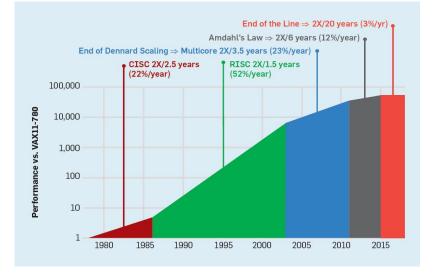
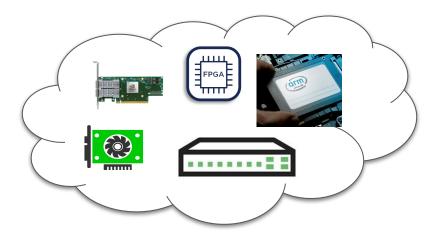
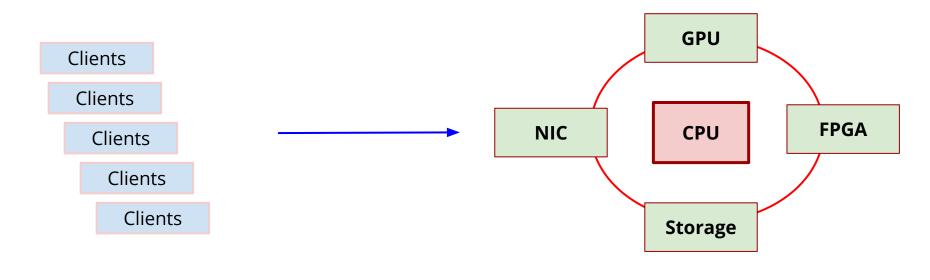


Hyperion: A Unified, Zero-CPU Data-Processing Unit (DPU)


Marco Spaziani Brunella, Marco Bonola and **Animesh Trivedi**


CompSys 2022

CPU - as the Performance Horse



- Stalling of Moore's Law and Dennard Scaling
- Turing Tax **the cost of Generalization**
- **Security** considerations
- Energy needs

Rise of accelerator-centric computing

Imagine this setup

Disaggregated clients

Network protocols

Interaction among the accelerators

The Key Challenges with the CPU in the Loop

1. The CPU coordinates the control path and resource allocation

- a. Coordinate control flow among accelerators which buffers to allocate, pin, DMA
- b. Control the data transfer among accelerators when to initiate and how to initiate
- c. Done with pair-wise accelerator integrations, but multiple?

2. The CPU dictates the computing abstractions

- a. Shared memory, virtual memory, processes, context switches, files
- b. Keeping the memory coherent between the host's view and accelerator view

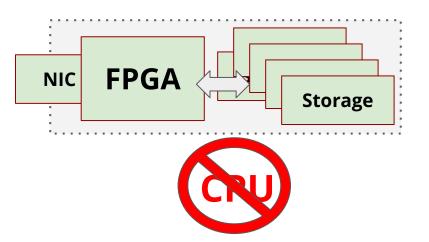
3. The CPU limits the innovation and imagination

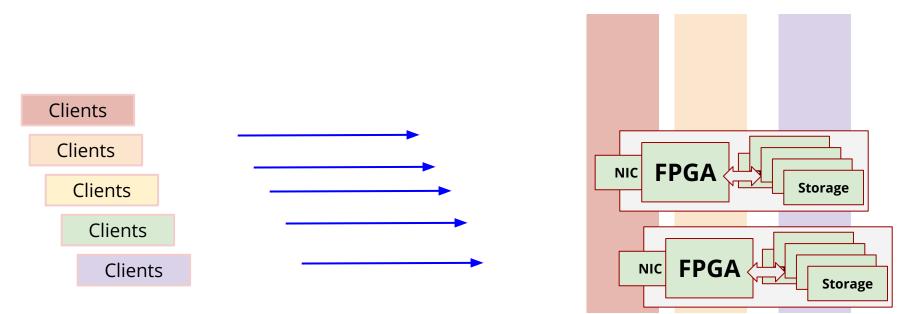
- a. Active and passive disaggregation
- b. Designing a new interconnect, network discovery protocols
- c. Scalable energy needs

Hyperion: A Zero-CPU Data Processing Unit (DPU)

Hardware:

• FPGA + NIC + Storage = DPU


Software:


- A new compiler
- eBPF as an **IR** for <u>(any)</u> hardware

Client:

- Disaggregated clients
- Network protocols NVMoF
- Application-level, KV, NFS, DSes

Disaggregation and Slicing

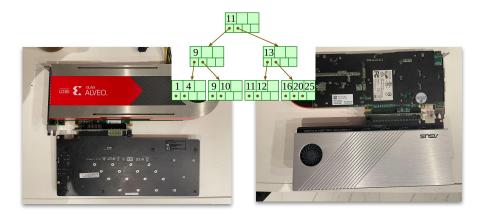
Innovation in Discovery, reconfiguration, slicing, virtualization, communication etc.

Comments on the Reviews

First of all, thank you :)

- Target application-domain?
 - Disaggregated, cloud storage and processing
 - Mostly well-defined, requires multi-tenancy and dynamic reconfiguration
- Limited FPGA resources, esp. on-chip memories
 - Needs data staging primitives between SRAM, DRAM, HBM, then NVMe storage

- Development complexity


- Target well-defined data structures as the basic building blocks: B-arr Tree, Hash Tables, Arrays, LSM tree, Heaps, extent-trees, etc.
- **Compiler development:** challenging, but feasible
- "I wonder if this approach can really fully eliminate CPUs"
 - We also do not know. We think it can, but we are open to hear counter arguments

Where are we going from here?

5-page vision:

Hyperion: A Case for Unified, Self-Hosting, Zero-CPU Data-Processing Units (DPUs)

https://arxiv.org/abs/2205.08882

	'Us)	
Marco Spaziani Brunella University of Rome Tor Vergata, Axbryd	Marco Bonola Animesh Trivedi CNIT/Axbryd VU, Amsterdam	
Abstract	What	Examples
Since the inception of computing, we have been reliant on CPU-powered architectures. However, today this reliance is challenged by manufacturing limitations (CMOS scaling),	Net + Accel Net + GPU Sto + GPU	SmartNICs [5,110], AccINet [53], hXDP [35] GPUDirect [102], GPUNet [78] Donard [22], SPIN [25], GPUfs [124], GPUDi-
performance expectations (stalled clocks, Turing tax), and security concerns (microarchitectural attacks). To re-imagine	Net + Sto	rect [103], nvidia BAM [113] iSCSI, NVMoF (offload [117], BlueField [5])
ur computing architecture, in this work we take a more radi- al but pragmatic approach and propose to eliminate the CPU	Sto + Accel	i10 [68], ReFlex [80] ASIC/CPU [60, 83, 121], GPUs [25, 26, 124]
with its design baggage, and integrate three primary pillars of computing, i.e., networking, storage, and computing, into a	Hybrid System	FPGA [69, 116, 119, 143], Hayagui [15] with ARM SoC [3, 47, 90], BEE3 [44], hybrid CPU-FPGA systems [39, 41]
single, self-hosting, unified CPU-free Data Processing Unit DPU) called Hyperion. In this paper, we present the case for Hyperion, its design choices, initial work-in-progress details, and seek feedback from the systems community.	DPUs	Hyperion (stand-alone), Fungible (MIPS64 R6 cores) DPU processor [54], Pensando (host attached P4 Programmable processor) [108] BlueField (host-attached, with ARM cores) [5]
1 Introduction		work (§4) in the integration of network (net) d accelerators (accel) devices.
Since the inception of computing, we have been designing and building computing systems around the CPU as the pri- mary workhorse. This primary architecture has served us well. However, as the gains from Moore's and Dennard's scaling start to diminish, researchers have started to look beyond the CPU-centric designs to accelerators and domain-specific com- puting devices such as GPU1 [26, 73, 115]. FPOAs [84, 111]. TPU5 [72], programmable-storage [87, 116, [21]]. and Smart-	approaches (§4). Additionally, accelerator integration is al- ways done (via virtualization or multiplexing) while koeping the CPU and accelerator view of system resources (DRAM, memory mappings, TLBs) coherent and secure. Though nec- searsy, such integration brings complexity to accelerator man- agement and keeps the CPU as the final resource arbiter. In contrast to accelerators and UO devices, the CPU performance is not expected to improve by a radical margin [101], and is even dropping with each microarchitectural tatks for [23,81]. We are not the first one to raise issues associated with the CPU-driven computing architecture [42, 101]. Despite this awareness, CPU-driven designs and consequently, the CPU remains in the critical path of end-to-end system building, thus not escaping the dynamics of Amdah's Law [64]. The first-principle reasoning suggests the solution: a sys- tem where there is no CPU, i.e., a zero-CPU or CPU-free architecture. A completely new computing architecture like zero-CPU will require a radical and destructive redesign of computing hardware (buses, interconnects, controllers,	

2022

8 May

K

arXiv:2205.08882v1

Acknowledgements: NWO XS OCENW.XS3.030, and the Xilinx University Donation Program (XUP)

Call for a Revolution!

