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Abstract
Network latency has become increasingly important for
data center applications. Accordingly, several efforts at
both hardware and software level have been made to re-
duce the latency in data centers. Limited attention, how-
ever, has been paid to network latencies of distributed
systems running inside an application container such as
the Java Virtual Machine (JVM) or the .NET runtime.

In this paper, we first highlight the latency overheads
observed in several well-known Java-based distributed
systems. We then present jVerbs, a networking frame-
work for the JVM which achieves bare-metal latencies in
the order of single digit microseconds using methods of
Remote Direct Memory Access (RDMA). With jVerbs,
applications are mapping the network device directly
into the JVM, cutting through both the application vir-
tual machine and the operating system. In the paper,
we discuss the design and implementation of jVerbs and
demonstrate how it can be used to improve latencies in
some of the popular distributed systems running in data
centers.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Manage-
ment – Network Communication; D.4.7 [Operating
Systems]: Organization and Design – Distributed Sys-
tems

General Terms
Design, Performance, Measurements
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1 Introduction

There has been an increasing interest in low latency for
data center applications. One important class of appli-
cations driving this trend are real-time analytics such as
Shark [16], Dremel [21] or Cloudera’s Impala [2]. These
systems are often compositions of independent services
(e.g, configuration service, locking service, caching ser-
vice, storage service, etc.) operating on hundreds or
thousands of servers. Moreover, processing queries on
these systems may require sequential access to these ser-
vices. In such scenarios, keeping individual access laten-
cies as low as possible is key to reducing the response
time experienced by the user.

Several attempts to reduce the latency of individual
network requests have been made at both the hardware
and the software level.

For instance, Alizadeh et al. show how to reduce net-
work latency by capping link utilization [8]. Vattikonda
et al. propose a TDMA-based Ethernet protocol which
due to reserved time slots helps to reduce RPC latencies
in data centers [26]. An application-centric perspective
is taken in RamCloud [23], where the entire data set of
an application is held in memory with the goal of reduc-
ing data access latencies for applications.

One aspect being ignored by all these works is that
today many distributed systems deployed in data cen-
ters are actually written in managed languages and run in
application-level virtual machines such as the Java Vir-
tual Machine (JVM) or the .NET runtime. Among the
examples of such systems are many highly popular ap-
plications like Hadoop, HDFS, Zookeepr, DryadLINQ,
etc. The latency penalty imposed by the network stack
of the application virtual machine is significant. Conse-
quently, the latencies experienced by applications run-
ning in such a managed runtime are typically much
higher than the latencies experienced by corresponding
applications running natively on the operation system.

In this paper, we present jVerbs, a networking API and
library for the JVM providing up to a factor of ten lower
latencies than the default network stack. The perfor-
mance advantages are based on two aspects. First – and
in contrast to standard sockets – jVerbs offers Remote



Direct Memory Access (RDMA) semantics and exports
the RDMA verbs interface. Second, jVerbs maps the net-
working hardware resources directly into the JVM, cut-
ting through both the JVM and the operating system.
Together, these properties allow applications to trans-
fer memory between two JVMs with no extra copy and
without operating system involvement.

To achieve the lowest possible latencies, jVerbs re-
quires RDMA-capable networking hardware. Histori-
cally, RDMA support has been available only in high-
performance interconnects such as Infiniband. As of to-
day, many of the Ethernet-based network cards come
with RDMA support.

In the absence of hardware support, jVerbs can be
used in concert with software-based RDMA on top of
standard Ethernet cards. We show that such a configura-
tion still achieves more than a factor of two better laten-
cies than standard JVM networking.

A key benefit of jVerbs comes from its RDMA in-
terface. Distributed systems can take advantage of the
RDMA semantics offered by jVerbs to implement their
network operations more efficiently than what is pos-
sible today with sockets. For instance, we show how
jVerbs can be used to implement fast lookup of key/-
value pairs from Memcached without even invoking the
server process. Also, we show how jVerbs helps to im-
prove the RPC latencies in Zookeeper and HDFS.

One main challenge in designing jVerbs is to cope
with all the latency overheads of penetrating the JVM
during network access. At the scale of microseconds,
even serialization of function parameters can be costly.
To overcome these obstacles, jVerbs employs a tech-
nique called stateful verbs calls (SVCs) which allows
applications to cache and re-use any serialization state
occurring during network operations.

In summary, this paper’s contributions include (1) an
analysis of latency overheads in distributed systems run-
ning inside a JVM runtime, (2) the design of jVerbs, in
particular the novel approach using stateful verb calls
(SVCs) and direct mapping of the network device, and
(3) the demonstration of how to use RDMA semantics
in jVerbs to lower latencies in several cloud workloads.

2 Motivation

In Figure 1, we analyze latencies of client/server oper-
ations available in several popular cloud-based applica-
tions. The intent of this experiment is to illustrate (a)
how much those latencies lag behind what is potentially
possible considering the nature of these operations, and
(b) how RDMA can help to reduce the latencies of these
cloud applications. All the experiments are executed in
a client/server manner between two machines equipped
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Figure 1: Latencies of networked operations in applications,
sockets and RDMA.

with an 8-core Intel Xeon E5-2690 CPU and a Chelsio
T4 10 Gbit/s adapter. The cards can be used both in full
RDMA and Ethernet only mode. All numbers are aver-
ages over 106 runs.

The first three bars of Figure 1 show the laten-
cies of operations in the Hadoop Distributed File Sys-
tem (HDFS), Zookeeper and Memcached. For HDFS
we measure the latency of a getBlockLocation()
metadata access, a standard API call exported to applica-
tions via the HDFS API. It is used by the Hadoop sched-
uler to optimize for compute/storage locality, but also
as part of regular HDFS read/write operations. A num-
ber of real-time applications use HDFS as their storage
layer [12, 16]. With fast emerging non-volatile storage
devices, metadata operations will become a critical per-
formance factor in these environments. For Zookeeper
we measure the latency of an exist() operation. This
operation checks whether a certain node in the Zookeper
tree is valid and is often used by applications to imple-
ment locks. In the case of Memcached, the latency refers
to the time of accessing a small 32-byte object cached at
the server. Here, the Memcached server runs natively,
and access is from a JVM-based client using Spymem-
cached, a popular Java client library for Memcached.

As can be obvserved from Figure 1, the latencies
of these three cloud applications range between 150−
300 µs. Considering that all of the operations involve
exactly one ping-pong message exchange and very little
computation on each side, we compare those numbers
with the raw roundtrip latency of a ping-pong message
exchange implemented using Java sockets. The figure
shows that such a message exchange takes 72 µs. In the
case of an HDFS getBlockLocation() operation
that means about 75% of the time is spent inside the ap-
plication and about 25% of the time is spent inside the
networking stack including the JVM socket implemen-
tation. For Zookeeper, the time is equally split between
application code and networking code. And for Mem-
cached, almost all of the time is spent for networking.



Bottom line: there are two opportunities to reduce the
latency of those applications, (a) by reducing the code
path inside the application, and (b) by improving the
JVM network latencies itself.

In this paper we show that having RDMA seman-
tics available inside the JVM will help with both prob-
lems. First, RDMA is a networking technology provid-
ing the lowest networking latencies for native applica-
tions today. Depending on which RDMA operation is
used (e.g., send/recv, RDMA read, polling), latencies of
single-digit microseconds can be achieved (see last four
bars in Figure 1). With jVerbs we offer an RDMA inter-
face for the JVM, allowing Java applications to benefit
from those ultra-low latencies. Second, the rich seman-
tics of RDMA allow a better integratation of application
functionality and network functionality. We will show-
case the advantages regarding application integration in
Section 7 of this paper.

3 Background

In this section we provide the necessary background in-
formation about RDMA, its API, and implementation in
Linux. A more detailed introduction to RDMA can be
found elsewhere [17].

RDMA Semantics: RDMA provides both send/re-
ceive type communication and RDMA operations. With
RDMA send/recv – also known as two-sided op-
erations – the sender sends a message, while the re-
ceiver pre-posts an application buffer, indicating where
it wants to receive data. This is similar to the traditional
socket-based communication semantics. RDMA oper-
ations comprise read, write, and atomics, com-
monly referred to as one-sided operations. These op-
erations require only one peer to actively read, write, or
atomically manipulate remote application buffers.

In contrast to the socket model, RDMA fully separates
data transfer operations from control operations. This
facilitates pre-allocation of communication resources
(e.g., pinning memory for DMA) and enables data trans-
fers without operating system involvement, which is key
for achieving ultra-low latencies.

API: Applications interact with the RDMA subsys-
tem through a verbs interface, a loose definition of
API calls providing the aforementioned RDMA seman-
tics [19]. By avoiding a concrete syntax, the verbs def-
inition allows for different platform-specific implemen-
tations.

To exemplify a control-type verb, the create qp()
creates a queue pair of send and receive queues for
holding application requests for data transfer. Data op-
erations such as post send() or post recv() al-
low applications to asynchronously post data transfer

RTT JNI costs Overhead
2000/VIA 70µs 20µs 29%
2013/RDMA 3-7µs 2-4µs 28-133%

Table 1: Network latencies and accumulated JNI costs per
data transfer in 2000 and 2012. Assuming four VIA operations
with base-type parameter per network operation [28], and two
RDMA operations with complex parameters per network op-
eration (post send()/poll cq()).

requests into the send/receive queues. Completed re-
quests are placed into an associated completion queue,
allocated via the create cq() verb. The completion
queue can be queried by applications either in polling
mode or in blocking mode.

The verbs API also defines scatter/gather data access
to minimize the number of interactions between applica-
tions and RDMA devices.

Security/fairness: Security and performance isola-
tion in RDMA are of particular importance with regard
to using RDMA in a shared environment. In terms of
security, several options exist. First, memory areas can
be grouped into different isolated protection domains.
Second, access permissions (e.g., read/write) can be set
on a per memory area basis. And last, remote mem-
ory access can be allowed/prevented by using standard
firewall techniques. In terms of fairness and isolation
RDMA does not implement any particular features but
when used together with SR-IOV hypervisors can con-
figure NICs to enforce rate limits for each virtual NIC.

Implementation: Today concrete RDMA implemen-
tations are available for multiple interconnect technolo-
gies, such as InfiniBand, iWARP, or RoCE. OpenFabrics
is a widely accepted effort to integrate all these technolo-
gies from different vendors and to provide a common
RDMA application programming interface implement-
ing the RDMA verbs.

As a software stack, the OpenFabrics Enterprise Dis-
tribution (OFED) spans both the operating system kernel
and user space. At kernel level, OFED provides an um-
brella framework for hardware specific RDMA drivers.
These drivers can be software emulations of RDMA de-
vices, or regular drivers managing RDMA network inter-
faces such as Chelsio T4. At user level, OFED provides
an application library implementing the verbs interface.
Control operations involve both the OFED kernel and
the userspace verbs library. In contrast, operations for
sending and receiving data are implemented by directly
accessing the networking hardware from user space.



4 Challenges

Java proposes the Java Native Interface (JNI) to give ap-
plications access to low-level functionality that is best
implemented in C. The JNI interface, however, has well
known weaknesses. First, it is inherently unsafe to exe-
cute C code in the context of a Java application. Errors
in the C library can crash the entire JVM. Second, the
overhead of crossing the boundary between Java and C
can be quite high.

The performance problems of the JNI interface have
been subject of discussions for many years. In the late
90s as part of the development of the Virtual Interface
Architecture (VIA) – a project to allow direct access to
the networking hardware from userland – there had been
interest in providing networking access for Java through
JNI [28]. The numbers reported are in the order of 1 µs
for a simple JNI call without parameters, and 10s of µs
for more complex JNI calls. Those high performance
overheads are caused by the fact that parameters and re-
turn values of JNI functions have to be serialized and
de-serialized before and after each call.

In the past years, the JNI performance has improved
– mostly due more efficient code execution on modern
CPUs. In our experiments we found JNI overheads of
about 100 ns for simple JNI calls without parameters
and 1− 2 µs for more complex JNI calls similar to the
post send() verb call.

To assess the performance overhead of using JNI in
the context of low latency networking operations, one
has to set those numbers in relation with network round
trip times. The network roundtrip times reported for the
VIA were in the order of 70 µs. Today, using modern
RDMA capable interconnects roundtrip times of single
digit microseconds are possible. We calculate the JNI
overhead per roundtrip assuming four JNI/RDMA oper-
ations (send/recv on each side) to be required per ping-
pong message exchange. This results in a overhead of
29% in the case of the VIA, and 28%−133% for a con-
figuration using a modern RDMA interconnect. The ex-
act overhead depends on the complexity of the operation.
For instance, RDMA scatter/gather operations as offered
by post send() and post recv() require more se-
rialization efforts and lead to higher JNI overheads.

There are two main takeaways. First, while JNI laten-
cies have improved in absolute numbers over the past
years, the overhead relative to the network latencies has
not (see Table 1). This rules out the use of JNI to in-
tegrate Java with native RDMA networking. Second,
the overhead of serializing complex function parameters
needs to be avoided if support for scatter/gather oper-
ations is desired. Together, these insights have inspired
the design of memory mapped device access and stateful
verb calls in jVerbs.

5 Design of jVerbs
The goal of this work is to design a networking frame-
work for the JVM which can provide ultra-low network
latencies to cloud-based applications running in a data
center. In jVerbs, we are able to achieve this goal by
making the following three design decisions: (1) aban-
don the socket interface in favor of an RDMA verbs
interface, (2) directly map the networking hardware re-
sources into the JVM to avoid JNI overhead, and (3) use
stateful verb calls to avoid the overhead of repeated se-
rialization RDMA work requests. In the following we
describe each of those points in more detail.

5.1 Full RDMA Semantics
The verbs interface is not the only RDMA API, but
it represents the “native” API to interact with RDMA
devices. Other APIs, like uDAPL, Rsockets, SDP or
OpenMPI/RDMA, have been built on top of the verbs,
and typically offer higher levels of abstractions at
the penalty of restricted semantics and lower perfor-
mance. With jVerbs as a native RDMA API, we de-
cided to compromise neither on available communi-
cation semantics nor on minimum possible network-
ing latency. jVerbs provides access to all the exclusive
RDMA features such as one-sided operations and sepa-
ration of paths for data and control, while maintaining a
completely asynchronous, event driven interface. Other
higher-level abstractions may be built on top of jVerbs at
a later stage if the need arises. In Section 7 we illus-
trate that the raw RDMA semantics in jVerbs is crucial
for achieving the lowest latencies in several of the cloud
applications discussed. Table 2 lists some of the most
prominent verb calls available in jVerbs. The API func-
tion are grouped into connection management (CM) op-
erations, verbs operations for data transfer, and opera-
tions dealing with state caching (SVC, see Section 5.3).

5.2 Memory-mapped Hardware Access
To achieve the lowest latencies in jVerbs, we employ
the same technique as the native C user library when it
comes to accessing the networking hardware.

For all performance-critical operations the native C
verbs library interacts with RDMA network devices
via three queues: a send queue, a receive queue and a
completion queue. Those queues represent hardware re-
sources but are mapped into user space to avoid kernel
involvement when accessing them.

jVerbs makes use of Java’s off-heap memory to access
these device queues directly from within the JVM. Off-
heap memory is allocated in a separate region outside the
control of the garbage collector, yet it can be accessed



class jVerbs API call description

C
M

createQP() returns a new queue pair (QP) containing a send and a recv queue
createCQ() returns a new completion queue (CQ)

regMR() registers a memory buffer with the network device
connect() sets up an RDMA connection

V
er

bs

postSend() prepares the posting of send work requests (SendWR[]) to a QP, returns an SVC object
postRecv() prepares the posting of receive work requests (RecvWR[]) to a QP, return an SVC object

pollCQ() prepares a polling request on a CQ, returns an SVC object
getCQEvent() waits for completion event on a CQ

SV
C

valid() returns true if this SVC object can be executed, false otherwise
execute() executes the verbs call associated with this serialized SVC object
result() returns the result of the most recent execution of this SVC object

free() frees all the resources associated with this SVC object

Table 2: Most prominent API calls in jVerbs (function parameters omitted for brevity).

through the regular Java memory API (ByteBuffer).
In jVerbs, we map device hardware resources into off-
heap memory using standard memory-mapped I/O. Fast
path operations like postSend() or postRecv()
are implemented by directly serializing work requests
into the mapped queues. All operations are implemented
entirely in Java, avoiding expensive JNI calls or modifi-
cations to the JVM.

5.3 Stateful Verb Calls
Even though jVerbs avoids the overhead of JNI by ac-
cessing device hardware directly, one remaining source
of overhead comes from serializing work requests into
the mapped queues. The cost of serialization can easily
reach several microseconds, too much given the single-
digit network latencies of modern interconnects. To mit-
igate this problem, jVerbs employs a mechanism called
stateful verb calls (SVCs). With SVCs, any state that is
created as part of a jVerbs API call is passed back to the
application and can be reused on subsequent calls. This
mechanism manifests itself directly at the API level: in-
stead of executing a verb call, jVerbs returns a stateful
object that represents a verb call for a given set of pa-
rameter values. An application uses exec() to execute
the SVC object and result() to retrieve the result of
the call.

One key advantage of SVCs is that they can be cached
and re-executed many times. Before executing, how-
ever, the application has to verify the SVC object is
still in a valid state using the valid() function. Se-
mantically, each execution of an SVC object is identi-
cal to a jVerbs call evaluated against the current param-
eter state of the SVC object. Any serialization state that
is necessary while executing the SVC object, however,
will only have to be created when executing the object
for the first time. Subsequent calls use the already es-

tablished serialization state, and will therefore execute
much faster. Once the SVC object no longer needed, re-
sources can be freed using the free() API call.

Some SVC objects allow of parameter state to be
changed after object creation. For instance, the addresses
and offsets of SVC objects returned by postSend()
and postRecv() can be changed by the application if
needed. Internally, those objects update their serializa-
tion state incrementally. Modifications to SVC objects
are only permitted as long as they do not extend the seri-
alization state. Consequently, adding new work requests
or scatter/gather elements to a SVC postSend() ob-
ject is not allowed.

Stateful verb calls give applications a handle to mit-
igate the serialization cost. In many situations, appli-
cations may only have to create a small number of
SVC objects matching the different types of verb calls
they intend to use. Re-using those objects effectively re-
duces the serialization cost to almost zero as we will
show in Section 8. Figure 2 illustrates programming
with jVerbs and SVCs and compares it with native
RDMA programming in C.

6 Implementation

jVerbs is implemented entirely in Java using 17K LOC.
jVerbs is packaged is as a standalone Java library and
we have tested it successfully with both the IBM and the
Oracle JVM. In this section we highlight several aspects
of the implementation of jVerbs in more detail. Figure 3
serves as a reference throughout the section, illustrating
the various aspects of the jVerbs software architecture.



/* assumptions: send queue (sq),
completion queue (cq),
work requests (wrlist),
output parameter with
polling events (plist) */

/* post the work requests */
post_send(sq, wrlist);
/* check if operation has completed */
while(poll_cq(cq, plist) == 0);

(a)

Verbs v = Verbs.open();
/* post the work requests */
v.postSend(sq, wrlist).exec().free();
/* check if operation has completed */
while(v.pollCQ(cq, plist)

.exec().result() == 0);

(b)

Verbs v = Verbs.open();
/* create SVCs */
RdmaSVC post = v.postSend(sq, wrlist)
RdmaSVC poll = v.pollCQ(cq, plist);
post.exec();
while(poll.exec().result() == 0);
/* modify the work requests */
post.getWR(0).getSG(0).setOffset(32);
/* post again */
post.exec();
while(poll.exec().result() == 0);

(c)

Figure 2: RDMA programming (a) using native C verbs, (b)
using jVerbs with SVC objects executed immediately, (c) us-
ing jVerbs with SVC objects cached and re-executed.

6.1 Zero-copy Data Movement
Regular Java heap memory used for storing Java objects
cannot be used as a source or sink in an RDMA oper-
ation as this would interfere with the activities of the
garbage collector. Therefore, jVerbs enforces the use of
off-heap memory in all of its data operations. Any data to
be transmitted or buffer space for receiving must reside
in off-heap memory. In contrast to regular heap mem-
ory, off-heap memory can be accessed cleanly via DMA.
As a result, jVerbs enables true zero-copy data transmis-
sion and reception for all application data stored in off-
heap memory. This eliminates the need for data copy-
ing across a JNI interface, which we know can easily
cost multiple 10s of microseconds. In practice, though,
it looks like at least one copy will be necessary to move
data between its on-heap location and a network buffer
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Figure 3: jVerbs user space libraries (core and driver) inter-
acting with the application and the RDMA ecosystem (OFED
kernel, driver and NIC).

residing off-heap. In many situations, however, this copy
can be avoided by making sure that network data re-
sides off-heap from the beginning. This is the case in
the Memcached implementation we discuss in Section 7,
and in several existing applications like Apache Direct-
Memory [4], Cloudera’s MemStore [1], or in the Netty
networking framework [3]. If the data cannot be stored
off-heap, one might still be able to use off-heap mem-
ory during the data serialization process. A good exam-
ple for this is the RPC framework we built using jVerbs,
where the parameters and result values are marshalled
into off-heap memory rather than marshalling them into
regular heap memory.

6.2 Direct Kernel Interaction

Control operations in RDMA – such as connection es-
tablishment or the creation of queue pairs – require ker-
nel involvement. These operations are often referred to
as the slow path since they typically do not implement
performance critical operations. This is, however, only
partially true. Certain operations like memory registra-
tion may very well be in the critical path of applications.

To ensure that no additional overhead is imposed
for control operations, jVerbs directly interfaces with
the RDMA kernel using standard file I/O. Specifically,
jVerbs opens the RDMA device file and communicates
with the kernel via the standard RDMA application bi-
nary interface (ABI), a binary protocol specified as part
of OFED. Again, one alternative would have been to im-
plement the binary protocol in a C library and interface
with it through JNI. But this comes at a loss of perfor-
mance which is unacceptable even in the control path.



6.3 User Drivers
Access to hardware resources in the data path is de-
vice specific. Hence, in jVerbs we encapsulate the device
specific internals into a separate module which interacts
with the core jVerbs library through a well-defined user
driver interface. A concrete implementation of this inter-
face knows the layout of the hardware queues and makes
sure that work requests or polling requests are serialized
into the right format. Currently, we have implemented
user drivers for Chelsio T4, Mellanox ConnectX-2 and
SoftiWARP [25].

User drivers typically make use of certain low-level
operations when interacting with hardware devices. For
instance, efficient locking is required to protect hard-
ware queues from concurrent access. Other parts require
atomic access to device memory or guaranteed order-
ing of instructions. Although such low-level language
features are available in C, they were not widely sup-
ported in Java for quite some time. With the rise of mul-
ticore, however, Java has extended its concurrency API
to include many of these features. For instance, Java has
recently added support for atomic operations and fine-
grain locking. Based on those language features, it was
possible to implement RDMA user drivers entirely in
Java using regular Java APIs in most of the cases. The
only place where Java reflection is required was for
obtaining an off-heap mapping of device memory. This
is because Java mmap() does not work properly with
device files. The Java road map shows that more low-
level features will be added in the coming releases, mak-
ing the development of jVerbs user drivers even more
convenient.

7 Applying jVerbs in the Cloud
In the following, we describe the implementation of
a latency-optimized communication subsystem for the
three cloud applications we used in the motivating exam-
ples (Section 2). Both Zookeeper and HDFS employ an
RPC type of communication. To reduce the latencies of
these applications, we first present the implementation
of jvRPC, a low-latency RPC system built using jVerbs.
The communication system of Memcached also resem-
bles an RPC architecture and could be accelerated using
jvRPC as well. However, given the communication pat-
tern of Memcached, an even more radical approach can
be implemented by directly using the one-sided RDMA
semantics available in jVerbs.

7.1 Low-latency RPC
Remote Procedure Call (RPC) is a popular mechanism
to invoke a function call in a remote address space [10].

    jVerbs 

 application
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     stub

          NIC
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off-heap
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Figure 4: Zero-copy RPC using jVerbs (omitting details at
server): 1) marshalling parameters into off-heap memory 2)
zero-copy transmission of parameters and RPC header using
scatter/gather RDMA send.

Zookeeper uses RPC type of communication between
clients and the server. In HDFS, an RPC-like commu-
nication is used between clients and the namenode node
holding the metadata of the system. To reduce the la-
tency in each of those systems, we have developed
jvRPC, a simple prototype of an RDMA-based RPC
system based on jVerbs. jvRPC makes use of RDMA
send/recv operations and scatter/gather support. The
steps involved in an RPC call are illustrated in Figure 4.

Initialization: First, both client and server set up a
session for saving the RPC state across multiple calls of
the same method. The session state is held in off-heap
memory to ensure that it can be used with jVerbs opera-
tions.

Client: During an RPC call, the client stub first mar-
shalls parameter objects into the session memory. It fur-
ther creates an SVC object for the given RPC call us-
ing jVerbs and caches it as part of the session state. The
SVC object represents a jpostSend() call of type
send with two scatter/gather elements. The first ele-
ment points to a memory area of the session state that
holds the RPC header for this call. The second element
points to the marshalled RPC parameters. Executing the
RPC call then comes down to executing the SVC object.
As the SVC object is cached, subsequent RPC calls of
the same session only require marshalling of the RPC
parameters but not the re-creation of the serialization
state of the verb call.

The synchronous nature of RPC calls allows jvRPC
to optimize for latency using RDMA polling on the
client side. Polling is CPU expensive, but it leads to
significant latency improvements and is recommended
for low-latency environments. jvRPC uses polling for
lightweight RPC calls and falls back to blocking mode
for compute-heavy function calls.

Server: At the server side, incoming header and RPC
parameters are placed into off-heap memory by the
RDMA NIC from where they get de-marshalled into on-
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Figure 5: Low-latency memcached access for Java clients us-
ing jVerbs.

heap objects. The actual RPC call may produce return
values residing on the Java heap. These objects together
with the RPC header are again marshalled into off-heap
session memory provided by the RPC stub. Further, an
SVC object is created and cached representing a send
operation back to the client. The send operation trans-
mits both header and return values in a zero-copy fash-
ion. Again, RDMA’s scatter/gather support allows the
transmission of header and data with one single RDMA
send operation.

RPC based on user-level networking is not a new idea,
similar approaches have been proposed [9, 14]. jvRPC,
however, is specifically designed to leverage the seman-
tical advantages of RDMA and jVerbs (e.g., scatter/-
gather, polling, SVCs). We have integrated jvRPC into
a prototype of Zookeeper and HDFS. In Section 8, we
show that by using jvRPC, latencies of these cloud ser-
vices can be reduced to nearly match the raw network
latencies of RDMA interconnects.

7.2 Low-latency Memcached
Memcached is a prominent in-memory key-value store
often used by web applications to store results of
database calls or page renderings. The memcached ac-
cess latency directly affects the overall performance of
web applications.

Memcached supports both TCP and UDP based proto-
cols between client and server. Recently, RDMA-based
access to memcached has been proposed [22, 24]. We
have used jVerbs to implement a client accessing Mem-
cached through an RDMA-based protocol in [24].

Basic idea: The interaction between the Java client
and the memcached server is captured in Figure 5. First,
the memcached server makes sure it stores the key/value
pairs in RDMA registered memory. Second, clients learn
about the remote memory identifiers (in RDMA termi-
nology also called stags) of the keys when accessing a
key for the first time. Third, clients fetch key/value pairs

through RDMA read operations (using the previously
learned memory references) on subsequent accesses to
the same key.

Get/Multiget: Using RDMA read operations to
access key/value pairs reduces the load at the server
because of less memory copying and fewer context
switches. More important with regard to this work is that
RDMA read operations provide clients with ultra-low
latency access to key/value pairs. To achieve the lowest
possible access latencies, the memcached client library
uses jVerbs SVC objects. A set of SVC objects repre-
senting RDMA read operations are created at loading
time. Each time a memcached GET operation is called,
the client library looks up the stag for the correspond-
ing key and modifies the cached SVC object accordingly.
Executing the SVC object triggers the fetching of the
key/value pair from the memcached server.

Memcached can also fetch multiple key/value pairs at
once via the multiget API call. The call semantics of
multiget match well with the scatter/gather seman-
tics of RDMA, allowing the client library to fetch multi-
ple key/value pairs with one single RDMA call.

Set: Unlike in the GET operation, the server needs to
be involved during memcached SET to insert the key/-
value pairs properly into the hash table. Consequently, a
client cannot use one-sided RDMA write operations
for adding new elements to the store. Instead, adding
new elements is implemented via send/recv opera-
tions. Updates for a given key are always stored in a
new memory block at the server which avoids conflicts
in case of concurrent reads. After an update, the server
either switches the stags for the old and the new value,
or informs the clients about the new key-to-stag binding
(see [22, 24]). From a performance standpoint, objects
that are part of an update operation can be transmitted
without intermediate copies at the client side if they are
marshalled properly into off-heap memory before.

8 Evaluation
In this section we evaluate the latency performance
of jVerbs in detail. We first discuss the latencies of basic
RDMA operations and later demonstrate the advantages
of using jVerbs in the context of existing cloud appli-
cations. Before presenting our results, it is important to
describe the hardware setup used for the evaluation.

8.1 Test Equipment

Experiments are executed on two sets of machines. The
first set comprises two machines connected directly to
each other. Both are equipped with a 8 core Intel Xeon
E5-2690 CPU and a Chelsio T4 10 Gbit/s adapter with
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Figure 6: Comparison of round-trip latencies of basic
jVerbs operations with traditional socket networking in Java.

RDMA support. The second set comprises two machines
connected through a switched Infiniband network. These
machines are equipped with a 4-core Intel Xeon L5609
CPU and a Mellanox ConnectX-2 40 Gbit/s adapter with
RDMA support. We have used the Ethernet-based setup
for all our experiments except the one discussed in Sec-
tion 8.5. We have further used an unmodified IBM JVM
version 1.7 to perform all the experiments shown in this
paper. As a sanity check, however, we repeated several
experiments using an unmodified Oracle JVM version
1.7, and did not see any major performance differences.

8.2 Basic Operations

We start off by comparing the latencies of different
RDMA operations with the latencies of regular socket-
based networking.

The measured latency numbers discussed in this sec-
tion are captured in Figure 6. The benchmark is mea-
suring the roundtrip latency for messages of varying
sizes. Five bars representing five different experiments
are shown for each of the measured data sizes. Each data
point represents the average value over 1 million runs.
In all our experiments, the standard deviation across the
different runs was small enough to be negligible, thus,
we decided to omit error bars. We used Java/NIO to im-
plement the socket benchmarks. For a fair comparison,
we use data buffers residing in off-heap memory for both
the jVerbs and the socket benchmarks.

Sockets: The Java socket latencies are shown as the
first of the five bars shown per data size in Figure 6.
We measured socket latencies of 59 µs for 4-byte data
buffers, and 95 µs for buffers of size 16K. Those num-
bers allow us to put the jVerbs latencies into perspective.
A detailed performance analysis of the Java/NIO stack,
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Figure 7: Comparing latencies using the native C verbs in-
terface with jVerbs, top: send/recv operation with polling,
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performance overhead.

however, is outside the scope of this work.

Two-sided operations: Two-sided operations are the
RDMA counterpart of traditional socket operations like
send() and recv(). As can be observed from Figure
6, two-sided operations in jVerbs achieve a roundtrip la-
tency of 30 µs for 4-byte buffers and 55 µs for buffers
of size 16K. This is about 50% faster than Java/sock-
ets. Much of this gain can be attributed to the zero-copy
transmission of RDMA send/recv operations and its
offloaded transport stack.

Polling: One key feature offered by RDMA and
jVerbs is the ability to poll a user-mapped queue to deter-
mine when an operation has completed. By using polling
together with two-sided operations, we can reduce the
latencies by an additional 65% (see third bar in Fig-
ure 6). In low latency environments, polling is better
than interrupt-based event processing which typically re-
quires costly process context switching.

One-sided operations: One-sided RDMA opera-
tions provide a semantic advantage over traditional
rendezvous-based socket operations. This performance
advantage is demonstrated by the last two bars shown
in Figure 6. These bars represent the latency numbers
of a one-sided read operation, once used in blocking
mode and once used in polling mode. With polling, la-
tencies of 7 µs can be achieved for small data buffers,
whereas latencies of 31 µs are achieved for buffers of
size 16K. This is another substantial improvement over
regular Java sockets. Much of this gain comes from the
fact that no server process needs to be scheduled for
sending the response message.



Operation no SVC with SVC Speedup
send/recv 35µs 30µs 1.16
send/recv+poll 18µs 10µs 1.8
read 17.5µs 15µs 1.17
read+poll 11.2µs 7µs 1.6
10-SG read 28.8µs 18µs 1.6

Table 3: Latency implications of using SVCs for differ-
ent jVerbs operations. SVCs reduce latencies throughout the
band, but are most useful for reads in polling mode and scat-
ter/gather operations.

8.3 Comparison with Native Verbs

One important question regarding the performance
of jVerbs is how it compares with the performance of
the native verbs interface in C. For this reason, we com-
pared all the benchmarks of Section 8.2 with their C-
based counterparts. In those experiments, the perfor-
mance difference never exceeded 5%. In Figure 7 we
compare the latencies of native C verbs with jVerbs for
both send/recv and read operations. In both exper-
iments polling is used, which puts maximum demands
on the verbs interface. The fact that the performance
of jVerbs is at par with the performance of native verbs
validates the design decisions made in jVerbs.

8.4 Benefits of Stateful Verb Calls

Stateful verb calls (SVCs) are offered by jVerbs as a
mechanism for applications to cope with the serializa-
tion costs occurring as part of RDMA operations. We
have tested the latency implications of using SVCs ver-
sus not using the feature for different RDMA operations,
and the numbers are reported in Table 3. There are mul-
tiple observations that can be drawn from the table. First,
SVCs consistently help to reduce latency. Second, not all
RDMA operations benefit equally from SVCs. For in-
stance, operations in polling mode benefit more than op-
erations in blocking mode. Operations in blocking mode
are generally slower, making the relative overhead of not
using SVCs appear smaller. Third, the benefits of SVCs
come into play in particular when using scatter/gather
operations. Scatter/gather operations require a substan-
tial serialization effort. Using SVCs, this serialization
cost can be saved, which results in significant latency
gains – up to 37% for a scatter/gather read with 10 el-
ements per postSend().

8.5 Different Transports

RDMA is a networking principle which is independent
of the actual transport that is used for transmitting the

RPC call Default jvRPC Gains
Zookeeper/exist() 152µs 21.6µs 7.0x
Zookeeper/getData(1K) 156µs 24.3µs 6.4x
Zookeeper/getData(16K) 245µs 50.3µs 4.8x
HDFS/exist() 329µs 28.9µs 11.3x
HDFS/getBlockLocation() 304µs 29.5µs 10.3x

Table 4: RPC latencies in Zookeeper and HDFS, once unmod-
ified and once using jvRCP

bits. Each transport has its own performance characteris-
tics and we have already shown the latency performance
of jVerbs on Chelsio T4 NICs. Those cards provide an
RDMA interface on top of an offloaded TCP stack, also
known as iWARP. In Figure 8, we show latencies of
RDMA operations in jVerbs for two alternative trans-
ports: Infiniband and SoftiWARP.

In the case of Infiniband, the latency numbers for
small 4-byte buffers outperform the socket latencies by
far. This discrepancy is because Infiniband is optimized
for RDMA but not at all for sockets. The gap increases
further for the larger buffer size of 16K. This is because
RDMA operations in jVerbs are able to make use of
the 40 Gbit/s Infiniband transport, whereas socket oper-
ations need to put up with the Ethernet emulation on top
of Infiniband. The latencies we see on Infiniband are a
good indication of the performance landscape we are go-
ing to see for RDMA/Ethernet in the near future. In fact,
the latest iWARP NICs provide 40 Gbit/s bandwidth and
latencies around 3 µs.

The right-hand side of Figure 8 shows the latencies of
using jVerbs on SoftiWARP [6] and compares the num-
bers with those of standard Java sockets. SoftiWARP is
a software-based RDMA device implemented on top of
kernel TCP/IP. In the experiment we run SoftiWARP on
top of a standard Chelsio NICs in Ethernet mode. Softi-
WARP does not achieve latencies that are as low as those
seen by Infiniband. Using jVerbs together with Softi-
WARP, however, still provides a significant performance
improvement over standard sockets (70% in Figure 8).
The performance gain comes from zero-copy transmis-
sion, memory mapped QPs (jVerbs maps QPs available
in SoftiWARP into the JVM just as it does for regular
hardware supported RDMA devices) and fewer context
switches. The result showcases the performance advan-
tages of jVerbs/SoftiWARP in a commodity data envi-
ronment.

8.6 Applications
In this section we show the benefits of using jVerbs in
cloud-based applications.

Zookeeper and HDFS: We have implemented jvRPC
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RPC call Insts/ops IPC
kernel user

Zookeeper/exist() 22K 18K 0.51
Zookeeper/exist()+jvRPC 10K 13K 0.73
HDFS/getBlockLocation 25K 79K 0.38
HDFS/getBlockLocation+jvRPC 11K 45K 0.64

Table 5: Instructions exection profile and instructions/cycle
(IPC) for Zookeeper and HDFS, with and without jvRPC.

by manually writing RPC stubs for a set of function
calls occurring in Zookeeper and HDFS. As a proof of
concept, we have integrated jvRPC into Zookeeper and
HDFS as a communication substrate between client and
server for those particular function calls.

In Table 4 we compare the latencies of several oper-
ations in unmodified Zookeeper and HDFS with the la-
tencies when using jvRPC. As can be seen, using jvRPC
the latencies of the listed operations in Zookeeper and
HDFS can be reduced substantially. For instance, an
exist() operation with unmodified Zookeeper takes
152 µs, but takes only 21 µs when jvRPC is used. This
corresponds to a factor of seven improvement. Similar
speedups are possible for other operations in Zookeeper
and HDFS.

One interesting aspect is related to the getData()
operation in Zookeeper. For better performance we mod-
ified Zookeeper to store the data part of each Zookeeper
node in off-heap memory. Using jvRPC we can then
avoid the extra data copy that takes place in the default
implementation of Zookeeper.

Further analysis reveals that jvRPC leads to a shorter
code path and a more efficient instruction execution. Ta-
ble 5 shows the number of instructions executed to han-
dle one RPC operation. The reduced number of instruc-
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tions (hence shorter code path) in kernel and userspace
can be attributed to network offloading and RDMA se-
mantics, respectively. Consequently, higher instructions
executed per CPU cycle (IPC) represent better applica-
tion level performance.

However, at this point we would like to emphasize that
the jvRPC implementation – with its sole focus on the
latency – represents an extreme point in the application
design spectrum. It demonstrates that by carefully de-
signing the application (e.g. removing slow operations
such as memory allocation out of the fast data flow path),
it is possible to achieve near raw link latencies for appli-
cations running inside a managed runtime such as the
JVM.

Memcached/jVerbs: Figure 9 shows the latencies of
accessing memcached from a Java client. We compare
two setups: (a) accessing unmodified memcached us-
ing a standard Java client library [7] and (b) accessing
a modified memcached via RDMA using the jVerbs-
based client library as discsussed in Section 7.2. The
RDMA-based setup is further subdivided into two cases,
(a) accessing keys for the first time and (b) repeated ac-
cess of keys. In the benchmark we measure the latency
of a multiget() operation with increasing number
of keys per operation. The figure shows standard mem-
cached access from Java takes between 62 and 79 µs de-
pending on the number of keys in the multiget() re-
quest. With RDMA-based memcached access, this num-
ber reduces to 21-32 µs if keys are accessed for the first
time, and to 7-18 µs for repeated access to keys. These
latencies are very close to the raw network latencies of
the send/recv and read operations that are used to
implement key access in each of the cases.

One important observation from Figure 9 is that the
benefits of RDMA increase with the increasing number



of keys per multiget() operation. This shows that
RDMA scatter/gather semantics are a very good fit for
implementing the multiget operation. Overall, using
RDMA reduces Java-based access to memcached sub-
stantially – by a factor of ten for repeated single key GET
operations.

9 Related Work

The work that is closest to jVerbs is Jaguar [28], which
implements user-level networking in Java based on the
virtual interface architecture (VIA). This work was done
in the late 90s with preconditions (network latencies,
CPU speed, Java language features, user-level network-
ing stacks) that were quite different from the techno-
logical environment we have today. jVerbs differs from
Jaguar in two ways. First, jVerbs is a standalone library
that works in concert with any JVM. This is different
from Jaguar, which is highly integrated with the JVM
and requires modifications to the JIT compiler. Sec-
ond, jVerbs offers full RDMA semantics that go beyond
the feature set of BerkeleyVIA [13] used in Jaguar.

In [15] the authors propose Java-based access to the
VIA architecture using either native methods imple-
mented in a C library or, alternatively, through modi-
fications to the Java compiler. Unfortunately, the JNI-
based approach imposes a latency penalty and the pro-
posed compiler modifications tie the implementation to
a certain JVM.

The VIA architecture is one out of several approaches
for user-level networking developed in the 90s. Other
works include Shrimp [11], or U-net [27]. These sys-
tems have influenced and shaped the RDMA technology
of today. We believe that the concepts behind jVerbs –
although applied to RDMA – are generic and could be
used to enable efficient JVM access for other user-level
networking systems.

The Socket Direct Protocol (SDP) is a networking
protocol implemented on RDMA and enabling zero-
copy and kernel-bypass for standard socket applica-
tions [5]. Because of the restrictions of the socket-
interface, however, SDP cannot provide the ultra-low la-
tencies of raw RDMA verbs. Recently, Open Fabrics has
ended their support for SDP in favor of rsockets [18].
But similar to SDP, rsockets do not offer the semantics
necessary for ultra-low latencies. Moreover, currently
there is no Java support available for rsockets.

There have been early proposals for RPC based on
user-level networking including work for Java [9, 14].
These works are not that different from jvRPC described
in Section 4. We believe, however, that a full exploitation
of the RDMA semantics – such as proposed by jvRPC –
is necessary to provide RPC latencies in the 15−20 µs

range. The performance measurements of jvRPC show
that such latencies are possible in the context of real ap-
plications like Zookeeper and HDFS.

Accelerating memcached access using RDMA has
been investigated in [20, 24]. The work in [20] inte-
grates memcached access through some additional trans-
parency layer and adds some latency overhead. In this
work we have extended the pure verbs-based approach
for accessing memcached from Java [24]. The perfor-
mance measurements show that such an approach leads
to access latencies in the single microseconds range – a
factor of 10 faster than standard memcached access in
Java.

10 Conclusion

Lately, there has been a lot of important research look-
ing into reducing latencies inside the data center, both at
the hardware level (e.g., switches, MAC protocol) and
at the application level (e.g., in-memory storage). In this
paper, we have presented jVerbs, a library framework of-
fering ultra-low latencies for an important class of appli-
cations running inside a Java Virtual Machine. Our mea-
surements show that jVerbs provides bare-metal network
latencies in the range of single-digit microseconds for
small messages – a factor of 2-8 better than the tradi-
tional socket interface on the same hardware. It achieves
this by integrating RDMA semantics (with kernel by-
pass and zero-copy) and carefully managing the JVM
run-time overheads. With the help of the new expres-
sive jVerbs API, the raw network access latencies were
also successfully translated into improved performance
in several popular cloud applications.

To the best of our knowledge, jVerbs is the first
transport-independent and portable implementation of
RDMA specifications and semantics for the JVM.
Confident from our experiences with the development
of jVerbs for multiple interconnects and applications,
we are now looking into exploring its applicabil-
ity beyond our client-server setup, such as for large-
scale data-processing frameworks involving thousands
of nodes. jVerbs has the potential to accelerate the per-
formance of these applications.
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