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A Minute on the Internet

200 Zettabytes
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Scientists estimate that the Earth contains 7.5 sextillion sand grains.
That is 75 followed by 17 zeros. [See here]

https://www. bondh!gholus com/2022/01/08/what-happen-in-an-internet-minute/

https://cybersecurityventures.com/the-world-will-store-200-zettabytes-of-data-by-2025/



https://localiq.com/blog/what-happens-in-an-internet-minute/
https://www.bondhighplus.com/2022/01/08/what-happen-in-an-internet-minute/
https://cybersecurityventures.com/the-world-will-store-200-zettabytes-of-data-by-2025/
https://eu.oklahoman.com/story/lifestyle/2019/02/05/more-stars-than-grains-of-sand-on-earth-you-bet/60474645007/

If a Zettabyte does not Resonate

Assume (illustration purposes only):

e 1grain of rice is 1 byte of data

What is big data?, David Wellman, https://www.slideshare.net/dwellman/what-is-big-data-24401517
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If a Zettabyte does not Resonate

Assume (illustration purposes only):

e 1 grain of rice is 1 byte of data
e Kilobyte: a cup of rice

What is big data?, David Wellman, https://www.slideshare.net/dwellman/what-is-big-data-24401517
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If a Zettabyte does not Resonate

Assume (illustration purposes only):

e 1 grain of rice is 1 byte of data
e Kilobyte: a cup of rice
e Megabyte: 8 bags of rice

What is big data?, David Wellman, https://www.slideshare.net/dwellman/what-is-big-data-24401517
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If a Zettabyte does not Resonate

Assume (illustration purposes only):

1 grain of rice is 1 byte of data
Kilobyte: a cup of rice
Megabyte: 8 bags of rice
Gigabyte: 3 semi-trucks

What is big data?, David Wellman, https://www.slideshare.net/dwellman/what-is-big-data-24401517
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If a Zettabyte does not Resonate

Assume (illustration purposes only):

1 grain of rice is 1 byte of data
Kilobyte: a cup of rice
Megabyte: 8 bags of rice
Gigabyte: 3 semi-trucks
Terabyte: 2 container ships

What is big data?, David Wellman, https://www.slideshare.net/dwellman/what-is-big-data-24%40
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If a Zettabyte does not Resonate

Assume (illustration purposes only):

e 1 grain of rice is 1 byte of data

e Kilobyte: a cup of rice

e Megabyte: 8 bags of rice

e Gigabyte: 3 semi-trucks

e Terabyte: 2 container ships

e Petabyte: Covers Maastricht I\ W8 4
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What is big data?, David Wellman, https://www.slideshare.net/dwellman/what-is-big-data-24401517
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If a Zettabyte does not Resonate

Assume (illustration purposes only):

1 grain of rice is 1 byte of data
Kilobyte: a cup of rice
Megabyte: 8 bags of rice
Gigabyte: 3 semi-trucks
Terabyte: 2 container ships
Petabyte: Covers Maastricht
Exabyte: Covers NL + DE + FR

o
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What is big data?, David Wellman, https://www.slideshare.net/dwellman/what-is-big-data-24401517
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If a Zettabyte does not Resonate

Assume (illustration purposes only):

1 grain of rice is 1 byte of data
Kilobyte: a cup of rice
Megabyte: 8 bags of rice
Gigabyte: 3 semi-trucks

Terabyte: 2 container ships
Petabyte: Covers Maastricht
Exabyte: Covers NL + DE + FR
Zettabyte: Fills up the Pacific Ocean

What is big data?, David Wellman, https://www.slideshare.net/dwellman/what-is-big-data-24401517
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If a Zettabyte does not Resonate

Assume (illustration purposes only):

1 grain of rice is 1 byte of data

Kilobyte: a cup of rice

Megabyte: 8 bags of rice

Gigabyte: 3 semi-trucks

Terabyte: 2 container ships

Petabyte: Covers Maastricht We are here
Exabyte: Covers NL + DE + FR

Zettabyte: Fills up the Pacific Ocean

Yottabytes: An Earth size rice ball

AN

By 2030

What is big data?, David Wellman, https://www.slideshare.net/dwellman/what-is-big-data-24401517
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Non-Volatile Memory (NVM) Storage to the Rescue...
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SAMSUNG Samsung Develops High-Performance PCle
When you purchase through links on our site, we may earn an affiliate commission. Here's how it works. 5.0 SSD for Enterprise Servers
Korea on December 23,2021 Audio Share
Home > News

SK Hynix's New SSD Boasts 1.4 Million IOPS

By Aaron Klotz last updated May 20, 2022

Samsung’s PCle 5.0 SSD will provide nearly two times faster data transfer
speeds and 30% enhanced power efficiency than the previous generation,
resultina in lower server operating costs*

o Fommentaliy Samsung’s PM1743 will feature a sequential read speed of up to 13,000 megabytes per second (MB/s) and

1server manufacturers to drive
(CE RGBT [o L [ I LTV eIV o T =N o Rl UL G R [0 128, offering 1.9x and 1.7x faster speeds over the

1 next-generation servers
previous PCle 4.0-based products. Moreover, write speeds have been elevated significantly, with a sequential write
speed of 6,600 MB/s and a random write speed of 250K I0PS, also delivering 1.7x and 1.9x faster speeds, [ tooay:announcea et k.basidevelopeditne:

‘omponent Interconnect Express) 5.0 interface

Well over 1 Million IOPS

000006

respectively. These remarkable data transfer rates will allow enterprise server manufacturers deploying the PM1743
to enjoy a much higher level of performance.

e —— 3.6X

Compared to
PM983 55,000 IOPS

(Image credit: Amazon)

Random Write up to 200,000 IOPS Random Read up t0 1,100,000 IOPS




Workload-specific Configurations

FlashNeuron: SSD-Enabled Large-Batch Training of Very Deep Neural Networks
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Abstract
-ep neural networks (DNNs) are widely used in various
Al application domains such as computer vision, natural lan-
‘guage processing, autonomous driving, and bioinformatics.
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Novel Systems Designs (CXL)

Overcoming the Memory Wall with CXL-Enabled SSDs

DNNs must be frained before deployment to find optimal
network ters that minimize the error rate. Stochastic
Gradient Descent (SGD) is the dominant algorithm used for
DNN training [15]. In SGD, the entire dataset is diy ded into

As DNN continue to get wider and deeper
racy, the limited DRAM capacity of a uammg platform ke
GPU often becomes the limiting factor on the size of DNNs
and batch size—called memory capacity wall. Since increas-
ing the batch size is a popular technique to improve hardware
utilization, this can yield a suboptimal training throughput.
Recent proposals address this problem by offloading some of
the intermediate data (e.g.. feature maps) to the host memory.
However,they fil to provide robust performance as the train-
ing s ona GPU contends with applic ing ona
CPU for memory bandwidth and capacity. Thus, we propose
FlashNeuron, the first DNN training system using an NVMe
SSD as a backing store. To fully uilize the limited SSD write
bandwidth, FlashNeuron introduces an offloading scheduler,
which selectively offloads a set of intermediate data to the
SSD in a compressed format without increasing DNN evalua-
tion time. FlashNeuron causes minimal interference to CPU
processes as the GPU and the SSD directly communicate for
data transfers. Our evaluation of FlashNeuron with four state-
of-the-art DNN shows that FlashNeuron can increase the
batch size by a factor of 12.4x 10 14.0x over the maximum
allowable batch size on NVIDIA Tesla V100 GPU with 16GB
DRAM. By employing a larger batch size, FlashNeuron also
improves the training throughput by up to 37.8% (with an
average of 30.3%) over the baseline using GPU memory only,
while minimally disturbing applications running on CPU.

1 Introduction

Deep neural networks (DNN) are the key enabler of emerg-
ing Al-based applications and services such as computer vi-
sion [19,22, . 3
51.67], and bioinformatics [46, 73]. With a relentless pursuit
of higher accuracy, DNNs have become wider and decper to
increase network size [65). It s because even a 1% accuracy
loss (or gain) potentially affects the experience of millions of
users if the Al application serves a billion of people [47].

multiple (mini-batches, and weight gradient 1
and applied to the network parameters (weights) for each
batch via backward propagation. Unlike inference, the train-
ing algorithm reuses the intermediate results (e.g.. feature
maps) produced by a forward propagation during the back-
ward propagation, thus requiring a lot of memory space [55].

“This GPU memory capacity wall [33] often becomes the
limiting factor on DNN size and its throughput. Specifically.
such a large memory capacity requirement forces a GPU de-
vice to operate at a relatively small batch size, which often ad-
versely affects its throughput. The use of multiple GPUs can
partially bypass the memory capacity wall because a careful
use of multiple GPUs can achieve near-linear improvements
in throughput [27, 28, 59]. However. such a throughput im-
provement comes with the linear increase in the GPU cost,
which is often a major component of the overall system cost.
As a result, the use of multiple GPUs often ends up with
sub-optimal cost efficiency (i.c.. troughput/system cost) as it
does not change the fact that each GPU is not operating at its
full capacity due to the limited per-GPU batch size.

“This memory capacity problem in DNN training has drawn
much attention from the research community. The most pop-
ular approach i to utilize the host CPU memory as a backing
store 10 offload some of the tensors that are not immediately
used [8,9,24,42, 55.62]. However, this buffering-on-memory
approach fails 1o provide robust performance as the training
process on the GPU contends with applications running on
the CPU for memory bandwidth and capacity (e.g.. data aug-
mentation tasks [5.41.57,61] to boost training accuracy).
Moreover, these s focus mostly on increasing batch
size but less on improving training throughput. Therefore,
they often yield a low training throughput as the cost of CPU-
GPU data transfers outweighs a larger batch’s benefits.

Thus, we propose FlashNeuron, the first DNN training
system using a high-performance SSD as a backing store.
While NVMe SSDs are a promising alternative to substitute
or augment DRAM, they have at least an order of magnitude
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This paper investigates the feasibility of using inexpensive i .
flash memory on new interconnect technologies such as CXL " doan &
(Compute Express Link) to overcome the memory wall. We E 0 p— g
explore the design space of a ch enabled flash device and z i
show i help %10 w2
mitigate the concerns ltgwdmg nm memory’s performance S o
and lifetime. We demonstrate using real-world application

traces that these techniques enable the CXL device to have
an estimated lifetime of at least 3.1 years and serve 68-91%
of the memory requests under a microsecond. We analyze the
limitations of existing techniques and suggest system-level
changes to achieve a DRAM-level performance using flash.

1 Introduction

The growing imbalance between computing power and mem-
ory capacity requirement in computing systems has devel-
oped into a challenge known as the memory wall [23,34,52].
Figure |, based on the data from Gholami et al. [34] and
expanded with more recent data [11,30,43], illustrates the
rapid growth in NLP (natural language processing) models
(4.1 p:t year), which far outpaces that of memory capac-
per year). The memory wall forces modern data-
ntensive applications such as databases [$. 10, 14.20], data
analytics [1.35], and machine learning (ML) [45.48,66] to
cither be aware of their memory usage [61] o implement
user-level memory management [66] to avoid expensive page
swaps [37.53]. As a result, overcoming the memory wall in an
application-transparent manner is an active research avenue;
approaches such as creating an ML-centric system [45.48.61 1.
building a memory disaggregation framework [36.
and designing new memory architecture [23,42] are acu\‘ely
pursued.

We question whether it s possible to overcome the mem-
ory wall using flash memory — a memory technology that
is typically used in storage due to its high density and capac-

2008 2019 2021 022

Figure 1: The trend in memory requirements for NLP appli-
cations [11,30,34,43]. The number of paramelers increases
by a factor of 14.1 per year, while the memory capacity in
GPUs only grows by a factor of 1.3x every year.

in the terabyte scale [23], a sufficiently large capacity to ad-
dress the memory wall challenge. The use of flash memory as
‘main memory is enabled by the recent emergence of intercon-
nect technologies such as CXL [3), Gen-Z 7], CCIX [2], and
OpenCAPI [12], which allow PCle (Peripheral Component
Interconnect Express) devices to be accessed directly by the
CPU through load/store instructions. Furthermore, these tech-
nologies promise excellent scalability as more PCle devices
can be attached across switches [13] unlike DIMM (Dual
Inline Memory Module) used for DRAM.

However, there are three main challenges 1o using flash
memory as CPU-accessible main memory. First, there is a
granularity mismatch between memory requests and flash

Sustainable Computing

When Poll is More Energy Efficient than Interrupt
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ABSTRACT

Polling is commonly indicated to be a more suitable I0 com-
pletion mechanism than interrupt for ultra-low latency stor-
age devices. However, polling’s impact on overall energy
efficiency has not been thoroughly investigated. In this pa-
per, contrary to common belief, we show that polling can
also be more energy efficient than interrupt. To do so, we
systematically investigate the energy cfficiency of all avail-
able Linux 10 completion mechanisms, including interrupt,
classic polling, and hybrid polling using a real ultra-low la-
tency storage device, a power meter, and various workload
behaviors. Our experimental results indicate that although
hybrid polling provides a good trade-off in CPU utilization,
itis the least energy efficient, whereas classic polling s the
most energy cfficient for low latency 10 requests. To the best
of our knowledge, this is the first paper classifying polling
as more energy efficient than interrupt for a real seco
storage device, and we hope that our obscrvations will lead
to more energy efficient IO completion mechanisms for new
generation storage device characteristics.

CCS CONCEPTS
+ Information systems — Storage power management;
Storage class memory.

KEYWORDS

10 completion, encrgy cfficiency
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1 INTRODUCTION

With the most recent advancements in data storage tech-
nology, a new category of Solid-State Drives (SSDs) have
emerged. These devices are referred to as Ultra-Low La-
tency (ULL) SSDs and are broadly classified as providing
data access in less than 10ps [17]. Various vendors includ-
ing Intel, Samsung, and Toshiba have representative ULL
SSDs [3, 4, 20), where Intel's latest generation of the Optane
SSD is advertised to deliver read 0 in 5 s and write 10 in
6 s (6). ULL IO performance providing sub-10 ps data access
latency renders the performance of traditional, interrupt-
based IO completion mechanism questionable. Both industry
and academia suggested replacing interrupts with polling
based IO completion methods for improved latency in such
devices (11,13, 15, 19, 22, 25-27), where polling has also been
supported by the Linux kernel since version 4.4. However,
one must also consider the relationship between IO perfor-
mance and power consumption, as power saving methods
may not be worth the resulting loss in 10 performance.

Despite greater performance, polling is commonly be-
lieved to be more costly and less energy efficient than in-
terrupt since polling wastes CPU cycles. The primary as-
sumption behind this is that reduced CPU usage directly
correlates to reduced power consumption. Therefore, with
kernel version 4.10, Linux introduced a hybrid polling mech-
anism, which sleeps the task before starting to poll so that
less CPU cycles are wasted [13).

In this paper, we study the energy implications of the
three 0 completion mechanisms available in Linux, includ-
ing interrupts, classic polling, and hybrid polling techniques,
specifically for ULL disk 10. Our empirical evaluation using
areal ULL device, a power meter, various workload behav-
iors, and the most recent longterm Linux kernel relies on

Permission to make digital or hard copies of all or part of this work for

made o profit

‘page. Copyrights for components

10 measured per energy unit, bytes transferred
per joule. Considering both performance and energy in a
single metric, we make observations laying out the most en-
ergy efficient 10 completion mechanisms. We hope that our

memory. This results in a significant traffic
top of the existing need for indirection in flash [23,33]: for
example, a 64B cache line flush to the CXL-enabled flash
would result in 16KiB flash memory page read. 64B update,
and 16KiB flash program to a different location (assuming a
16KiB page-level mapping). Second. flash memory is still or-
ders of magnitude slower than DRAM (tens of microseconds
vs. tens of nanoseconds) [5.24]. As a consequence, while the

ity scaling [59]. While DRAM can only scale to gigabytes . the long flash memory latency hinders susained
in capacity. a flash based solid-state drive (SSD) is as data-i ions can only endure
USENIX Association 2023 USENIX Annual Technical Conference 601
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credit is permitted. To copy otherwise, or republish, to post on servers or to
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and analysis can lead to more cnergy efficient
storage stack designs in the future.

2 10 COMPLETION IN LINUX KERNEL

In this section, we outline the working mechanisms of avail-
able Linux IO completion mechanisms for the most com-
monly used Linux-native synchronous IO interface.
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Rise of Domain-Specific Computing

End of the Line = 2X/20 years (3%/yr)
Amdahl's Law = 2X/6 years (12%/year)
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year)

CISC 2X/2.5 years RISC 2X/1.5 years
(22%/year) (52%/year)
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Stalled CPU-centric computing scaling

Rise of accelerator-centric computing
+ Specialized hardware
+  Energy/Perf. gains over the CPU

John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2 (February 2019), 48-60. DOI: https://doi.org/10.1145/3282307
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Position: Workload-Specialized Storage Software Will Emerge

Classical Workloads

KV Stores Graphs Trees Tensors
— e - .
— 2 N
v 4 1)

File system

Block I/O

Storage Device (flash and NVM storage)
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Position: Workload-Specialized Storage Software Will Emerge
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Position: Workload-Specialized Storage Software Will Emerge

Performance and scheduling overheads? [Systor’22, CHEOPS'23, ICPE’24 (under submission)]

New Interface: Zone Namespace to the rescue? [CLUSTER’23, CCGrid’24 (under submission)]

/

Classical Workloads
KV Stores Graphs Trees Tensors
o - - File system
‘.? 2 N
/, f Block I/O
—& —

Storage Device (flash and NVM storage)
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[Part - 1/3] : Performance and Scheduling Challenges

[Part - 2/3] : New Interfaces - Zone Namespace (ZNS) SSDs

[Part - 3/3] : (WiP) Building Workload-Specialized Storage Stacks
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Workload-NVMe Interaction

userspace
Workload (DB, KV, ML, Analytics, Bl) SPDK (skip the kernel)
libaio, POSIX I/O, orio_uring ------======"=""-~ HU —————————————————————————
Kernel File System (F2FS, ext4, xfs, SSD-FS)
Block Layer
noop MQ-DL BFQ Kyber
Device Driver (NVMe)

Understanding modern storage APIs: a systematic study of libaio, SPDK, and io_uring. Diego Didona, Jonas Pfefferle, Nikolas loannou, Bernard Metzler, and Animesh 20
Trivedi. In Proceedings of the 15th ACM International Conference on Systems and Storage (SYSTOR '22). ACM, 120-127. https://doi.org/10.1145/3534056.3534945



Results: Pure Performance

CHEOPS’23

100
= aio —iou =iou_c = SPDK
5 4 cores 13 cores = 801
IS
E 4 ~
o o 60
= 3 g
] O 401
o 2 2
= 5
S 1 [a®
e 20'
= 0
5 10 15 20 0

B fio [ block layer [ kernel
3 101ib [ nvme driver I misc.

aio iou iou-c iou-s spdk-fio

There is a large gap (10x) in the CPU efficiency between SPDK and io_uring stacks

Linux kernel, with block I/O are the primary consumers of the CPU cycles
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So What’s Wrong with SPDK?

Takes a pure performance-based approach

Highly CPU inefficient (only poll, 100% CPU utilization)
Scaling performance can be fragile beyond CPU cores
Does not have a file system

Does not have multi-tenancy (only single process)

No support for any other kind of devices except NVMe
No provision for the kernel supported services:

e Caching, buffering, security

e Importantly: Sharing and 1/0 Scheduling

FRAGILE

VAV 4V 4V 4V 4V 4V 4V 4V 4 4

HANDLE WITH CARE
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What are the Scheduling Challenges

(in review) ICPE'24

High performance scaling with the none 1/O scheduler
1.3 - 2.7x slowdown with other schedulers

n |- None /<\o—»

%3 —+— BFQ 3.42 MIOPS

= |7t Kyber ae _—o—o—

> |kl MQ-DL 2.63 MIOPS

iy ~1.90 MIOPS ,

= 176 KIOP

£ 89 KIOPS

o

=

Eo P REATE 1.25 MIOPS
0O 1 2 3 4 5 6 7 8

Number of SSDs

(a) IOPS performance of schedulers;
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P95 [atencies degradation

What are the Scheduling Challenges

(in review) ICPE'24

None
—e— BFQ 3.42 MIOPS

—t— Kyber oo —o—2—°

—+— MQ-DL 2.63 MIOPS

1.90- MIOPS
776 KIOP

1.25 MIOPS

(O8]
2
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2
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h
9
=)

\e]

[—
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—+— None—*— Kyber
286 KIOPS —o— BEQ:—~*— MO-DL

1 2 3 4 5 6 7 8 0 1 2 4 8 16 32 0O 1 2 4 8 16 32
Number of SSDs Concurrent applications Concurrent applications

o
h

Throughput (MIOPS)

=)

Latency (millisecond)

Latency (millisecond)
& 6 o o o
=

()
S
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S

(a) IOPS performance of schedulers; Latency (P95) with background (b) reads and (c) writes traffic

® No scheduling (NOOP) helps with pure performance scaling

e No scheduling (NOOP) has poor performance isolation with interfering tasks




The Interference Control (or Delivering Quality-of-Service)

I/0 Scheduling interference and overheads

® © © ®

SSD.
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The Interference Control (or Delivering Quality-of-Service)

® ©® © ®

I/O Scheduling

Data Placement

Garbage collection

Wear-leveling (over provisioning)

Ch#0

Ch#1 Ch#2 Ch#3

I/0 Scheduling interference and overheads

Inside an SSD
e Mixing of data (lifetime, workloads)
e |/O Scheduling
e Interference from GC
e Over provisioning
e Parallelism management
o
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[Part - 2/3] : New Interfaces - Zone Namespace (ZNS) SSDs

[Part - 3/3] : (WiP) Building Workload-Specialized Storage Stacks
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ZNS: The New Storage Interface and Capabilities

(@) zoned storage  Documentation  Community

Introduction v

Overview
Zoned Storage Devices Overview

Shingled Magnetic Recording
Hard Disks

NVMe Zoned Namespaces (ZNS)
Devices

Linux Zoned Storage Ecosystem
Getting Started
Linux Kernel Support
Applications
Tools and Libraries
System Compliance Tests

Performance Benchmarking

vV VvV VYLV v

Linux Distributions

Frequently Asked Questions

A > Introduction >

NVMe Zoned Namespaces (ZNS) Devices

NVMe Zoned Namespaces (ZNS) Devices

NVMe Zoned Namespace (ZNS) devices introduce a new division of functionality between host software and the device controller. A
ZNS device exposes its capacity into zones, where each zone can be read in any order but must be written sequentially.

The NVM Express (NVMe) organization released as part of the NVMe 2.0 specifications the NVMe ZNS Command Set specification.
The latest revision of this specification available is 1.1. The NVMe ZNS specification define a command interface that applies to all
NVMe defined command transport. This command set is independent of the storage media technology used by the device and
applies equally to Flash-based solid state drives (SSDs) or SMR hard disks.

The most common type of ZNS devices found today are Flash-based SSDs. For this type of device, the ZNS interface characteristics
allow improving internal data placement and thus leads to higher performance through higher write throughput, improved QoS
(lower access latencies) and increased capacity.

@ NoTe
See ZNS: Avoiding the Flash-Based Block Interface Tax for Flash-Based SSDs for a deep dive on ZNS SSDs. The article was
published at USENIX ATC 2021.

Overview

‘The ZNS specifications follows the Zoned Storage Model. This standards-based architecture, which takes a unified approach to
storage that enables both Shingled Magnetic Recording (SMR) in HDDs and ZNS SSDs to share a unified software stack.

»straction allows the il write required properties of

nagement of media reliability

zes data placement

y of the ZNS SSD an nventional SSDs.

Application 1

. ! .

Conventional SSD Controller

Flash
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AEEEE EEEEE EEEEN
00000 0000000000
00000 0000000000
00000 0000000000

Application 2 Application 3

Application 1  Application 2 Application 3

. . !

ZNS SSD Controller
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Regular SSD: Device controls data
placement

ZNS SSD: Applications control data
placementin zones

https://zonedstorage.io/docs/introduction/zns

Western Digitsd
Ultrastar
DC ZN540

DATA CENTER NVMe~ D5 35D

SAMSUNG

ZNS SSD

ZONED
STORAGE t

Standardized in the NVMe 1.4, July 2021
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Zone Namespace (ZNS) Devices : The Operational Model

A ZNS SSD is divided into Zones

Each zone has its size and a write pointer

Write pointer

|

Zone-1

Zone-2

Zone-N

NVMe Flash Zone Namespace (ZNS) SSD
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Zone Namespace (ZNS) Devices : The Operational Model

Each zone must be written sequentially

Limited intra-zone parallelism (only 1 write at a time)

W(e,A)
W(1,B)
W(2,C)
@ 1 2 3 4 5

Zone-N

NVMe Flash Zone Namespace (ZNS) SSD
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Zone Namespace (ZNS) Devices : The Operational Model

New I/O Command: Append

Multiple Append command can be issued to a zone (high intra-zone parallelism)

A(Z-2,N) “Append M, N and O to Zone-2 (anywhere)”

Eete-ted Zone-N

NVMe Flash Zone Namespace (ZNS) SSD
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Zone Namespace (ZNS) Devices : The Operational Model

New I/O Command: Append
Multiple Append command can be issued to a zone (high intra-zone parallelism)

A(Z-2,M) = P7

A(Z-2,N) = P6 ZNS SSD does 1/0 scheduling and space allocation
A(Z-2,0) = P8

6 7 8 9 10 11

Zone-N

NVMe Flash Zone Name’space (ZNS) SSD
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Zone Namespace (ZNS) Devices : The Operational Model

New zone-management commands: Finish and Reset

Finish: makes it read-only (release write resources)

Reset: garbage collect the zone

Reset (Z-2)
n[m]oll 1T

eetested Zone-N
6 7 8 9 10 11

NVMe Flash Zone Namespace (ZNS) SSD




Zone Namespace (ZNS) Devices : The Operational Model

New zone-management commands: Finish and Reset

Finish: makes it read-only (release write resources)

Reset: garbage collect the zone

| S Y DU I BT [ |

6 7 8 9 10 11

Zone-N

NVMe Flash Zone Namespace (ZNS) SSD
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Zone Namespace (ZNS) Devices: The State Machine

|
|

|
|
l

7z o
Active
Z.ones

IZone

N —

NS e

‘Open

Reset
Zone <
[Finish | Fun |
Zonelwrite _ _ _ _ _ e e _ 1
Finish \
Zone Write F’ x I
N IS A M P Close inish )
Gion \ = Zohe Write| |
o o). ) ey ] | one of
Implicit Zone f Explicit ' >
Open Je« | Open Je | Clased
pT ) . TJ Open .
iy = \l’rlt_e _____ W_l_'lte_ ______ ] Zone
Reset
. Zone| Open
Reset Write (~—————— Zone Reset
Zone " Empty " Zone
-
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State of the ZNS Software

Application 1 Application 2 Application 3

! . .

Conventional SSD Controller

Flash

ANEEEEEEEEEEEEE
EEEEEEEEEEEEEEN
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00000 0000000000
o o o o o o o o o o
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Application 1 Application 2 Application 3

| ! !

ZNS SSD Controller
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____________________________

Regular SSD: Device controls data
placement

ZNS SSD: Applications control data
placementin zones
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State of the ZNS Software

Application 1 Application 2 Applicatigf

Application 1 Application 2 Application 3

; ! !

Conventional SSD Controller

Flash

ANEEEEEEEEEEEEn
ANEEEEEEEEEEEEE
ANEEEEEEEEEEEEN
O000000000000000
00000 0000000000
o o o o o o o o o o

5

_________________________

.DDDD&DDDDWDDDDD
.DDDDDDDDDDDDDDD
.DDDD&DDDDDDDDDD
-DDDD&DDDDDDDDDD
-DDDDDDDDDDDDDDD
'DDDDDDDDDUDDDDD

3

Regular SSD: Device controls data
placement

ZNS SSD: Applications control data
placementin zones

@ © D
User Applications:
Space RocksDB, fio
ZenFS
| [ | [ ][ ‘ . jr .
Kernel \ File system HleSystem s
Yy : (ZNS support) passthrough
Eaislation oncFS | F2Fs | [posix|fibzbd
Layer [Btrfs |
— A 7S
o | I/0 Scheduler (e.g., mq-deadline, zinc) |
e : 2 :
<D /| || || S JE
bevee [0 | (NS | SN | IR

Understanding NVMe Zoned Namespace (ZNS) Flash SSD Storage Devices,
Nick Tehrany, Animesh Trivedi, https://arxiv.org/abs/2206.01547 (2022).

Idea: Different zones helps to isolate workloads from each other and better Quality-of-Service (QoS)

ut: There are multiple ways ZNS devices can be integrated

e Should | use Append or Write? How do | manage parallelism? Intra-zone or Inter-zone?
e Whatis the cost of Reset and Finish? And the state machine implementation
e Does ZNS deliver on its promise of isolation?
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Performance Characterization of NVMe Flash
Devices with Zoned Namespaces (ZNS)

Krijn Dockemeijer*!, Nick Tehrany*!:2, Balakrishnan Chandrasekaran®, Matias Bjorlmg and Animesh Trivedi'

A d the Netherl

'Vrije Universiteit A
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*Western Digital, Copenhagen, Denmark
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Abstract—The recent emergence of NVMe flash devices with
Zoned Namespace support, ZNS SSDs, represents a significant
new advancement in flash storage. ZNS SSDs introduce a new
storage abstraction of append-only zones with a set of new I/O
(i.e., append) and management (zone state machine transition)

With the new and ZNS SSDs
offer more control to the host software stack than a non-zoned
SSD for flash management, which is knm\n lu hl: complex
(because of garbage

ZNS SSlh are, con-

supporting random and sequential /O operations. Though
this model works with conventional HDDs, it is not apt
for flash-based storage devices as flash internally does not
support overwriting data [26]. [27]. [28]. Flash devices offer
the illusion of “overwritable” storage via the flash translation
layer (FTL). a software component that runs within the device.
The FTL enables easy integration of flash devices (by allow-
ing them to masquerade as fast HDDs). albeit it introduces
unpredictability in performance [29]. [30]. [31]. [32]. [33].

sequently, gnsning adoption ina vnnely of (e.g, file
systems, ki stores, and d. v latency-
sensitive b;g data applicati Despite this there has

[34] and complicates device lifetime management [35]. These
hall are defined as the unwritten contracts of SSDs [26].

yet to be a sy: ic char i of ZNS SSD

with its zoned storage model abstractions and VO operations.
This work addresses this crucial shortcoming. We report on the
per features of a available ZNS SSD (13
key observations), explain how these features can be incorpo-
rated into publicly available f-th, ZNS and

As data centers have largely transitioned to SSDs for fast,
reliable storage [36]. [37]. and modern big data applications
have high QoS demands [38]. [39]. there is a dire need to
address these unwritten contracts.

for ZNS SSD All
artifacts (cod(- and data sets) of this slnd) are publicly mnlhhle
at

Index Terms—Measurements, N\'Mc storage, Zoned Names-
pace Devices

I. INTRODUCTION

The emergenoe of f.a\l flash slnmge in data centers, HPC,
and g has fu Ily caused changes
in every layer of |he uor.\ge stack, and led to a series of new
developments such as a new host interface (NVM Express,
NVMe) [1], [2]. [3]. a high-performance block layer [4]. [5].
[6]. [7]. new storage I/O abstractions [8], [9]. [10]. [11], [12].
[13]. [14]. and re/co-design of storage application stacks [15],
[16]. [17]. [18]. [19]. [20]. [21]. Today. flash-based solid-
state drives (SSDs) can support very low latencies
microseconds). and multi GiB/s bandwidth with millions of
1/O operations per second [22]. [23]. [24].

Despite these advancements. the conceptual model of a
storage device remains unchanged since the introduction of
hard disk drives (HDDs) more than half a century ago. A
storage device supports only two necessary operations: write
and read data in units of sectors (or blocks) [25]. Data can
be read from and written to anywhere on the device. hence

*Equal contributions, joint first authors. Nick was with TU Delft during
this work.

R | and advocate for open flash SSD
interfaces beyond block /O [40] to address these challenges.
Examples include Open-Channel S5Ds (OCSSD) [41]. mudti-
stream SSDs [9]. and. more recently. Zoned Namespaces
(ZNS) [11]. The focus of this work is on NVMe devices that
support ZNS, which are commercially available today [42].
[43]. ZNS promises a low and stable tail latency [11] and
a high device longevity. and, hence, addresses the needs of
modemn big data workloads. There is. unsurprisingly. a rich
body of active and recent work on ZNS [44], [11]. [45]. [46].
[47]. [48]. [49]. [50]. [51]. [52]. [53]. [54]. [55]. [56]. Despite
this enthusiasm, there has not been a systematic performance
and operational characterization of ZNS SSDs. This lack of
an extensive performance and operational characterization of
ZNS SSDs severely limits the utilization and application of
ZNS devices in big data workloads. In this work. we bridge
this gap by presenting the performance characterization of a
commercially-available NVMe ZNS device.

We complement this characterization of a physical device
with an investigation of emulated ZNS devices. since they
are widely used in research [51]. [57]. [58]. [55]. Emulated
devices enable researchers to explore the ZNS design space
without being constrained by device-specific characteristics.
Such unconstrained explorations are crucial since ZNS is a
new interface and the selection of available configurations in a
real SSD is, unsurprisingly. quite limited. The research validity
of all of these works hinge on an emulator’s ability to mimic

ZINC - A ZNS Interference-aware
NVMe Command Scheduler

1** Nick Tehrany
Computer Science

2™ Krijn Dockemeijer
Computer Science

4" Animesh Trivedi
Computer Science

3 Zebin Ren
Computer Science

Vrije Universiteit lam Vrije Universiteit Amsterdam  Vrije Uniy Amsterdam  Vrije Universiteit Amsterde
A The N A The Netherlands A The d dam, The d
n.atehrany@vu.nl k.dockemeijer@vu.nl zren@vu.nl atrivedi@vunl

Abstract—NVMe Zoned Namespaces (ZNS) is a new NVMe
standard designed to open up the rigid block-based host-device
interface and offer a new zone-based device interface to host
software. ZNS introduces a set of new I/O (append) and flash
management (reset, £inish, open, close) commands o host
software (ie., block layer, file system, or application). The flash

allow flash-based SSDs di-
rectly and offer a ity for better i
between flash- and user-issued 1/0 operations. In this paper, we
demonstrate that, despite ZNS's promises, its new commands
create complex interference patterns with VO and each other
that lead to losses in We in-
troduce a first-of-its-kind inter ference model for ZNS and use this
model to report 3 interference observations made on a physical
ZNS SSD. Based on our interference study, we propose ZINC, a
ZNS interface-aware NVMe command scheduler that mitigates
the impact of by izing user 1/O
over flash ZINC delivers
up to 56.87% lower interference in fio-based micro-benchmarks
compared (o the stateof-the-practice mg-deadline, and a 9.81%
throughput improvement for RocksDB + ZenFS, a ZNS-cnabled
KV-store for ZNS SSDs. With concurrent reset operations,
RocksDB’s throughput degrades from 80 KIOPS to 72KIOPS
with mg-deadline, but remains at 80 KlOPi with ZINC. We open-
sourced ZINC at hup y

I. INTRODUCTION

The emergence of :ulul state drives (SSDs) has presented a
logy over prior tech-

of achieving millions of /O nper.nmm per second, gigabytes
of bandwidth per second, and sub-microsecond access laten-
cies [40). Despite their popularity (41]. a ial chall

with flash-based SSDs is delivering both predictable- and
consistent performance to a variety of workloads. The internal
structure of flash-based SSDs is at the root of this challenge—
flash requires significant management effon [31) i.e., location
mapping, garbage collecti bad

R)Read @W)write @Append [FlReset ¢Farinish
(Workioad-C | d

ZINC Scheduler

HOREWE
HEEO®S

NVMe ZNS SSD

i

(@) (b) [Zonel Zone2 Zone-3

Figure 1: Conventional (a) NVMe vs. (b) ZINC scheduling.
any point in time. Consequently. when the firmware inside
the SSD executes these background management commands,
these commands interfere with the foreground host-issued VO
commands. There has been a series of efforts to curtain the
impact of lhe interference (collectively termed as Unwritten
Contracts [17]) with better resource allocation, scheduling
(echmque\ ﬂl()ﬂ (14]. (26). [34] and even new host-device
interfaces such as Open-Channel SSDs @ StreamSSD
and more recently, Zoned Namespace (ZNS) SSDs [2). "4_
Among them, ZNS has attracted a significant amount of
research interest (8], [(9]. (15). (20). (21]. (33). (36] and has
become an industry-standard with the NVMe 2.0 specification.

The unique aspect of NVMe ZNS devices is that they offer
a new 1/O abstraction—append-only zones—with a set of
new /O (append) and zone management (reset, I.Lm.;h
open, close) ds. Zone
closely imitate how flash chips are managed internally and
offer more direct control over garbage collection and data

block, and ECC) and flash management is typically only done
in firmware, known as the flash-ranslation layer (FTL) run-
ning within SSDs [28]. Traditional block-based NVMe SSDs
(non-ZNS) have an interface that only accounts for block-
based NVMe read and write commands. This interface
does not offer any insight or host-level control over data
placement or garbage collection @ these are all done inside
of the SSD. run on the background and can be issued at

1 within zones to the host systems software (i.e..
block layer, file systems, or applications: soe. The zone
interface provides opportunities, as the host system software
now controls data placement by explicitly identifying which
zone to store data in, thus following the “Grouping by Death
Time" unwritten contract [17). {30). Further on. the host
also implicitly controls garbage collection, as a zone is the
unit of garbage collection—a host can decide when a zone
needs to be reclaimed by issuing an explicit ZNS command

https://ieeexplore.ieee.org/document/10319951

(under review, CCGrid’24)
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Result [1 / 3]: Write vs Append Parallelism Management
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Result [1 / 3]: Write vs Append Parallelism Management

200 500 !
n t— Appends e | == Max active zones !
& 400 i : i !
o) —+— Writes [mq-deadline] % 4001 —— Appends i
E Random reads E —4— Whrites :
;300- :300‘ Random reads :

5 | !
£ 200 2200 R S
z a0 !
S o //: - ;
E 100 E 100 - / i
& = !
1 2 4 8 16 32 64 0 i) 2 4 8 14 16
Queue depth [1 concurrent zone] Concurrent zones [QD=1]

Intra-Zone parallelism has higher performance
Writes have better performance scalability than Appends (!)

Append scalability is independent of intra- or inter-zone, but limited in performance




Result [2 / 3]: The Cost of Reset and Finish Operations

20

[
(S14

Latency (ms)
i
S

Reset

ot

- Unfinished zones
sosssss F'inished zones

982520620305 62626363636362036363684
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Zone occupancy (%)
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Result [2 / 3]: The Cost of Reset and Finish Operations

20 Reset T~ Finish
1000
- Unfinished zones
15 sssss  Finished zones 800
& :
S ~— 600
o 10 >
g 2
= 5 5 -
I L. (B 200
ol il R LE LE L3 0.
0 <0.16.25 12.5 25 50 ~100 0 <0.16.2512.5 25 50 ~100
Zone occupancy (%) Zone occupancy (%)

The zone utilization --- Very important factor

Finish is an extremely expensive operation (100 - 1,000s of milliseconds)

Leverage intra-zone parallelism (minimize half-written zones)



Result [3 / 3]: Read-Write Isolation on ZNS

1250
-
=G
> oo Stable performance
-~
=
o
= 5001
3
3 —— NVMe
0 : .
0 5 10 15 20

Time (minutes)

® ZNS provides good read-write isolation when operating on multiple zones

e Stable performance (in comparison to NVMe)
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New Interference: Reset on 1/O Operations

1507

— %
_125- 1%
100 5%
2 —— 10%
§ 75— 25% Write Reset
S 50%
3 -——- 50% NS H H
¥
25
Zone-1 Zone-1 Zone-N

00 25 50 75 100 125 150 175
Throughput (KIOPS)

(a) on write with inter-zone concurrency.

Concurrent resets with a controlled rate on a different zone



New Interference: Reset on 1/O Operations

150

—_— 0% B.

_125- 1%

3 |—— 5%

Pt iofy

o - ¢ |I b

§ 75 i 25% E(xz, y2) \\~‘ I’

<~ 50 —— 50% ! I

Te) 1 1
---- 50% NS -7

g % ‘1 A(X1’ y1)

[V
[52)

00 25 50 75 100 125 150 175
Throughput (KIOPS)

(a) on write with inter-zone concurrency.

Modeling and quantifying interference with a first-order Earth Mover's Distance (EMD)-style model

46



Interference Results : Micro- and Workload-level

Write on

Read on-

Append on

Reset on

Finish on 0

-0.5

-0.0

“~ RocksDB

0% Reset

50% Reset

78.9 KIOPS

72.1 KIOPS

-8.7% drop

Workload-level interference!
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ZINC: Zone-Interface aware NVMe +:© Command Scheduler

All NVMe commands need scheduling for QoS

ZINC is derived from mqg-deadline scheduler with a
Kyber-style Reset-throttling logic

Extra code to connect the io_uring passthrough commands
to the I/O scheduler in the Linux block layer

Open source based on v6.3

The paper is under review

(R)Read (W)Write @Append [RTReset CF IFinish

Workload-C

Workload-B
Workload-A

1/0 Scheduler

RWRWW®R

®®@@®@

NVMe SSD

Workload-C

Workload-B
Workload-A

ZINC Scheduler

S WRRIWE)

EE@@@@

NVMe ZNS SSD

Zone-1 Zone-2 Zone-3

ZINC - A ZNS Interface-aware NVMe Command Scheduler, Nick Tehrany, Krijn Doekemeijer, Zebin Ren, and Animesh Trivedi, (under submission) at the 24th
IEEE/ACM international Symposium on Cluster, Cloud and Internet Computing (CCGrid’24), Philadelphia, May 6-9, 2024.



The Design of ZINC

Epochs (4ms)

Reset | | | | |

Time

Token ratio (1: 2,000)

The decision process in the each epoch:

(1) Are all the write tokens consumed? If yes, then issue the Reset command to the ZNS
(2) If an epoch is reached and the Reset command is still held, then increase its priority

(3) Inany epoch if the Reset command has more priority than “x” (configurable count), then issue it
immediately
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Impact of using ZINC

Controlled degradation
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Impact of using ZINC

150
1257
100+

75

501

P95 latency (usec)

25

mq-deadline ZINC
— 0% —— 0%
-===_50% 50%

\
|
Y =y

g
\

|l

%

25 50 75 100 125
Throughput (KIOPS)

150

175

RocksDB

0% Reset 50% Reset
MQ-D 78.9 KIOPS 72.1 KIOPS
ZINC 78.2 KIOPS 80.0 KIOPS

~11% gain

ZINC helps to control the interference between NVMe 1/0O and NVMe zone-management commands

ZINC helps to deliver workload-level performance gains




[Part - 3/3] : (WiP) Building Workload-Specialized Storage Stacks
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Constructing an End-to-End Picture

“ RocksDB

] Workload

Q@

File System: F2FS Storage stack

NVMe / ZNS Devices




Constructing an End-to-End Picture

The WAL writing is more important than the L7 compaction

-
— -
-
-

WAL write

File 1/O

S
____________________________ A
/I I
File-A || File-B || File-C || File-D S/ Block 1/0
/l I,
File System: F2FS S
¥ ¥ .
NVMe / ZNS Devices These two block I/O operations are not equal for the workload
A A The LBA address ©x5ABDE345 belongs to what?

54



Constructing an End-to-End Picture

o )
"2 RocksDB WeBPF

) A~ ZNS-Tools: e-BPF powered whole-stack tracing framework
o WAL ;s A) - Collects traces for workload-level data operations

Cy = ey o pees

------ > e Workload: RocksDB (WAL, compaction, GC)
Ck > e File system: F2FS (log, GC)
e Block layer: ZNS (read, write, reset scheduling)
File-A | File-B || File-C | File-D e Device Driver: NVMe (command issuing)
File System: F2FS Builds offline location and movement profile
NVMe / ZNS Devices https://github.com/stonet-research/zns-tools
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ZNS-tools: 1/0 and Trace visualization

Navigation

nvme_zone_reset 2

1l
@
6)

AR AMSA A BARM A AN A AR A

AAAARAAAAAAMAAAAVAMAAMMAMUAA A A A A A A MIAMAMMAMMA AAA AAAA

A HAAR B A A

BAAAAAAAAAL

Convert trace

A
\A

D Swichtolegacy U ANAMUAM A AAAARAMAAMMAI I AANAAMMAMAA M A A MMM

S, Convertt

compa.  compaction compaction compaction

Example Traces U O SEECIIEENY NG G AN NSRRI

Understanding (Un)Written Contracts of NVMe ZNS Devices with zns-tools, Nick Tehrany, Krijn Doekemeijer, Animesh Trivedi, https://arxiv.org/abs/2307.11860, (2023) 56
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ZNS-tools: Zone Utilization

@ | | © | D
User ' Applications: '
Space RocksDB, fio

ZenFS

] [ I [ JC ’ - ﬁ -

Kernel ’ P — File System io_uring
ile sys assthrough
- (ZNS support) P g
Teamaion] | s 00| oo
Layer [Btrfs |
Block 2z <2
| 1/0 Scheduler (e.g., mq-deadline, zinc) |

Layer 25 f: . 1
SSD) 35 /] ,. =! =t
Device | NVMe ‘ H ‘ l | |

Same workload: YCSB-A
Very different ZNS utilization and placement

Data grouping interference!

Understanding (Un)Written Contracts of NVMe ZNS Devices with zns-tools, Nick Tehrany, Krijn Doekemeijer, Animesh Trivedi, https://arxiv.org/abs/2307.11860, (2023) 57

(a) RocksDB + F2FS

(c) PostgreSQL + F2FS

(b) MongoDB + F2FS
EE BEE N, .
- HE B "
e |

HEEEETN

(d) RocksDB + (aged) F2FS

Result: Not all ZNS software stacks are equal, hence software specialization matters!



https://arxiv.org/search/cs?searchtype=author&query=Tehrany,+N
https://arxiv.org/search/cs?searchtype=author&query=Doekemeijer,+K
https://arxiv.org/search/cs?searchtype=author&query=Trivedi,+A
https://arxiv.org/abs/2307.11860

[1 / 2] Workload-Specialized Control - msF2FS

i o O3 oo oo oo o 300
002505000 | o co— e o0 o 220 3 o e N o P

l R ] WarmData, |F Gl Data | Hot Data l Hot Data HotData | Warm Data | Cold Data 150
Stream 0 Stream 1 Stream 3 Stream 0 Stream 0

Block 110 Block IO J' l l 100

| | | "

bl 1005000 | e [ e | 00 [ lR]

L Zone 1 Zone2 Zone 3 ) Zone 4 Zone 5 L Zone 1 Zone 2 one 3 Zone 4 Zone 5 0
L5 Tz
Concurrently Written Concurrently Written
Zones Zones

Multistream F2FS (msF2FS) optimized for NVMe ZNS devices
- Gives control over: file = F2FS zone = ZNS Zone sharing (exclusive, sharing)
- Physical separation in zones
- Performance scaling with inter-zone parallelism (F2FS does not support Appends)
- https://github.com/stonet-research/msF2FS

1

2

3

B F2FS
BB msF2FS (SRR)

4 5 6
Concurrent Files

BE= msF2FS (SPF)

7

8

9
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[2 / 2] Workload-Specialized Control - ZWAL

7180 [ Writes QD=1 ; E Pi P2 P2 T PI J

2 1604 == Zone Appends ! : : >

ii;g ] ] @J | Serialize @ Buffer E 05( 3 -gi‘l @ Sort *‘—)&f x [)C[(;)l\

o B | [Seq.4=H Data  |——>{ 1 [Tropo| 2 [DB] | [2[DB[1[Tropo] 2[DB]1[Tropo)

é’c jg H I } i ZNS Zones l—, @Zone append E “@ Read all/Map

il - (M[M]W[W]W[D[D[D[D[D[D[——>M[M[W[W[W[D[D[D[D][D]
1 1 8 [

Queue depth (QD)

zZWAL: A ZNS-native Write-Ahead-Log (WAL) design with Appends (parallel I/0)

Idea: Write in any order with ordering information with Append, then sort out later when reading

Open-sourced code: https://github.com/Krien/ZenFS-append/tree/appends
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[2 / 2] Workload-Specialized Control - ZWAL
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.; e
2 128 | |Seq.=i}=u’E Data I—Pl 1 |T"0P0|2 |DB| f |2|DBII|T"’I’"| Emﬂm

£ A
é gg ﬂ ’ | ZNS Zones J'—,@DZOne append @Read all/Map
=

|

T I (WY
U MeWEIWB e [0 [s [0}--»MIMWWIW o[ [0 ]]0]
Queue depth (QD)

130 - 8 20+
o }%8 WAL design: - [ Sequential read ~ 18 20.2 WAL design:
% 100 BN ZenFS % | I Sort entries g 161 B Nameless
E 90{ B Nameless Q 9 I Memory copy — g 141 E ZenFS
& 4 5] 1 Apply memtable ‘ — 121
= = 101
& 54 [ Other — Z i
50 >3 &
a : 2 o
2 z 2 & 4
) | = H 3|
_— 0-
4 16 64 256 1024 0 64 128 256 512 1024 Load A B D E
Buffer size (KiB) WAL size (MiB) YCSB Workload (4KiB requests)
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(@) Micro-benchmarks (b) Replay cost (c) YCSB workload






Workload-specialized QoS in an End-to-End Manner

“ RocksDB

W O e
l/ disk
WAL Cq A) n

File-A || File-B | File-C | File-D
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>

— e



Workload-specialized QoS in an End-to-End Manner

,:.:i":'::' ROCkSDB How many 1/Q 'éh"e’du"ers,o




Workload-specialized QoS in an End-to-End Manner

5 RocksDB End-to-End abstraction for QoS:

L, sy Co-design workload-level storage-network data abstractions
: : ‘/ disk
WAL i >me(gesorl

Co-schedule them together (gang scheduling, co-flows)

File-A || File-B | File-C




Conclusion

Vision: use your favorite workload-specialized data structure 1/0 stack!

The era of workload-specialized storage stacks is here

We are exploring:

e Workload-specialized storage software abstractions
e Mapping software interfaces to the available hardware interfaces
o NVMe ZNS, KV-SSD, CXL (new)

WiP: [Network (CXL) + Storage = Disaggregation] File system, Key-value store,
and ML workloads
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Thank you!

https://stonet-research.github.io/

/
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Revisiting Storage APIs: Rise of io_uring

Applications

syscalls

Linux Kernel

A

A\

N\

NVMe Device

Libaio:
+ Asyncl/O
+ Any files/FSes
+ Any device: HDD, NVMe

- Async only with direct I/O
- Performance
- Metadata management

Applications
SPDK
NVMe Device
SPDK:
+ Performance
+ Close application integration
+ No syscall or interrupts

Only NVMe
No kernel assistance
Scalability and brittle

Applications

) §

Q" ‘Q'
Linux Kernel

NVMe Device

lo_uring

+
+

Command-based interface

Extensible

Best of both worlds?
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Three Modes of io_uring API

syscall

(a)

. Application . Application

[ e T -

+ o + o

c | — S |

s e e S = s N

®  [5a) [P 59 § ®  [5a) [P 59

T Y Y R v T S Y R Y polling

> g~ > g~ ;

(@) + (@) —+ Wlth

-~ 0} o 0}
o urlng /|3 Mo urlng ’ kthread
E% interrupt polling

default with syscalls (b) [iou+p] with completion polling

userspace

Application

‘rl
RS

poll

()

)

kernel

io urmg

polling

(c) [iou+k] with submission polling



Benchmarking Setup

Setup 1 [Systor’22]:

2x Intel® Xeon® E5-2630 (Sandy Bridge), 10 cores/socket = 20 CPU cores
20 Intel® DC P3600 400GB NVMe Flash SSDs = ~6 Million IOPS

Setup 2 [CHEOPS'23]:

2x Intel® Xeon® Silver 4210R (Cascade Lake), 10 cores/socket = 20 CPU cores
7% Intel Corporation 900P NVMe Optane SSD = 4.2 Million IOPS
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Results: Scalability

Systor’22

4 aio aijou 4 joutp 4 ioutk 4 SPDK

4000

3000

2 2000
©)
X

1000

0

0 2 4 6 8 10 12 14 16 18 20

io_uring kernel polling: Performance collapses when not enough cores to poll

Understanding modern storage APIs: a systematic study of libaio, SPDK, and io_uring. Diego Didona, Jonas Pfefferle, Nikolas loannou, Bernard Metzler, and Animesh

71
Trivedi. In Proceedings of the 15th ACM International Conference on Systems and Storage (SYSTOR '22). ACM, 120-127. https://doi.org/10.1145/3534056.3534945



Results: Scalability

Systor’22 CHEOPS’23
4 aio 4ijou 4 ioutp 4 iou+k 4 SPDK = aio -iou -iou_c = SPDK
4000 _ 54 cores 13 cores
®
3000 s 4
= 3
2 2000 b
) 2 2
¥4
1000 =2 1
e
0 = 0
0 2 4 6 8 10 12 14 16 18 20 5 10 15 20

io_uring kernel polling: Performance collapses when not enough cores to poll
CPU efficiency is still bad: 10x more CPU cores needed to match the SPDK performance

Understanding modern storage APIs: a systematic study of libaio, SPDK, and io_uring. Diego Didona, Jonas Pfefferle, Nikolas loannou, Bernard Metzler, and Animesh 72
Trivedi. In Proceedings of the 15th ACM International Conference on Systems and Storage (SYSTOR '22). ACM, 120-127. https://doi.org/10.1145/3534056.3534945



Results: CPU Profile

100

Percentage (%)

-}

(]
)

(o)
()

N
e}

[\
)

B fio [ block layer N kernel
3 1/01ib [ nvme driver I misc.

aio iou 1iou-c 1iou-s spdk-fio

The Block layer takes a big chunk of the CPU cycles

The kernel overheads with blocking interfaces

For SPDK, fio itself becomes the bottleneck
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Results: Efficiency (single CPU core)

io_uring sits between libaio and SPDK Performance collapses with the kernel polling
Systor’22
300 .
n
o
O 200 B
X
100 -
0

16 64 128
Queue depth

Understanding modern storage APIs: a systematic study of libaio, SPDK, and io_uring. Diego Didona, Jonas Pfefferle, Nikolas loannou, Bernard Metzler, and Animesh 74
Trivedi. In Proceedings of the 15th ACM International Conference on Systems and Storage (SYSTOR '22). ACM, 120-127. https://doi.org/10.1145/3534056.3534945



Analysis: CPU Profile

Systor’22 CHEOPS’23
= user m kernel 25
100 g
75 o
5 50 5
O -y
X 25 g
0 g
1 4 16 64 128 ﬁ
£
Queue depth

libaio iou iou+p iou+k SPDK

Poor scheduling, and CPU sharing - Careful! SPDK is still 5x more efficient
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Results: Efficiency with TWO CPU cores

Systor’22
| ! | | |
aio ©
iou XKXX] © o
jou+p £ Performance
- 800 dousk oo TR g | _recovered
a spdk s ) i 7
Q 200 | ol SISO, 2
& | 7
100 o Gme  NNces T < g 3
e === X
0 BT e &

1 4 16 64 128
Queue depth

[ @io < iou < iou with polling < iou with kernel poll < SPDK ]
Normal service order can be resumed (but at the cost of 2x CPU cores)!
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Result [1 / 4]: Write vs Append Latencies

50
512 B LBA format
40 [..-] 4 KiB LBA format
Large gap in the LBA 0
30 Writes lower than Append
QO
=

format N
<20
—

io uring io uring SPDK SPDK

Write Write Write Append
[none][mq-deadline)]

e 4KiB block size has lower latencies (up to 2x)
e Writes have lower latencies than Append operations in our experiments

e SPDK has lower latencies than the Linux I/0 stack (none, mg-deadline)




Write and Append: Bandwidth
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(b) append
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New Interference: Reset on 1/O Operations

1507 150 1000
— 0%
125- 1
,g 1% ,§125 g 800
~100- 5% ~ 100 =
Z 10% 2 2 6001
§ 51— 25% § 75 g
Pt it =
A O 50% 3 - & 400
§ ---- 50% NS 8 §
25 A o5l 2001
0- ‘ ‘ 0 ; ; - : - . 0 ; , . . .
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175 0 50 100 150 200 250 300
Throughput (KIOPS) Throughput (KIOPS) Throughput (KIOPS)
(a) on write with inter-zone concurrency. (b) on append with intra-zone concurrency. (c) on read with intra-zone concurrency.

e Concurrent Reset commands slow down 1/0 (write, append, reads)

e Namespace based isolation does not help
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New Interference: Finish on I/O Operations

350 ‘ 350 2250
i e 0% 300. | ‘ 2000+
= 1% . P b=
éZSO — 59, ) : R :13;250 o ) ; i ) élSOO
2200 —— 10% 2200 2 12501
5 —— 259 g z
= 150 50‘; = 150 5 1000
\n — 4 P £ 750+
g 100 2 1001 g
= & | 500-
50 =1 501 ‘ B! 2501
0 - - , ; ; ; 0 , , . ; ; ; 0
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175 0 50 100 150 200 250 300
Throughput (KIOPS) Throughput (KIOPS) Throughput (KIOPS)
(a) on write with inter-zone concurrency. (b) on append with intra-zone concurrency. (c) on read with intra-zone concurrency.

Make a first-order linear model

using the EMD distance:
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ZINC Interference Model

ZInte'r = %Z \/CY % (ATz)Z + B X (ALZ)Q
=1

With:
a+8=1 0<a<l 0<pB<LI1]
z;’ int Zﬁz iso)
Ti 1S0
Liint . Liiso
Liiso

AT; = (

AL = ( )

(1)

(2)

3)
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ImpaCt Of USing ZINC Resettm@ -

"~ RocksDB i

i
b1 0.10 | 0.0 | 0.08 ),ns/
0% Reset | 50% Reset g\ -
= > 013 | 014 | 011 | 011
78.9 KIOPS | 72.1 KIOPS | -8.7% drop 5
=
{017 | 018 | 013 | 013
78.2 KIOPS | 80.0 KIOPS | . 22=v70 =11y '<:a v 0
2, .
= ol 018 | 018 |0t | o4
-0.0

ZINC helps to control the interference between 1/0 & zone-management commands

ZINC helps to deliver workload-level performance gains




ZINC: Reset Profile
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