPC.

Direct CQ access: With this option, each RPC connec-
tion will receive its own separate completion queue at the

2'We will use terms requests and packets interchangeably.

300] — \ \ I \
250 - direct CQ access] i
» CQ dispatching/poll ==
2 200 - cQ dispatching/event :
g 150 - S —
C
2 100 - A
| o) S
0 ﬂﬂMMMM%
0 2 4 6 8 10 12 14 16 18
threads
300 \ 1 1 T \ \
250 L direct CQ access 1 |
0 CQ dispatching/poll ===
2 200 - cQ dispatching/event a
g 150 -]
[
8 100 - _
£ 50t
NIFFFPPPEPEEREEEE L

0 2 4 6 8 10 12 14 16 18
connections

Figure 7. RPC Latency with different client-side CQ pro-
cessing modes. (top) multiple threads on a single connection
(bottom) multiple threads with separate connections.

client end of the connection (not to be confused with the
server end where the connection is part of a completion
queue cluster). A separate completion queue allows clients
to completely avoid any context switches by directly polling
the CQ while waiting for the RPC reply. Saving context
switches can substantially reduce latency — up to 4us in our
deployment. Polling, however, increases the CPU load, and
may lead to contention for CPU cycles among competing
threads. In the case of multiple threads issuing concurrent
RPC requests on the same connection, there might also be
contention for accessing the shared completion queue.

CQ dispatching: An alternative design to direct CQ ac-
cess is to share the completion queue among multiple con-
nections and use a separate thread to query the CQ and dis-
patch events. The advantage is that there will be no con-
tention for CQ access since the dispatcher owns the com-
pletion queue exclusively. This option is similar to the clus-
tering used at the server side, with the one difference that
work completion events cannot be processed in the context
of the dispatcher but need to be passed to the application.
In principle, there is nothing which prevents the dispatcher
from enqueuing work completion events in per-connection
queues and have applications poll these queues. A more CPU
friendly approach, however, will be for the dispatcher to no-
tify applications whenever a new work completion event has
been received. Here, one extra context switch is required
while dispatching notifications to application threads.

In the following, we compare the latency performance of
the two options — direct CQ access and CQ dispatching — for

class/interface API call | input/output parameters
DaRPCInstance | createInstance () in: DaRPCService, Mode, Affinities[] out: DaRPCInstance
createEndpoint () out: DaRPCEndpoint
DaRPCService® processRPC () | in: DaRPCParam out: DaRPCParam
DaRPCParam* serializeTo () in: byte[] out: byte[]
serializeFrom() | in:byte[] out:bytel]
DaRPCEndpoint connect ()
accept () out: DaRPCEndpoint
createStream() out: DaRPCStream
DaRPCStream rpc () in: DaRPCFuture out: DaRPCFuture
poll () out: DaRPCFuture
take () out: DaRPCFuture
DaRPCFuture isDone () out: boolean
join () | out: DaRPCFuture
getResponse () out: DaRPCParam

Table 1. The DaRPC application programming interface. Interfaces are marked with *.

two different configurations. In the first configuration, multi-
ple threads are issuing RPC calls concurrently using a single
DaRPC connection to the server. In the second configura-
tion, multiple threads are issuing RPC calls but each thread
using its own separate connection. Figure 6 illustrates the in-
terplay between threads, RPC connections, queue pairs and
completion queues in each of these four cases. In the exper-
iments, we further distinguish CQ dispatching with notifica-
tion and CQ dispatching with polling. In the former, threads
are being woken up by the dispatcher every time a RPC op-
eration has completed. In the latter, the dispatcher places a
notification message into a per-connection queue which is
polled by the threads for this connection.

Single connection: For the single-connection configura-
tion (top of Figure 7), the option of directly accessing the
CQ achieves a RPC latency of 11.5us if only a single thread
is active. Compared to using a CQ dispatcher which results
in latencies of 17us and 25us respectively, this is 30-60%
faster. Clearly, avoiding context switches is key to keeping
the overall RPC latency low. However, as the number of
threads increases, the situation changes and using a CQ dis-
patcher becomes more favorable. At the extreme point with
16 threads, direct CQ access results in a per-request latency
of 160us, while CQ dispatching can achieve 34-40us. These
results confirm our thought that the contention for shared CQ
access (due to locking) in the direct mode does not scale well
with the number of threads. Instead, when sharing a single
connection among many threads, eliminating contention for
CQ and CPU access by using a dispatcher is more profitable.
From the two modes implementing CQ dispatching, polling
generally performs better than using notifications, but it is
also more CPU intensive (not shown).

Multiple connections: When using a separate connec-
tion to the server for each client thread, one can expect to see

improved results for the direct CQ option since at least the
contention for the shared CQ is eliminated. This is confirmed
by Figure 7 (bottom) which shows that the direct CQ option
outperforms CQ dispatching in terms of latency throughout
the band. For instance, with direct CQ access and a separate
connection per thread, we can achieve 16us RPC latency
even if 16 threads are operating concurrently.

These experiments only provide a rough comparison of
the two client-side design options. In practice, applications
with multiple threads are unlikely to issue RPC requests
back-to-back in a tight loop. Instead, one can expect more
air between individual requests from single client threads,
which in turn would make direct CQ access attractive even
in configurations with many threads and a single connec-
tion. Generally, we believe that these experiments suggest
that both approaches — direct CQ access and CQ dispatching
— have their own advantages and disadvantages. We there-
fore decided in DaRPC to export both options at the API
level to let the application choose which option matches best
with the application requirements, workload pattern, hard-
ware setup, etc. Typically, a latency sensitive application
would use direct CQ access, while applications with many
concurrent RPC operations would be better off with CQ dis-
patching.

4.4 Reliability, Ordering and Flow Control

One important question is regarding reliability in case of
failures. DaRPC is designed to operate on top of a reliable
transport protocol, such as TCP (in case of iWARP) or the
Infiniband reliable transport layer. As such, RPC request and
response messages will eventually be delivered, unless the
connection breaks. In the latter, it is up to the application to
try to re-establish the RPC connection and issue the RPC

request again. It is also up to the application to filter out
duplicates in such a scenario.

Another interesting aspect is concerning the order in
which RPC requests are processed at the server. Without
work-stealing, all RPC requests issued on the same connec-
tion will be processed in order. With work-stealing, however,
there is no guarantee on the order in which RPC requests are
processed, even for requests that are issued on the same con-
nection. Consequently, if a certain order needs to be enforced
it has to be implemented at the application level.

Special attention is required in any RDMA-based system
when it comes to flow control. Remember that a RPC request
issued by a DaRPC client requires a RDMA receive opera-
tion to be pre-posted at the server. By no means, a client
should be able to overrun the server and issue requests for
which no receive is posted at the server. In DaRPC this is
solved using per-connection rings of buffers. Prior to accept-
ing a new connection, a DaRPC server posts RDMA receive
operations for all the buffers in the ring and shares the size
of the ring with the client. Receive buffers at the server are
consumed by incoming requests, but can be re-posted imme-
diately once the request is parsed and de-serialized. A client
simply has to maintain a request budget which initially is
set to the size of the ring, as advertised by the server. Sub-
sequently, every request transmitted decrements the request
budget, while incoming responses increment the budget. As
long as the client only issues RPC requests if the budget is
above zero, no overrunning of the server is possible.

5. Application Programming Interface

The goal when designing the DaRPC interface was to pro-
vide an API that exports all the performance advantages of
DaRPC, while at the same time being easy to use and pow-
erful enough to satisfy the demands of large and complex
distributed systems in the cloud.

DaRPC meets these requirements by providing an object-
oriented asynchronous programming interface. The starting
point for each DaRPC application is the DaRPCInstance
class. A DaRPCInstance serves as a factory for RPC
connections (DaRPCEndpoint). Internally, it implements
an array of completion queue clusters. The application de-
fines the size and the NUMA affinities for the clusters
by passing an affinity set when creating the instance. A
DaRPCInstance can be created in either CQ_DIRECT or
CQ_DISPATCHED mode. Depending on the chosen mode,
the DaRPCEndpoint objects created from this instance
either have their own RDMA CQ or they share a com-
pletion queue as described in section 4.3. One key pa-
rameter to be passed to a DaRPCInstance is the actual
RPC service. The RPC service is required to implement the
DaRPCService interface, namely the processRPC ()
method which is invoked by the DaRPC runtime for every
new RPC request that is received from the network. Both the
input and output parameter of this method — referring to the

/+*Defined variablesx*/

MyRPCService s; /ximplements DaRPCServicex/
Affinities[] a = ...,

Mode m = CQ_DIRECT;

DaRPCInstance d;

DaRPCEndpoint serverEp, clientEp;
DaRPCStream stream;

DaRPCFuture future;

MyParam req, resp; /*implements DaRPCParamx/

/+*new instance for the rpc servicex/
d = DaRPCInstance.createlnstance(s, a, m);
serverEp = d.createEndpoint ();
/*simply wait for new RPC connectionsx/
while (true)

clientEp = serverEp.accept();

()

d = DaRPCInstance.createlInstance (s, a, m);
clientEp = d.createEndpoint () .connect(...);
stream = clientEp.createStream();
future = stream.rpc(req, resp);
/% ... do something ... x/
future.join () ;
if (future.isDone())
print (future.getResponse());

(b)

Figure 8. DaRPC programming (a) server-side, (b) client-
side

request and the response of an RPC operation — need to be
of type DaRPCParam, an interface which defines how these
parameters are serialized. We use Java “generics” to avoid
unnecessary casting from interface types to actual applica-
tion specific types.

Server applications create a DaRPCEndpoint, bind it
to a local interface (API call not shown in table) and ac-
cept new RPC connections from clients (see Figure 8a). In-
ternally, the DaRPC runtime assigns connections to clusters
within the DaRPCInstance. From this point on, all RPC
processing for established connections is driven by the asso-
ciated cluster in a context-switch-free and data-local manner
as described in Section 4.

A client application will instantiate a DaRPCInstance
using an implementation of DaRPCService that matches
the one used at the server. Two implementations of
DaRPCService match if they are both based on the same
request/response types, which guarantees that the messages
are wire-compatible. The client — unlike the server — is free
to provide an empty implementation of processRPC ().

Following a proper instantiation of DaRPCInstance,
a client application creates a DaRPCEndpoint and con-
nects to the RPC server. The main client-side RPC interface
is available via the DaRPCStream class. The application

uses rpc () to issue a new RPC request. This call is non-
blocking and returns an object of type DaRPCFuture,
which serves as a handle for the given RPC operation.
At any point in time the application may poll the state of
the RPC operation using DaRPCFuture.isDone (), or
explicitly block for the RPC operation to complete using
DaRPCFuture. join () (Figure 8). Completed RPC op-
erations will further be enqueued with the DaRPCStream
object that triggered the RPC in the first place. The

DaRPCStream interface provides an alternative to

DaRPCFuture for applications to keep track of RPC oper-
ations. For instance, the application may issue multiple RPC

operations back to back and later use DaRPCSt ream. take ()

or DaRPCStream.poll () to retrieve the first opera-
tion that has completed. For any completed RPC operation
DaRPCFuture.getResponse () can be used to access
the response value.

6. Evaluation

We have implemented DaRPC in Java based on jVerbs [23],
a high-performance RDMA stack for the IBM JVM. Ear-
lier in section 4, we have identified three requirements that
served as the main driving factors when designing DaRPC:
high RPC throughput, low per-RPC latency, and the abil-
ity to integrate with cloud-based systems. We have already
demonstrated some of the throughput and latency benefits
of the different design choices we made in DaRPC. In this
section, we want to first extend the evaluation by specifically
investigating multi-core configurations and batching in more
detail. Later, we look into a real use case and demonstrate
how DaRPC can be applied to improve the performance of
the HDFS namenode RPC service.

Setup: Our testbed consists of 17 nodes, each of which
equipped with dual-socket 8-core Intel Xeon E5-2690 CPUs
and a mix of Chelsio T4 and T5 10 Gbit/s adapters with
iWARP/RDMA support. iWARP is an implementation of
RDMA based on an offloaded TCP/IP/Ethernet stack. In our
testbed, one node is used exclusively as the server while
client instances are distributed over the remaining nodes. All
measurements are done on Linux 3.6.0 using the perf
framework [1].

6.1 Batching

If latency is not the major concern, applications can batch
RPC calls to increase throughput. Figure 9 shows through-
put and latency of DaRPC for different batch sizes. In our
setup, client RPC requests are held back in a queue. Once a
batch of requests is available a single combined RPC request
is issued. Similarly, the server responds with batches of re-
sponse messages transmitted as a single combined message.
As expected with such a configuration, both the throughput
and the latency increase with the batch size. With a batch
size of 32, the RPC throughput reaches 9M ops/sec which

T T T T T T
o throughput 3 _
g 10M - latency —=— 11 E
3 | =
2 8M 0.8 >
o 6M - 0.6 ¢
A o1 &
M P
o L] 0
1 2 4 8 16 32 64 128
batch size
Figure 9. Effect of batching RPC requests.
T T T T
null-op 1
g 25M | 100usec-op mmsss |
$ 1.5M + JUU I FUN [O . . U [U -
g 1.

1 2 3 4 5 6 7 8
number of DaRPC clusters

Figure 10. Scaling with the number of clusters.

corresponds to the bandwidth limit (10 Gbit/s) of the net-
work interface.

6.2 Multicore scaling

DaRPC is designed to parallelize RPC processing across
an array of clusters at the server side. Applications use the
DaRPC API to provide an affinity set which determines the
cores the clusters will be scheduled on. Since processing
within the cluster is isolated from the processing of other
clusters, one can expect the RPC throughput to scale linearly
with the number of clusters.

We ran an experiment with 16-client machines where
we measure the throughput of a DaRPC RPC service for
different numbers of clusters being used at the server. The
first series of bars in Figure 10 shows the results when using
a “null” operation as the RPC service. As can be observed,
the throughput increases from initially 1.8M ops/sec when
using a single cluster, to 2.4M when using 3 clusters. 2.4M
is also the maximum performance we can achieve with the
Chelsio TS5 network card, therefore adding more clusters did
not increase the throughput further.

Using a “null” operation allows us to measure the raw
performance of DaRPC, isolated from the performance of
the actual RPC service. In practice, however, RPC services
are implementing more complex and compute intensive op-
erations. We emulate such a configuration by using an RPC
service that occupies the DaRPC cluster head for 100us in-
stead of returning right away. As expected, with such a more
“complex” RPC service only a fraction of RPC requests can

be processed by the server (Figure 10). Consequently, adding
more clusters and thereby engaging more cores helps to in-
crease the RPC throughput.

6.3 Use Case: HDFS

One promise of DaRPC is that it can be used to improve
performance and scalability of distributed systems deployed
in data centers today. HDFS is a well known distributed file
system which serves as the basic storage layer for Hadoop,
Spark, Hive, etc. The architecture of HDFS is centered
around a nameserver for storing the file metadata such as
block locations, permissions, directory structure, etc. Al-
though the current version of HDFS supports a secondary
nameserver for fault tolerance reasons, the primary instance
of the nameserver typically still is a major performance bot-
tleneck. In section 2, we have shown that the RPC interface
of the HDFS nameserver can process between 100-130K
ops/sec, at a latency of 200-5004ts. This performance is lim-
iting HDFS in two ways. First, the low throughput perfor-
mance restricts both the size of the HDFS cluster as well
as the performance of the read/write operations [22]. Sec-
ond, the high RPC latencies prohibit the potential HDFS
deployment in low-latency storage environments containing
non-volatile memories such as Flash.

We argue that by using DaRPC one can implement a
nameserver which scales to higher operations per second
and provides lower latencies. As a demonstration we im-
plemented DaRPC-HDFS, a stripped-down version of the
HDFS nameserver based on DaRPC. The nameserver ex-
ports RPC operations to create, rename, and remove files, as
well as operations to learn about the block locations of files.
We further provide an implementation of the HDFS client
interface (hadoop.fs.FileSystem) which allows ap-
plications to issue metadata operations using the standard
HDEFS API. Note that even though DaRPC-HDFS is no full-
fledged file system and does not offer file read/write oper-
ations, its metadata server is fully functional. As such, any
state that is created or manipulated by one HDFS operation
will be visible to all subsequent operations.

In the following we compare the performance of HDFS
metadata operations, once using the unmodified HDFS na-
menode, and once using DaRPC-HDEFS. In the first exper-
iment, clients continuously query the status of a file us-
ing the getFileStatus () API call. In the second ex-
periment, clients continuously create and delete a file using
create () and delete () calls. Each client operates on
its own file. All the metadata operations used are standard
HDEFES API calls, we use the same benchmark for both un-
modified HDFS and DaRPC-HDFS. We further look at two
configurations: in the first configuration all nodes (namenode
and clients) in the cluster use a Chelsio T4 RDMA network
interface (10 Gbit/s), just as in all other experiments shown
previously. In the second experiment, the client nodes use
a plain 10 Gbit/s Ethernet interface without RDMA capa-

T T T T T
HDFS/create-delete s
] HDFS/getFileStatus
% 3M L HDFS-DaRPC/create-delete =g |
» HDFS-DaRPC/getFileStatus
g 2™+ _
o
—m [l
0 10 20 30 40 50 60 70
clients
T T T T T
HDFS/create-delete —<—
i HDFS/getFileStatus —=—
= HDFS-DaRPC/create-delete —e—
o HDFS-DaRPC/getFileStatus ——
C
()
+< 600 -
= 490 m .
200 -
| & | & Il &
0 10 20 30 40 50 60 70
clients

Figure 11. Throughput and latency of HDFS namenode op-
erations in plain HDFS and HDFS-DaRPC measured using
RDMA hardware at both namenode and clients.

bilities, but instead the RDMA capabilities are emulated in
software.

Hardware-supported: Figure 11 shows the perfor-
mance in terms of server throughput and client latency for
an increasing number of clients. Clearly, HDFS-DaRPC
can process more metadata operations per second (up to
2M for getFileStatus ()) and also provides a much
lower latency per operation (as low as 16yts). The through-
put numbers are not exactly reaching the 2.4M operations
that can be achieved with a raw DaRPC benchmark (Figure
10). However, this is expected since HDFS-DaRPC imple-
ments a more complex RPC service and uses larger RPC
messages (144 bytes for both RPC request and response,
as opposed to 16 bytes in Figure 10). The experiment us-
ing create () /delete () operations achieves a lower
throughput in DaRPC-HDFS (around 1.5M) than the ex-
periment using getFileStatus (). This is because both
create () and delete () modify the directory structure
and require the RPC service implementation to take a global
lock.

One important observation from Figure 11 is that HDFS-
DaRPC can sustain low latencies per operation even when
operating under load. Table 2 gives some indication of how
the different optimizations discussed in Section 4 pay off.
Generally, HDFS-DaRPC produces fewer cache misses and
fewer context switches per operation than the RPC imple-
mentations used in Zookeeper and HDFS. At the same time,
HDFS-DaRPC uses only a moderate amount of CPU cycles,
which is due to the offloaded TCP/IP stack and the efficient
data path in RDMA.

| HDFS | HDFS-DaRPC

Link Utilization 1.65% 25%
CPU 15% 11.5%
Cache Misses 29% 11%
Context Switches | 2.8/op 0.2/o0p

Table 2. Performance characteristics in HDFS and HDFS-
DaRPC.

T T T T T T
HDFS-DaRPC on Chelsio/T4 C——
3M HDFS-DaRPC on SoftiWARP m=== .-

2M B

" mmmmﬂnﬂhww\m 7

0 10 20 30 40 50 60 70
clients

requests/sec

Figure 12. Throughput of HDFS namenode operations in
plain HDFS and HDFS-DaRPC measured using RDMA
hardware at the namenode and and SoftiWARP at the clients.

Software-based clients: One general concern with
RDMA-based solutions is that they require special network-
ing hardware to be deployed. However, with respect to RPC
throughput, the critical piece in DaRPC is the server-side.
That being said, we can restrict the high-end RDMA hard-
ware to be deployed at the server and use software-based
RDMA devices at the clients. SoftiWARP [25] is an in-
kernel RDMA device for Linux working with regular Eth-
ernet NICs while being wire-compatible with iWARP. In
Figure 12 we show that a configuration with RDMA hard-
ware deployed at the server and SoftiWARP deployed at the
clients is indeed sufficient for HDFS-DaRPC to reach high
throughput numbers. At the same time, latencies of metadata
operations increase due to the missing hardware acceleration
at the clients. Overall, we believe that employing DaRPC in
such a hybrid setup is very attractive for distributed systems
running in commodity data centers. By adding RDMA hard-
ware support to performance critical server machines (e.g.,
HDFS namenode, Zookeeper server, OpenFlow Controller,
etc.), DaRPC can substantially improve throughput, scaling
and latency of RPC operations, without the necessity of any
special hardware being deployed at the clients.

7. Related Work

RPCs have been the backbone of many distributed sys-
tems. With the emergence of high-performance networks
in the 1990s many projects looked at low-latency appli-
cation to application data transfer operations in the con-
text of RPCs [4, 10, 20, 24]. These systems identify RPC

performance overheads stemming from data copies, con-
text switches, inefficient host interfaces, marshaling and un-
marshaling parameters, protocol and packet processing etc.
Modern high-performance RDMA interfaces and userspace
networking stacks are built upon their findings. DaRPC goes
a step further and integrates multicores, CPU/NIC-locality,
RPC capacity scalability under load, and language run-time
considerations (e.g. managed runtime such as JVM) etc. into
the RPC performance.

RPCs are known to be small and packet-processing
heavy. On modern 10 or 40 Gbits/s networks they can
easily generate millions of requests per second. Recently,
there has been a lot of work aiming at efficiently handling
small packets on multi-core servers [8, 9, 19, 21]. Further,
the availability of fast userspace packet processing frame-
works has also led to userspace implementations of the com-
plete network and application stack. In a similar spirit to
DaRPC, mTPC [9] manages packet processing, TCP con-
nection management and application interface in userspace
for best parallelism. However, the primary focus of mTCP
is high small-packet throughput that is achieved by eschew-
ing the kernel as well as by efficient packet- and event-level
batching on the I/O path. DaRPC’s architecture of handling
individual RPC requests by a single core (with a minimum
context switch overhead), is inspired from RouteBricks [6].

In modern large-scale distributed systems, RPC perfor-
mance has mostly been treated as an optimization problem
in the process of building large distributed systems. For in-
stance, the RPC framework of Tango leverages special oper-
ating system features to achieve 570K RPC ops/sec with a la-
tency of 35us per operation in the single-client scenario [3].
Building RPC stacks as part of a large-scale distributed sys-
tem (e.g. Key-Value store) enables across-the-layer perfor-
mance optimizations. One such optimization is extensive
batching done at the different layers to amortize the cost of
small packet handling for RPC. The Percolator system runs
a centralized timestamp oracle implemented as a RPC ser-
vice at a throughput of 2M req/sec using batching [18]. Sim-
ilarly, the vector interface proposed by Vasudevan et al. for
their key-value store can achieve 1.6 M req/sec on a single
server [26]. Masstree is another key-value server that pro-
vides 6M queries/sec with batching [14]. Though batching
increases the RPC throughput it does so at the cost of latency.
As an example, the latency numbers at the peak performance
of mTCP are orders of magnitude slower (in msecs) than
those of DaRPC. We have shown that DaRPC can scale lin-
early with the batch size and process close to 10M RPC/sec
at sub-millisecond latency.

MICA [12] is a recently proposed Key-Value store that
handles packet I/O and key-value request processing as a
joint problem. Both MICA and DaRPC need efficient net-
work I/O processing, however, there are some fundamental
differences in the way MICA and DaRPC handle requests.
MICA leverages the fact that in the key-value store values

Locality Reliability | Batching Application Zero Performance| Low Cloud

Interface copy Scaling Latency | Ready
SHRIMP RPC [4] || shared yes none SunRPC yes N/A yes no
mTCP [9] per-core yes, TCP function calls | mTCP sockets no yes no no
MegaPipe [8] per-core yes, TCP syscalls Iwsockets no yes no no
MICA [12] per-core/NIC | no, lossy packets Key-Value yes yes yes no
VectorOS [26] shared yes, TCP 1/0O requests Key-Value no yes no no
DaRPC per-core yes, TCP none Async. RPC yes yes yes yes

Table 3. Comparison of networking efforts to achieve high-performance with small transfer sizes.

are generally less than a packet size. Hence, MICA cannot
handle request sizes greater than a packet size. Moreover,
it uses UDP for I/O and in the case of a packet loss, client
needs to detect and re-transmit the lost request (or packet).
Though it is acceptable for idempotent key-value requests,
this behavior is undesired for RPCs. RPCs usually involve
state changes on the data or service server and require a con-
sistent invoked-once semantic.

Furthermore, none of the systems discussed above are im-
plemented in a managed runtime, which makes their deploy-
ment in a cloud/virtualized environment difficult. Table 3
captures critical properties of these systems and compares
them against DaRPC.

There has recently been an increasing interest in using
RDMA networks in cloud-based distributed systems [7, 11,
15]. These works do not address RPC performance in par-
ticular, but they are demonstrating the potential of a close
integration between networking and higher-level systems.

A work which specifically tackles the RPC performance
in Hadoop is [13]. By using a more sophisticated buffer allo-
cation scheme and zero-copy on the transmission path, their
work is able to improve the RPC performance in Hadoop by
up to 82%.

8. Conclusion

In this work we presented DaRPC, a framework for high-
throughput low-latency RPC. DaRPC uses RDMA to imple-
ment a tight integration between RPC processing and net-
work processing in user space. By jointly distributing RPC
and RDMA resources across cores and memory, DaRPC
manages to increase parallelism and scale to large numbers
of RPC requests. In the paper we demonstrated that DaRPC
can process up to 2.4M RPC requests/s with a single server
at latencies of 3-10us per RPC. DaRPC is written entirely in
Java and therefore can be used comfortably by many of the
distributed systems deployed in the cloud today. As shown
in this work, DaRPC can improve scaling and performance
of large scale distributed systems running data centers such
as HDFS.

Acknowledgement

We thank the anonymous reviewers and our shepherd,
Indranil Gupta, for their helpful comments and suggestions.

We also would like to thank Felix Marti and Joerg-Eric Sag-
meister for their support with the networking hardware.

References

[1] Perf: Linux Profiling with Performance Counters.
http://perf.wiki.kernel.org/.

[2] Zookeeper Performance.
http://wiki.apache.org/hadoop/ZooKeeper/.

[3] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-
hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck.
Tango: Distributed Data Structures over a Shared Log. In
Proceedings of SOSP’13, pages 325-340. ISBN 978-1-
4503-2388-8. URL http://doi.acm.org/10.1145/
2517349.2522732.

[4] A. Bilas and E. W. Felten. Fast RPC on the SHRIMP Vir-
tual Memory Mapped Network Interface. J. Parallel Distrib.
Comput., 40(1):138-146, Jan. 1997. ISSN 0743-7315. URL
http://dx.doi.org/10.1006/jpdc.1996.1272.

[5] A. D. Birrell and B. J. Nelson. Implementing Remote Pro-
cedure Calls. ACM Trans. Comput. Syst., 2(1):39-59, Feb.
1984. ISSN 0734-2071. URL http://doi.acm.org/
10.1145/2080.357392.

[6] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In Proceedings of the ACM SIGOPS 22Nd Sym-
posium on Operating Systems Principles, SOSP ’09, pages
15-28, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-752-3. URL http://doi.acm.org/10.1145/
1629575.1629578.

[7]1 A. Dragojevi¢, D. Narayanan, O. Hodson, and M. Cas-
tro. FaRM: Fast Remote Memory. In Proceedings of the
11th USENIX Conference on Networked Systems Design and
Implementation, NSDI'14, pages 401-414, Berkeley, CA,
USA, 2014. USENIX Association. ISBN 978-1-931971-09-
6. URL http://dl.acm.org/citation.cfm?id=
2616448.2616486.

[8] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A New Programming Interface for Scalable Net-
work I/O. In Proceedings of OSDI’12, pages 135-148.
ISBN 978-1-931971-96-6. URL http://dl.acm.org/
citation.cfm?id=2387880.2387894.

[9] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: A Highly Scalable User-
level TCP Stack for Multicore Systems. In Proceedings of

the 11th USENIX Conference on Networked Systems Design
and Implementation, NSDI 14, pages 489-502, Berkeley, CA,
USA, 2014. USENIX Association. ISBN 978-1-931971-09-
6. URL http://dl.acm.org/citation.cfm?id=
2616448.2616493.

[10] D. B. Johnson and W. Zwaenepoel. The Peregrine High-
performance RPC System. Softw. Pract. Exper., 23(2):201—
221, Feb. 1993. ISSN 0038-0644. URL http://dx.doi.
org/10.1002/spe.4380230205.

[11] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA
Efficiently for Key-value Services. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’ 14, pages
295-306, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2836-4. URL http://doi.acm.org/10.1145/
2619239.2626299.

[12] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA:
A Holistic Approach to Fast In-memory Key-value Storage.
In Proceedings of the 11th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI” 14, pages
429-444, Berkeley, CA, USA, 2014. USENIX Association.
ISBN 978-1-931971-09-6. URL http://dl.acm.org/
citation.cfm?id=2616448.2616488.

[13] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose, H. Subra-
moni, H. Wang, and D. K. Panda. High-Performance Design
of Hadoop RPC with RDMA over InfiniBand. In Proceed-
ings of the 2013 42Nd International Conference on Paral-
lel Processing, ICPP ’13, pages 641-650, Washington, DC,
USA, 2013. IEEE Computer Society. ISBN 978-0-7695-
5117-3. URL http://dx.doi.org/10.1109/ICPP.
2013.78.

[14] Y. Mao, E. Kohler, and R. T. Morris. Cache Craftiness for Fast
Multicore Key-value Storage. In Proceedings of Eurosys’12,
pages 183-196. ISBN 978-1-4503-1223-3. URL http:
//doi.acm.org/10.1145/2168836.2168855.

[15] C. Mitchell, Y. Geng, and J. Li. Using One-sided RDMA
Reads to Build a Fast, CPU-efficient Key-value Store. In Pro-
ceedings of the 2013 USENIX Conference on Annual Techni-
cal Conference, USENIX ATC’13, pages 103—114, Berkeley,
CA, USA, 2013. USENIX Association. URL http://dl.
acm.org/citation.cfm?id=2535461.2535475.

[16] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast Crash Recovery in RAMCloud. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP *11, pages 29-41, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0977-6. URL http:
//doi.acm.org/10.1145/2043556.2043560.

[17] D. Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and D. R.
Cheriton. Comparing the Performance of Web Server Ar-
chitectures. In Proceedings of Eurosys’07, pages 231-243.
ISBN 978-1-59593-636-3. URL http://doi.acm.org/
10.1145/1272996.1273021.

[18] D. Peng and F. Dabek. Large-scale Incremental Processing
Using Distributed Transactions and Notifications. In Pro-
ceedings of OSDI’10, pages 1-15. URL http://dl.acm.
org/citation.cfm?id=1924943.1924961.

[19] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Im-
proving Network Connection Locality on Multicore Systems.

In Proceedings of Eurosys’12, pages 337-350. ISBN 978-1-
4503-1223-3. URL http://doi.acm.org/10.1145/
2168836.2168870.

[20] H. V. Shah, C. Pu, and R. S. Madukkarumukumana. High
Performance Sockets and RPC over Virtual Interface (VI) Ar-
chitecture. In Proceedings of the Third International Work-
shop on Network-Based Parallel Computing: Communication,
Architecture, and Applications, CANPC ’99, pages 91-107,
London, UK, UK, 1999. Springer-Verlag. ISBN 3-540-65915-
3. URL http://dl.acm.org/citation.cfm?id=
646093.680566.

[21] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda.
IsoStack: Highly Efficient Network Processing on Dedi-
cated Cores. In Proceedings of USENIX ATC’10, pages 5—
5. URL http://dl.acm.org/citation.cfm?id=
1855840.1855845.

[22] K. V. Shvachko. HDFS Scalability: The Limits to Growth.
2010.

[23] P. Stuedi, B. Metzler, and A. Trivedi. jVerbs: Ultra-low
Latency for Data Center Applications. In Proceedings
of SOCC’13, pages 10:1-10:14. ISBN 978-1-4503-2428-
1. URL http://doi.acm.org/10.1145/2523616.
2523631.

[24] C. A. Thekkath and H. M. Levy. Limits to Low-latency Com-
munication on High-speed Networks. ACM Trans. Comput.
Syst., 11(2):179-203, May 1993. ISSN 0734-2071. URL
http://doi.acm.org/10.1145/151244.151247.

[25] A. Trivedi, B. Metzler, and P. Stuedi. A Case for RDMA in
Clouds: Turning Supercomputer Networking into Commod-
ity. In Proceedings of the 2nd APSys’11, pages 17:1-17:5.
ISBN 978-1-4503-1179-3. URL http://doi.acm.org/
10.1145/2103799.2103820.

[26] V. Vasudevan, M. Kaminsky, and D. G. Andersen. Using Vec-
tor Interfaces to Deliver Millions of IOPS from a Networked
Key-value Storage Server. In Proceedings of SOCC’12, pages
8:1-8:13. ISBN 978-1-4503-1761-0. URL http://doi.
acm.org/10.1145/2391229.2391237.

[27] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture
for Well-conditioned, Scalable Internet Services. In Proceed-
ings of SOSP’01, pages 230-243. ISBN 1-58113-389-8. URL
http://doi.acm.org/10.1145/502034.502057.

Notes: IBM is a trademark of International Business Ma-

chines Corporation, registered in many jurisdictions world-

wide. Intel and Intel Xeon are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United

States and other countries. Linux is a registered trademark of

Linus Torvalds in the United States, other countries, or both.

Other products and service names might be trademarks of

IBM or other companies.

