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Abstract

Society nowadays revolves more and more around data. Data Science, Machine Learning,
and Artificial Intelligence depend on large amounts of data to conduct research, and
train machine learning models and agents. With the ever increasing amount of data,
comes the need for faster storage. The quest for new storage devices has resulted in the
development of non-volatile memories, that run alongside conventional memory and are
directly accessible by the CPU, with large capacity of persistent storage. This new kind of
non-volatile memory is shifting storage technology in a new direction, triggering numerous
changes in the software stack on how we store and access data.

One such change is the addition of the direct access (DAX) extension for file systems.
It allows using these devices as efficient storage devices with file systems. DAX eliminates
obstacles that conventional file systems present to non-volatile memories. Another such
change is the development of the Persistent Memory Development Kit (PMDK), a software
infrastructure, consisting of a number of libraries and tools for using these devices as
memories. The PMDK provides libraries for using non-volatile memory in a persistent
way, maintaining data through power loss, and in a volatile way, losing data on power
loss.

We present an evaluation of the performance of the DAX extension, and provide one of
the first systematic studies analyzing PMDK software overheads. We conduct our study
using emulated non-volatile memory on DRAM, and all benchmarks we designed and
implemented, as well as function traces collected are open source. Our findings show that
DAX bypassing the page cache increases performance for I/O bandwidth by up to 32.85%,
showing that this new generation of file systems can outperform conventional file systems.
Additionally, we identify that the average cost of persistence with the PMDK is 3x higher
than volatile use, and provide guidelines for minimizing persistence software overheads.
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1 Introduction

1.1 Context

Society nowadays revolves more and more around data. Businesses and companies collect
large amounts of data on customers, and depend on such data to reach and expand their
clientele. Data Science, Machine Learning, and Artificial Intelligence depend on large
amounts of data to conduct research, and train machine learning models and agents.
Predictions estimate that by 2025 the Global Datasphere will grow to 175 zettabytes of
data [32]. With the ever increasing amount of data, comes the need for faster storage for
the data. This quest for new storage devices has resulted in the development of non-volatile
memories., delivering large persistent storage capacity, with low access latency.

Modern systems, such as servers and databases, can require hundreds of GBs of ex-
pensive main memory to deliver fast access to data. Since data is stored on slow storage
devices, it needs to be copied into main memory before it can be accessed, introducing con-
siderable overheads. After rebooting a server, it can sometimes require hours to ”warm up
the cache”, by loading frequently used data into main memory. The advent of non-volatile
memory technology aims to revolutionize today’s and tomorrows’ computer systems, by
combining the best of memory- and storage- devices into one non-volatile memory device.

Figure 1 illustrates the placement of non-volatile memories within the memory hierar-
chy, comparing their capacities, access latencies, and bandwidths. Non-volatile memory
falls between conventional DRAM and NAND SSD storage in access latency, capacity,
bandwidth, and cost. This new kind of memory is shifting storage technology into a new
direction, triggering numerous efforts of changing the software stack, and the way we store
and access data.

Non-volatile memories, formally known as non-volatile dual in-line memory modules
(NVDIMMs), and commonly referred to as persistent memories, experienced a recent
technology breakthrough by Intel and Micron [22]. This technology, brings a new kind of
memory to modern systems, combining large capacity persistent storage from conventional
storage devices, with low latency byte-addressability from conventional memory, into one
memory device. Non-volatile memories are running alongside conventional memory, as
part of the main memory, with the CPU being able to directly access them. Unlike volatile
memory, which cannot sustain data through power loss, non-volatile memory stores data
when the power goes out.

With this new kind of memory, comes the need to change the software stack, to optimize
how data is accessed and stored on them. The resulting software stack allows using these
devices in two distinctive ways. Firstly, using them as storage devices with a file system.
With conventional file systems, the issue arises that these are designed for slow storage
devices, and therefore data is copied to main memory before being accessed, illustrated in
Figure 2. The direct access (DAX) extension for file systems [10] eliminates this copying of
data to main memory, and maps data directly into user space. Secondly, these devices can
be used as memories, with the Persistent Memory Development Kit (PMDK) [23]. The
PMDK is a software infrastructure consisting of numerous libraries and tools for using
non-volatile memories as persistent memory, such as a persistent key-value store, or using
it similar to conventional memory, as a volatile heap.
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Figure 1: A pyramid of the memory hierarchy, showing the decreasing cost and increasing
access latency, as capacity increases. Non-volatile memory falls between conventional
DRAM and NAND SSD storage in access latency, capacity, bandwidth, and cost. Based
on a figure from Intel [33].

Figure 2: Before data can be accessed on slow storage devices, it has to be copied to the
page cache in main memory. The page cache is transparent, and lets data be modified in
memory, without modifying it on the storage device.
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1.2 Problem Statement

With this newly developed technology slowly starting to become commercially available,
there is little known about the performance implications of the PMDK software environ-
ment. Despite its libraries being the foundational building block for persistent memory
applications, there has been no systematic study into what overheads they introduce. This
thesis aims to provide a systematic evaluation of the performance characteristics through-
out the persistent memory software stack, by evaluating the performance of the DAX
extension for file systems, and identifying overheads of the PMDK libraries. To system-
atically evaluate the performance characteristics, we break the research objective into the
following individual questions:

RQ1. How has the software stack changed with the DAX extension, how does its bypassing
of the page cache affect performance, and what performance do these new generation
file systems deliver? The aim is to build a foundational understanding of the new
software stack, and understand how non-volatile memory interacts with it. This
understanding will be important for our second research question.

RQ2. What design decisions were made during the development of the PMDK software
environment, how did these decisions affect its performance, and what overheads
are coming from the libraries themselves? The PMDK is the foundational building
block for persistent memory applications, but so far there has not been a systematic
study into its performance and software overheads. Answering these questions will
be important for developers, building applications for persistent memory, to optimize
performance and understand the software environment they are building with.

1.3 Main Contribution and Research Approach

This thesis presents one of the first systematic studies into the performance characteristics
of the persistent memory software stack. We start by understanding the DAX extension for
file systems, and identifying its performance. Next, we identify PMDK software overheads
by measuring the costs of using persistent memory, compared to volatile memory, and
identifying what this cost is made up of. The main contributions of this thesis are:

MC0. We provide an explanation of non-volatile memories, and the PMDK software infras-
tructure, its complexity and basic ideas. Due to limited documentation, we navigate
the challenges of analyzing and understanding the source code and benchmarks,
running them, and cross validating achieved results. All benchmarks we created are
open source [36], and our function traces are publicly available [35].

MC1. An evaluation into this new generation of file systems, and understanding the DAX
extension and its overheads. We show whether these new file systems should be used
when employing persistent memories as storage devices.

MC2. We provide one of the early systematic studies of the PMDK and its software over-
heads, by understanding the software stack of the PMDK, and evaluating how its
design decisions affect the performance. Additionally, we provide a set of guidelines
for using the PMDK as the development tool for persistent memory applications,
to optimize their performance by minimizing software overheads. Our study shows
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that the average cost of persistence is 3x higher than volatile use. Additionally,
we identified that keeping persistent data structures close together amortizes cache
flushing overheads.

The research approach utilized the methodology of experimental research, by designing ap-
propriate micro and workload-level benchmarks, and quantifying a running system proto-
type [25, 15, 30]. We utilize microbenchmarks for performance measuring of DAX-enabled
file systems and the PMDK, as well as designing and implementing microbenchmarks for
our evaluation.

Our findings show that DAX bypassing the page cache increases performance for I/O
bandwidth by up to 32.85%, showing that this new generation of file systems can outper-
form conventional file systems. Our evaluation of PMDK software overheads reveals that
the average cost of persistence is 3x higher than volatile use. Additionally, we identified
that keeping persistent data structures close together amortizes cache flushing overheads.

1.4 Structure

This thesis is organized as follows: First, Section 2 provides background information of
the hardware and software concepts used throughout this thesis. Next, the experimental
setup and the baseline explained in Section 3. Section 4 then covers all benchmarks for
the DAX extension, followed by Section 5 evaluating the PMDK software performance
characteristics. The experiments are followed by an analysis of the results in Section 6,
discussion in Section 7, and related work in Section 8. Lastly, an evaluation on current
limitations and future work is covered in Section 9, followed by the conclusion in Section
10. Figure 3 provides a visual representation of the layout for this thesis, allowing readers
the possibility of reading several sections in parallel or focusing only on one topic.
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Figure 3: A visual representation of the section layout allowing for reading of experiments
in parallel or focusing on only one topic. If a section has no outgoing edge of a color and
shape, ”All Content” should be followed. For example, only reading ”PMDK” content
would mean reading Sections 1, 2.1-2.2, 2.4, 3, 5, 6, 7, 8, 9, 10.
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2 Background

2.1 Overview

This section provides foundational details for this thesis. First, Section 2.2 provides basic
information of non-volatile memory and its integration into systems. Next, Section 2.3
contributes information on the DAX extension and how it internally works. Last, Section
2.4 provides details on the PMDK software infrastructure, and the main libraries and tools
it contains.

2.2 Non-Volatile Memory

Modern systems typically employ two types of devices, storage- and volatile memory-
devices. Storage devices are slow and cannot be directly accessed by the CPU, but deliver
large capacities of persistent storage, and are the cheapest kind of device. Since these
devices are slow and not directly accessible by the CPU, data has to be buffered in memory,
before it can be accessed. Memories on the other hand, are fast, directly accessible by
the CPU, but have low capacity of volatile storage, and are more costly. Non-volatile
memories present a unique new addition to the memory hierarchy, combing the larger
capacity of persistent storage with the low latencies of memory.

The first commercially available non-volatile memory is the Intel Optane DCPMM [17].
These devices have large capacities, ranging from 128GiB to 512GiB per module, of persis-
tent storage, and access latencies close to conventional memory, as was shown in Figure 1.
We illustrate a system layout with these new devices and the two aforementioned memory-
and storage- devices in Figure 4. Like conventional memory, non-volatile memories are
directly accessible the CPU over the DDR4 channels, and are byte-addressable. Unlike
conventional memory, these devices have a lower cost per GB of storage capacity, making
them a cheaper alternative, with the added benefit of persistent storage.

The software stack presents three main software ways of using non-volatile memories,
presented in Figure 5. Firstly, they can be used a storage device with a DAX-enabled file
system. Secondly, they can be used as memory with the PMDK software infrastructure.
The PMDK provides libraries to, for example, use the non-volatile memory as a persistent
key-value store, or volatile heap memory. Lastly, they can be used as a combination of
storage and memory, by mounting a DAX-enabled file system on the device, and using
the PMDK libraries alongside the file system.

2.3 Direct Access (DAX)

The first way of using non-volatile memories, is to employ them as storage devices with
a file system. Conventional systems have very slow storage devices and therefore use
the page cache in main memory to buffer data, illustrated in Figure 2. The page cache
buffers pages of data from the storage device, before they ares accessed by the CPU, or are
written to the storage device. The page cache has the advantages of being transparent and
allowing for modification of data in memory, not on the storage. When using non-volatile
memories as storage devices, the issue arises, that they can be directly addressed as main
memory, and copying of data to the page cache would be unnecessary. To avoid this,
kernel developers have developed the DAX (direct access) extension for file systems [37].
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Figure 4: System hardware setup of conventional memory- and storage- devices, with new
non-volatile memory. Based on the Intel Server Board S2600BPS Architecture [21], with
the Intel C622 Chipset, and the Intel Optane DCPMM Guide [20]. 1. CPU with with its
very fast cache, that has a very small storage capacity. 2. DDR4 channels that directly
connect the CPU to DRAM and Optane DCPMM over the integrated Memory Controller
(iMC). 3. PCIe lane that connects the CPU to the I/O controller, from where secondary
devices can be connected over SATA, NVMe, M.2, and more. 4. Slow NVMe SSD storage
that is not directly accessible by the CPU, but has larger storage capacity.

Figure 5: Possible ways of using non-volatile memories. 1. As a storage device, with a
DAX-enabled file system, and using direct load/store. 2. As a memory device, with the
PMDK. For example, using persistent memory as a volatile heap. 3. Combining storage
device with use as a memory, with DAX-enabled file system and the PMDK.
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Mode Description File System DAX Device Type

sector Block device without DAX but with
file system support

Yes No Block

raw Block device without DAX or file
system support

No No Block

devdax Character device with fault granu-
larity of 4KiB, 2MiB, or 1GiB

No Yes Character

fsdax Block device for DAX capable file
system

Yes Yes Block

Table 1: Different access modes to be used for configuring NVDIMMs [18].

DAX eliminates the copying of data into page cache, and maps the file directly into user
space. Currently, the only conventional file systems in the linux kernel supporting DAX
are ext4, xfs, and ext2.

Prior to mounting a file system on a non-volatile memory, its address range, called the
namespace, has to be configured to an access mode, to load required drivers, using the ndctl
tool [3]. Table 1 shows all the access modes that the devices can be configured to. There
are two DAX-capable access modes, fsdax and devdax. Fsdax mode is required for using
the non-volatile memory as storage device and mounting a DAX-enabled file system on it.
With this mode, the memory is presented as a block device, just like conventional storage,
meaning it can be used with any file system, but to bypass page cache, a DAX-enabled
file system has to be mounted on it.

Devdax mode on the other hand, presents the device as a character device, without
the possibility of mounting a file system on it. The entire device is represented to the
operating system as a single file, allowing for the entire address range of the device to be
directly mapped into user space at once. This can be beneficial for systems requiring very
large memory mappings, or possibly for remote direct memory access (RDMA). During
this thesis, we utilize fsdax mode only, for all our evaluations.

2.4 Persistent Memory Development Kit (PMDK)

The second way of using non-volatile memories, is as memory. Since, unlike conventional
memory, non-volatile memory maintains data through power loss, a new programming
model was required for it. For this, Intel and SNIA have developed the Persistent Memory
Development Kit (PMDK) [23]. The PMDK is a software infrastructure consisting of a
number of libraries and tools. There are two different kinds of libraries. Firstly, the ones
for using the memory as persistent memory, such as a persistent key-value store or for
persistent data structures. Secondly, the ones for using it as volatile heap memory, just
like conventional memory, but with the added benefit of larger memory capacity.

The persistent libraries are all built on top of one main library, libpmem. It provides
the low level implementations for all basic functionality required for persistent memory,
such as mapping files into memory, writing data to the memory, or persisting data to the
non-volatile memory. The libraries built on top of this provide additional features, such
as transactions, compile- and run-time- safety checks, and data types.
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The volatile libraries are based on two main libraries, libvmmalloc and memkind. These
utilize non-volatile memory as volatile heap memory. Libvmmalloc fully replaces heap
memory, meaning that all memory allocations are redirected to the non-volatile memory.
Memkind on the other hand only extends heap memory, giving the possibility to run
non-volatile memory alongside conventional memory, and deciding to allocate memory
from the non-volatile memory or the conventional memory. Figure 6 presents some of
the main libraries, running on non-volatile memory with two of the possible access mode
configurations.

With the introduction of the new programming model for the PMDK, came several
new key concepts for programming on non-volatile memory [7]. Firstly, since data is
stored through power loss, pointers need to be relocated when restarting an application.
For this, the PMDK uses root objects that store sizes of allocations, and uses these to
recalculate offsets of pointers. Secondly, persistent pointers are organized differently than
conventional pointers. Persistent pointers require double the size, as they need to store an
identifier to which memory mapped file, called pool, they belong to, and what their offset
inside that pool is. Lastly, data needs to continuously be flushed from the CPU caches to
the device, to maintain consistency.

Flushing of caches is done using the clflush instruction, which invalidates the cache
line and writes the data back to the device. To improve performance, Intel has recently
introduced two new instructions, clflushopt and clwb [16]. clflushopt is an optimized
flushing, and clwb is a flush without invalidating the cache line. These instructions are
only available on certain CPUs, therefore the PMDK checks what instruction is supported
on the hardware, and initialize the libraries at load time.
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Figure 6: Layout of non-volatile memory and parts of the persistent memory software
stack. 1. The non-volatile memory hardware, which is evaluated first in Section 3.3.
2. The DAX-enabled file system and different access modes, evaluated in Section 4.1.
3. Some of the PMDK libraries, evaluated in Section 5.1.
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3 Experimental Setup and Baseline

3.1 Overview

Having established all required prior background knowledge, we evaluate the performance
of the previously shown possible ways of utilizing non-volatile memories in systems. First,
Section 3.2 covers the system setup, followed by Section 3.3 establishing our baseline
memory bandwidth and latency. For reproducibility, all commands for setup and execution
of benchmarks are shown in Appendix B. All benchmarks we designed and implemented
are publicly available [36].

3.2 System Setup: NVDIMM Emulation on DRAM

To evaluate the performance of the persistent memory software stack, we emulate persis-
tent memory in DRAM [26]. As this is emulated memory, the results of our findings do
not present absolute values, but are meant to understand the software stack, and identify
patterns and behavior. The system uses a 6 core Intel i7-8850h CPU with 2x16GB of
DDR4 memory, where 2x7GB are used for emulation of persistent memory. The system
is running Linux kernel 5.4.0.

For the experiments, we use tmpfs, a temporary file system living in the page cache,
ext4 and xfs, which are both running on an emulated block device on DRAM [14], their
DAX-enabled versions, ext4-DAX and xfs-DAX, and lastly NOVA, a file systems designed
and optimized for persistent memories. NOVA delivers stronger consistency guarantees
than ext4-DAX and xfs-DAX [42]. Experiments with the NOVA file system run Linux
kernel 5.1.0, since it has not been added to the mainline kernel.

3.3 Baseline

To establish our baseline performance, we measure memory bandwidth and average mem-
ory access latency. We measure bandwidth by calling an anonymous mmap, meaning the
memory mapping is not backed by an actual file, with a 1GiB size. We divide the mapping
into ”chunks” of a certain size, ranging from 4B to 4MiB, and continuously access differ-
ent chunks in sequential and random order, for 60 seconds. Accesses consist of reading
from the memory and writing to the memory, by calling memcpy. Reading is achieved
by copying a chunk of data into a destination buffer in memory. Similarly, writing is
done by copying a chunk of data from a source buffer in memory to the mapping. To
eliminate overheads of page faults, page table entries are pre-populated by passing the
MAP POPULATE flag in the mmap call.

Figure 7 shows the bandwidth for the different access types, with the varying chunk
sizes. The resulting peak memory bandwidth is measured at 18.9 GiB/s. To identify the
differences in sequential and random bandwidth, we measured the number of hardware
perfetches per CPU cycle, and identified that sequential access has increased prefetching
for chunk sizes up to 16KiB. These data points are presented in Appendix 16.

To verify the accuracy of the result, we cross check it with two commonly used tools
for performance analysis, LMbench [2] and STREAM [28]. LMbench is a widely used
benchmark for analyzing systems performance, whereas STREAM is a benchmark solely
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Figure 7: Baseline DRAM bandwidth measured using a memory mapped file, writing/read-
ing to/from the mapping with varying chunk sizes, in random and sequential order. Shows
a peak bandwidth of 18.9 GiB/s and converging peak bandwidth for all access types at 18
GiB/s. We verified that higher sequential access bandwidth is due to increased hardware
prefetching.

meant for measuring sustainable memory bandwidth. Both benchmarks show an average
bandwidth within a similar range, confirming the results we measure.

We measure average memory access latency by allocating a 300MiB buffer in memory,
and filling it with random pointers, pointing to another random pointer inside the buffer.
Starting at the base of the buffer, we move from one pointer to the next, for 10,000,000
times. The resulting memory latency is 30.71 nanoseconds. To verify the results, we
also measure the latency using the Intel Memory Latency Checker tool [38]. The tool is
configured to measure the load latency for idle memory accesses. The resulting memory
access latency is 30.5 nanoseconds. In conclusion, the average memory access latency on
our system is close to 30.5 nanoseconds.

Summary. We measured our baseline peak memory bandwidth at 18.9GiB/s and the
memory access latency at 30.5 nanoseconds, and have cross checked the accuracy of our
results with several different tools.
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4 Benchmark: DAX

4.1 Overview

Having established the baseline, we proceed by examining the performance of using non-
volatile memories as storage devices, with DAX-enabled file systems. Our main results
show:

1. DAX-enabled file systems bypassing the page cache have an increase in asynchronous
asynchronous I/O bandwidth of up to 32.85%, compared to file systems without
DAX. These findings are presented in Section 4.2.

2. The performance of file system operations involving I/O is improved by up to 67.96%,
and operations without I/O are not affected by DAX. We present these findings in
Section 4.3.

3. Ext4-DAX has a performance improvement of 50.28% on page faults, showing that
avoiding the page cache affects performance. These findings are shown in Section 4.4

The evaluations are followed by a summary of our findings in Section 4.5, and we present
guidelines for using non-volatile memory as storage devices in Section 7.

4.2 Measuring I/O Bandwidth of DAX-enabled File Systems

To evaluate whether DAX bypassing the page cache improves the performance for I/O
operations, we measure the I/O bandwidth for file systems with DAX enabled, and com-
pare it to file systems without DAX. We select fio [5] as our benchmarking tool. For our
evaluation, we configure fio to create a 1GiB file on each file system and use its libaio
engine to submit asynchronous read and write requests for the file. Libaio is the Linux
Asynchronous I/O library. We choose asynchronous I/O, as servers utilize this and we
believe servers will be one of the main adopters of non-volatile memories. With servers,
certain threads handle only incoming client requests, while other threads handle the actual
workload.

Fio’s libaio engine submits I/O requests, in a single system call, without waiting for the
call to complete, while a separate process waits for completed calls. We use fio with a single
thread submitting I/O requests for reading, writing, random reading, and random writing
data, 4KiB in size, which corresponds our system’s page size. Requests are continuously
issued for 60 seconds, for each I/O type, and fio measures the average bandwidth of each.

The resulting bandwidth for each of the file systems and the respective I/O opera-
tion is depicted in Figure 8. DAX-enabled file systems achieve higher bandwidth across
all workloads. The achieved bandwidth by ext4-DAX gets close to that of tmpfs. Sim-
ilarly, xfs-DAX achieves comparable results to tmpfs. Overall, ext4-DAX achieves an
average 32.85% higher bandwidth than ext4, and xfs-DAX outperforms xfs by an average
of 31.60%.

Summary. We evaluated the performance of DAX-enabled file systems compared to
their counterpart file system without DAX, and have shown that DAX bypassing the page
cache improves performance for single threaded asynchronous I/O by up to 32.85%.
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Figure 8: Fio benchmark using asynchronous I/O operations on the different file systems,
to evaluate performance of DAX bypassing the page cache. Y-axis shows the achieved
bandwidth in GiB/s, where higher is better. DAX-enabled file systems achieve higher
bandwidth than file systems without DAX, on all workloads. Error bars represent standard
deviation.

4.3 Measuring File Operation Latencies of DAX-enabled File Systems

Next, we measure the latency of different file system operations on the different file sys-
tems, to evaluate how DAX-enabled file systems perform on such workloads. We choose
Filebench [34] as our tool for generating workloads. Filebench is a workload generator,
used for benchmarking storage and file systems. We choose three different workloads. In-
spired by related work [42], we configure Filebench to a similar workload of large amounts
of small files and issue small I/O requests, which is comparable to server workloads.
Firstly, Filebench creates 100,000 files, each 64KiB, and fills the entire file with random
data. Next, it writes 16 times to already created files, in 4KiB I/Os. Lastly, it deletes all
created files. For each of these operations, Filebench measures the number of operations
completed per second, from which we calculate the average latency of a single operation.
Each workload is repeated 10 times for every file system, and we report the average latency.

Figure 9 shows the resulting latency for each operation on the different file systems. Since
file systems have different implementations, they can show very different performance for
individual operations, which is why we do not compare the file systems against each
other, but only focus on how the DAX-enabled version of each file system compare to
their version without DAX. File creation on ext4-DAX only takes 10.00 microseconds,
compared to 16.66 microseconds on ext4, requiring only 60.00% of the time it takes on
ext4. Similarly, writing to the file takes only 4.00 microseconds on ext4-DAX, compared
to 9.48 microseconds on ext4, showing an increase in performance by 57.71%. This is due
to ext4-DAX bypassing the page cache when writing to the file, whereas ext4 buffers the
write in page cache and then proceeds with writing the data back to the file system on
the storage device.

Similar results appear when comparing xfs-DAX to xfs. On file creation, xfs-DAX
requires 10.00 microseconds, compared to 13.34 microseconds on xfs, requiring 74.99% the
latency of xfs. The writing workload only requires 3.85 microseconds with DAX enabled,
and 12.03 without DAX, showing an increase in performance by 67.96%. Again, this is
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Figure 9: Filebench workload for file system operations on the different file systems.
Create creates 100,000 64KiB files and fill the entire file with random data. Write writes
to already created files 16 times, 4KiB at a time. Delete deletes all already created files. Y-
axis depicts the achieved latency for each operation, where lower is better. DAX-enabled
file systems achieve lower latencies for all workloads that involve writing, as it bypasses
the page cache, but that does not affect other operations. Error bars represent standard
deviation.

due to DAX bypassing the page cache and writing directly to the storage. Performance
of tmpfs is typically similar to that of DAX-enabled file systems, due to it being in the
page cache, also avoiding copying of data. Deleting of files achieves the same latency for
DAX-enabled file systems, as it does for their counterparts without DAX. DAX has no
involvement in the deletion of files, and therefore performance does not change for the file
systems on such operation.

Summary. We measured the latencies of several different file operations and have
shown that DAX-enabled file systems bypassing the page cache can improve performance
for I/O operations by up to 67.96%, but operations not involving I/O are not affected by
DAX.

4.4 Measuring the Cost of Page Faults for DAX-enabled File Systems

To specify the overheads introduced by copying data to page cache, we measure the cost
of page faults across the different file systems. On page faults, page table entries are
setup, storing the mapping of the virtual- to the physical- memory address. Additionally,
if necessary, pages of data from the storage device are copied to the page cache in memory.
We identify if DAX avoiding the copying of data to page cache on page faults improve
performance, compared to file systems without DAX having to bring data into page cache.

We map a 4GiB file, from each file system, into memory using mmap, and divide the
mapping into page sized chunks. We then access the first byte of these chunks, triggering
one page fault on each access. The page fault then sets up the page table entry, and if
necessary, brings the data into memory. We measure the time it takes to return from the
one byte access. Only the first byte is accessed, to have the smallest possible overhead for
the access, and the latency we measure being solely the latency of the page fault.

Typically, there are several hardware and software techniques, such as prefetching and
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Figure 10: Measuring the latency of page faults for each file system to identify the cost
of bringing a page into page cache. Ext4-DAX bypassing the page cache improves perfor-
mance by 44%. Error bars represent standard deviation.

pre-allocation of page table entries, to avoid the penalty of page faults. These techniques
are based on access patterns, and aim to predict what will be accessed next, before it is
actually being accessed. To account for these techniques, we access the first byte of pages
within the mapping in random order. The file is removed from memory and remapped,
once we start causing less page faults. We repeat this for a total of 1,000,000 page faults.

Figure 10 shows the resulting average latency for a page fault on the respective file sys-
tem. Ext4-DAX, requires 0.91 microseconds, compared to ext4 taking 1.81 microseconds,
showing a performance increase of 50.28%. This shows how DAX improves performance,
by avoiding the page cache, and providing direct access. From this, we can also calculate
that bringing a page into the page cache adds an additional overhead of 0.90 microseconds
with ext4. Surprisingly, xfs-DAX performs the same as xfs. To analyze why, we trace
the function calls using ftrace [1], the Linux kernel internal tracer. We find that xfs-DAX
calls the fault handler of DAX twice, where the second call sets up the page table entry.
Ext4-DAX only calls the DAX fault handler once. The traces are publicly available at [35].

NOVA achieves similar latencies to xfs-DAX. This is due to NOVA using atomic-mmap
to map files into user space [42]. With atomic-mmap, data is copied into ”replica pages”,
which are then mapped into user space. This provides stronger consistency guarantees,
as data will be modified in the replica pages, and pointers to the pages are swapped
atomically, when calling msync. It introduces an overhead similar to the page cache, but
provides stronger consistency guarantees than ext4-DAX and xfs-DAX provide [42].

Prior to measuring page faults, we measure the cost of mapping files into memory for
the different file systems, using mmap. We do this to identify how many page table entries
are set up on the mmap call, or whether they are set up only on page faults. We find that
the cost of the function call is the 1.11 microseconds across all the file systems. When
tracing the function call, we find that it does not set up any page table entries, but only
does required work to acquire the memory region and mark it as accessible.

Summary. We measured the cost of page faults, in order to identify if DAX avoiding
the copying of data to page cache improves performance. Our findings show that on
ext4-DAX performance improved by 50.28%, compared to ext4.
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4.5 Results

These benchmarks show that, when using non-volatile memories as storage devices, DAX-
enabled file systems provide better performance for I/O operations. DAX bypassing the
page cache improves I/O bandwidth by up to 32.85% on ext4, and operations not involving
I/O are not affected by DAX. Additionally, we identified that bringing data into page cache
adds an overhead of 0.90 microseconds on ext4, and ext4-DAX avoiding this improves
performance by 50.28%, compared to ext4.
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5 Benchmark: PMDK

5.1 Overview

After having established the performance of using non-volatile memories as storage de-
vices, we measure the performance of using them as memories with the PMDK software
infrastructure. Our main findings show:

1. The average cost of persistence is 3x higher than volatile use. These findings are
presented in Section 5.2.

2. Costs of achieving persistence, by flushing data from the caches can be amortized,
if data is kept close together, and is flushed together. We show these findings in
Section 5.3.

The evaluations are followed by a summary of our findings in Section 5.4, and we present
guidelines for avoiding software overheads in Section 7.

5.2 Measuring PMDK Key-Value Store Performance

As we explained in Section 2.2, non-volatile memories can be used as storage and as
memories. We now evaluate performance for using non-volatile memories as memories, by
measuring the performance of PMDK libraries and comparing differences between volatile
and persistent usage to our baseline, to identify the cost of persistence and the library’s
additional software overheads. We use the provided key-value store within the PMDK,
and its persistent and volatile engines. The key-value store is optimized for persistent
memory, featuring a large variety of different engines, providing different features, such
as persistence, concurrency, and key ordering, and supporting multiple language bindings,
such C++, Java, JavaScript, Ruby, and more.

Benchmarking the key-value store with the individual engines is done using pmemkv-
tools [19], a benchmarking utility for the key-value store, ported from LevelDB’s db bench
performance benchmark for databases [11, 13]. The benchmark fills the key-value store
with 45,000 keys, 16B each, and a value of a specified size, ranging from 64B up to
256KiB. Additionally, we perform 1,000,000 reads of keys in random order to retrieve
read performance. For simplicity, we have renamed the engines to c-eng, p-eng, pc-eng,
and s-eng which respond to the official engine names of vcmap, tree3, cmap, and vsmap,
respectively. Naming letters represent; ’p’ for persistent, ’v’ for volatile, ’c’ for concurrent,
and ’s’ for sorted.

Bandwidth Comparison. Figures 11 and 12 show the bandwidths for reading and
writing, respectively, with varying value sizes. On reading, the volatile vc-eng achieves the
highest bandwidth for sizes up to 4KiB, since it is a volatile engine, but drops for larger
sizes. To investigate why, we profile the execution using perf [4], a tool for performance
profiling, and find that the implementation of the engine does unaligned memory accesses,
causing a significant performance penalty. Unaligned memory accesses are a common issue
we see appear across all engines tested. The volatile vs-eng performs the worst, because
of its implementation using a red-black tree, requiring a minimum of three lookups for
locating a key, and a maximum of O(log n). The read performance of the engines peaks
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Figure 11: Reading bandwidth for pmemkv engines, with 45,000 keys and varying data
sizes. Volatile engines perform better on smaller sizes, but worse for larger sizes due to
unaligned memory accesses. Error bars represent standard deviation.

Figure 12: Writing bandwidth for pmemkv engines, with 45,000 keys and varying data
sizes. Volatile engines perform better, but drop suddenly for sizes 16KiB value size. We
verified that this is due to a decrease in hardware prefetching, shown in Appendix 17.
Error bars represent standard deviation.
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at 17GiB/s, close to our baseline DRAM bandwidth, followed by a sudden drop for data
size of 256KiB, assumed to be caused by L2 cache being the same size.

On writing, the volatile engines achieve a higher bandwidth than the persistent ones,
but suddenly drop for value size of 16KiB. We verified that this is due to a sudden de-
crease in hardware prefetching, depicted in Appendix 17. The peak bandwidth for writing
is at 5GiB, significantly lower than our baseline DRAM bandwidth and our previously
mentioned peak reading bandwidth. This significantly lower bandwidth illustrates the
software overheads of writing with the PMDK libraries and the key-value store, which we
now further analyze, by breaking down the different latencies for reading and writing.

Latency Comparison. Figures 13 and 14 show the latency for reading and writing,
respectively. These plots correspond to the previous results of bandwidth, and therefore
show similar patterns. On reading, the volatile vc-eng achieves the lowest latency, for
sizes up to 4KiB. As previously explained for the reading bandwidth, the higher latency
for larger sizes is due to the unaligned memory accesses. The persistent engines follow
the vc-eng with slightly higher latency, followed by the vs-eng with the highest latency.
Again, this is due to the internal implementation of the vs-eng.

Comparing the latency of the volatile vc-eng to our baseline DRAM access latency, we
calculate the software overhead of reading with the PMDK libraries. Reading 64B, the size
of a cache line, takes 0.38 microseconds with the vc-eng. This is 12.46x times higher than
our baseline latency, showing the additional software overhead of volatile use. Reading 64B
with the persistent pc-eng takes 0.46 microseconds, 15.08x our baseline latency, showing
an even higher software overhead. Comparing our volatile to persistent use, we calculate
the additional software overhead for reading with persistent engines as being 1.21x higher
than volatile engines.

On writing, the persistent pc-eng has the highest latency, due to it being a persistent
engine, and supporting concurrent accesses, followed by the persistent p-eng. Pc-eng
utilizes transactions to provide concurrent accesses, which introduce a significant overhead
for smaller data sizes. The penalty of transactions becomes less significant as the data
size increases, since it is a constant overhead that does not depend on data size. Volatile
engines achieve lower latencies, as they do not need to ensure data has reached the device,
to keep it in a consistent state.

Again, comparing the latency of the volatile vc-eng, we calculate the software overhead
of writing with the PMDK libraries. For a 64B write, the vc-eng takes 0.57 microseconds,
18.69x our baseline DRAM access latency. The persistent pc-eng takes 3.52 microseconds
for a 64B write. Comparing this to baseline DRAM access latency, we identify that its
software overhead is 115.41x higher. Persistent engines, compared to volatile ones, have a
6.18x higher overhead for 64B writes. Over all value sizes, the average cost of persistence
decreases to 3x higher than volatile use.

Summary. We measured the performance of the PMDK key-value store, and identify
its software overheads, by comparing persistent and volatile engines to our baseline per-
formance, from Section 3.3. We identified, that reading 64B with persistent engines has
an overhead 1.21x higher than volatile engines, and 15.08x higher than our baseline. For
writing of 64B, the overhead of persistent engines is 6.18x higher than volatile engines,
and 115.41x higher than the baseline. Over all value sizes, the average cost of persistence
decreases to 3x higher than volatile use. These findings show that it is important for
developers to carefully organize persistent and volatile data structures.
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Figure 13: Reading latency for pmemkv engines, corresponding to Figure 11, with 45,000
keys and varying data sizes. Higher latencies for volatile engines, for sizes above 64KiB,
are due to unaligned memory accesses. Error bars represent standard deviation.

Figure 14: Writing latency for pmemkv engines, corresponding to Figure 12, with 45,000
keys and varying data sizes. Shows the added cost of persisting data on the non-volatile
engines is higher than volatile use. Error bars represent standard deviation.
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5.3 Cost of Achieving Persistence

As we observed in Section 5.2, achieving persistence introduces additional overheads. Part
of the overhead comes from flushing caches, which ensures that data is written back to the
non-volatile memory, and will not be lost in case of power failure. We use the pmembench
benchmark, provided with the PMDK, to evaluate the additional overhead of issuing a
function call to flush data from the caches.

The benchmark maps a file into memory and persists data by calling the library func-
tion pmem persist. The function call causes the data to be flushed from the caches, and
be written back to the device. The benchmark will be run 10 times, each time calling
pmem persist 1,000 times. The latency for each of the calls to pmem persist is measured,
and averaged across all the calls. This means we measure average latency, not individual
latencies. As mentioned before, depending on the CPU architecture, different instructions
are available for flushing. Our system uses the clflush instruction.

Figure 15 shows the resulting latency per cache line flushed using the pmem persist
function with varying value sizes. The latency is calculated by dividing the latency for
flushing the entire value by the number of cache lines in it. Initially, as the data size
increases, the latency decreases significantly, but it starts leveling off for data sizes above
4KiB. This shows that flushing together is most efficient for smaller data sizes, between
1KiB and 4KiB. For larger data sizes, the performance gains diminish and become less
significant.

Summary. As we previously identified, persistence comes with extra overheads. We
break down the cost of this overhead by measuring the latency of flushing data from the
caches. Our findings show that keeping data close together minimizes flushing overheads.
Additionally, we show that keeping data together, in sizes between 1KiB and 4KiB, sig-
nificantly decreases cache flushing overheads, and performance gains diminish for larger
sizes.

5.4 Results

Our findings show that using the PMDK software infrastructure introduces overheads for
achieving persistence, but certain practices can minimize these overheads. Firstly, we saw
that the average cost of persistence is 3x higher than volatile use, making it crucial for
performance to carefully organize persistent and volatile data structures. Secondly, we saw
that the cost of flushing caches, to achieve persistence, can be amortized by maintaining
persistent data structures close together on the non-volatile memory, and flushing them
together to amortize flushing costs. Flushing together is most efficient for data sizes
between 1KiB and 4KiB, as for larger sizes performance gains become less significant.
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Figure 15: Latency per cache line, for cost of flushing data from the caches, with different
sized data. Performance overhead of flushing can be amortized when data is kept close
together, and is flushed together. Error bars represent standard deviation.
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6 Results and Analysis

Non-volatile memory as storage devices. Our evaluation of using non-volatile mem-
ories as storage devices shows that DAX-enabled file systems provide better performance
than conventional file systems for I/O operations. We evaluated the performance of this
new generation file systems with three different benchmarks. Firstly, we measured I/O
bandwidth of these file systems, and saw that DAX bypassing the page cache improves
performance by up to 32.85%, on single threaded workloads.

Secondly, we evaluated performance of different file system operations on DAX-enabled
file systems, showing that DAX can significantly improve performance for operations in-
volving I/O, but does not affect performance of other operations. Lastly, we measured the
cost of page faults across the different file systems. Results showed that DAX avoiding
copying of data to page cache improves performance by 50.28% with ext4-DAX.

Non-volatile memory as memory devices. The evaluation of using non-volatile
memories as memory devices, in volatile and persistent mode, showed that the PMDK
software infrastructure introduces certain overheads. We first identified software overheads
by measuring performance of the key-value store from the PMDK, and comparing its
volatile- to persistent- use, to identify the cost of persistence. Results showed that the
average cost of persistence is 3x higher.

Following these findings, we broke down the cost of persistence, to identify what persis-
tence depends upon. Persistence depends on the flushing of data from caches. Flushing of
caches will write data back to the medium to ensure the storage stays in a consistent state
in case of power failure. We measured the cost of issuing flush instructions, and identified
that overheads of flushing can be amortized, when data structures are kept close together,
and are flushed together. Flushing together is most efficient for data sizes between 1KiB
and 4KiB, as for larger sizes performance gains become less significant.
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7 Discussion

Lessons learned during this research. From the mistakes made and pitfalls en-
countered during this thesis, we provide some helpful advice for researchers employing
microbenchmarking to measure system performance. Firstly, assume produced num-
bers are wrong. This gives incentive to think of how else things can be measured or
through what additional testing the produced numbers can be proven to be correct. Sec-
ondly, measure more. At the micro- and nanosecond levels, it is important to measure
millions, if not billions of times, to achieve reliable results. Systems are not stable enough
to produce consistent results with only a few iterations.

Whenever possible, include errors such as standard deviations or standard errors with
the results. Lastly, ask questions about results. If you produce some results, ask
yourself why the results are what they are, and not half of it or double of it. Being able
to explain why a result is what it is brings more validity to the results, as well as more
credibility to the research.

Guidelines for employing non-volatile memories. Based on our findings and
experiences during this evaluation, we propose several guidelines for incorporating non-
volatile memories into systems.

1. When using non-volatile memories as storage devices, DAX-enabled file systems
provide better performance than conventional file systems for I/O operations, due
to the bypassing of page cache.

2. Using these devices as memories introduces software overheads developers should be
aware of. Since the cost of persistence is 3x higher, it is important to carefully plan
and organize persistent and volatile data structures.

3. The overhead of persistence can be amortized when persistent data is kept close
together, and is flushed together. Flushing together is most efficient for data sizes
between 1KiB and 4KiB, as for larger sizes performance gains become less significant.

4. We saw that the PMDK software infrastructure uses unaligned memory accesses,
adding significant overheads.

Future implications. This new technology brings major implications for future sys-
tems. Servers and other large storage systems can be running 10s of TBs of non-volatile
memories. With estimates being that by 2025 the Global Datasphere will grow to 175
zettabytes of data [32], non-volatile memories present a strong alternative to conventional
storage. Running large capacities of non-volatile memories will diminish the need for con-
ventional storage- and memory- devices. Conventional storage will only be necessary for
data that is infrequently accessed. It is cheaper to keep such data on slow storage, and
load it when needed. Conventional memories will only be necessary when low latency
accesses are required, and while non-volatile memories have higher accesses latency. Once
non-volatile memories incorporate these factors, they will revolutionize modern systems,
making conventional storage- and memory- devices obsolete.
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8 Related Work

Even before the hardware was available, there have been several efforts for researching
how to integrate non-volatile memories into systems, and evaluating what performance
they deliver. We break down the related research into separate fields.

File Systems. Utilizing persistent memories as storage devices with file systems has
been a common implementation, as these devices provide large capacities of persistent
storage. Xu et al. [42] present NOVA, a file system implementation, designed and opti-
mized for the use of volatile and non-volatile memories. Similar to our evaluation, they
evaluate performance of DAX-enabled file systems and compare those to the performance
of NOVA. Zheng et al. [45] present a high performance file system, called Ziggurat, that
combines non-volatile memories with DRAM and disks. To improve performance, it di-
rects writes to certain devices, based on access patterns. Similarly, their evaluation also
compares the performance of DAX-enabled file systems and the NOVA file system to their
file system.

Other file system implementations have been proposed for non-volatile memories [12, 9].
Worth mentioning are the ones that evaluate performance of DAX-enabled file systems,
similar to our evaluation, and compare performance to their developed file system. Ou
et al. [29] present such an effort, with a high performance file system, that combines
DRAM with non-volatile memories. It provides write buffering of data in DRAM and
lazily writes it back to the non-volatile memory, to improve performance. Gangadharaiah
et al. [43] provide another such evaluation of DAX-enabled file systems, and propose a
new file system that provides higher performance, while being able to efficiently handle
corruption errors. Our evaluations show similar results to others, showing the increased
performance of DAX-enabled file system for I/O operations.

NVDIMM use cases and implications. Besides using non-volatile memories as
storage devices with file systems, there have been different suggestions for integration
of these new devices into systems. Similar to our research, Wang et al. [39] present an
evaluation, quantifying overheads for the PMDK. Marathe et al. [27] present the effort
of porting memcached to persistent memories. Memcached is a key-value store, that is
kept in memory, and serves as a cache for larger databases. Coburn et al. [8] present one
of the first implementation and evaluation of using non-volatile memory as a heap. This
effort provides tools, such as hash tables and search trees, for building persistent data
structures.

Important to note is that this effort came before the development of the PMDK libraries,
and the PMDK provides a broader range of tools. With the introduction of new technol-
ogy, arise limitations of how modern systems can incorporate these devices. Bailey et al.
[6] present an evaluation of such limitations and obstacles that current operating system
design poses for these new devices. They discuss issues such as reliability and how vir-
tual memory can be changed. Changes include the elimination of paging, as non-volatile
memories do not require pages, or using larger page granularity.

Optane DIMM hardware. With Intel Optane being one of the first commercially
available non-volatile memory, there have been several efforts into evaluating performance
of real hardware [44, 40, 31], where Izraelevitz et al. [24] present one of the first, in-depth
evaluations of Intel Optane DIMMs. Results verify that real hardware has lower band-
width and higher latency than DRAM. This evaluation also provides several benchmarks
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for measuring performance of applications on non-volatile memory, as well as evaluating
different file system performances. Wu et al. [41] present an evaluation of the performance
characteristics for 3D XPoint, the same technology used in the Intel Optane non-volatile
memory.
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9 Current Limitations and Future Work

Limitations. Our research utilizes emulated persistent memory, which introduces several
limitations. Firstly, missing characteristics of real hardware. Studies show that real hard-
ware behaves differently for particular access patterns and has different characteristics
than DRAM [40, 24]. Emulated environments fail to account for such characteristics.

Secondly, our environment uses smaller capacity than available from real hardware.
Real hardware, such as the Intel Optane DIMM, has a minimum capacity of 128GB,
whereas our experiments were limited to 14GB. This restricted our benchmarks to smaller
workloads, that might not represent real world applications. Thirdly, missing optimized
CPU instructions. Optimized instructions for flushing of caches are only available on
certain architectures. Integrations of non-volatile memories into systems would likely
include CPUs supporting the optimized instructions, clflushopt and clwb.

Future work. With these limitations and the findings in our research, comes a broad
spectrum of possible future research. This includes evaluating the experiments with real
hardware and CPUs that support the optimized instructions, as well as using larger sys-
tems and larger workloads. As we saw in Section 5.2, a common issue within the PMDK,
is the unaligned memory accesses. We suggest future work to investigate how applications
can avoid these issue, by manually aligning memory or by using byte arrays, and evaluate
how performance develops with the mitigation of such overheads.

Additional future work we propose consists of expanding our proposed guidelines for
developers employing persistent memories. Such guidelines can include an evaluation of
the different fault granularities provided by devdax mode, what performance they deliver
to certain applications, and when developers should integrate such features into their
systems. Lastly, we propose investigating the scalability of large systems with 10s of TBs
of non-volatile memory, and how, or if current software- and hardware- infrastructure
could support such systems.
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10 Conclusion

The advent of new non-volatile memory technology will revolutionize today’s and tomor-
rows’ storage systems, offering large capacities of low latency persistent memory. In the
future, databases and servers can be running 10s of TBs of NVDIMMs, bringing benefits
such as instantly warm caches after reboots, and direct access to data without the page
cache. These new memory devices have shifted storage technology in a new direction,
triggering changes in the software stack on how we store and access data. They present
two main ways of using them, as a storage device, or as a memory. We provide an eval-
uation into the performance characteristics of this new software stack and evaluate the
performance of the different ways of using these devices.

RQ1. We ask the research question of how the software stack has changed with the DAX
extension, how its bypassing of page cache affects performance, and what performance
these new generation file systems deliver. We evaluate the performance of using non-
volatile memories as storage devices with DAX-enabled file systems, by benchmarking the
file systems. First, we benchmarked the performance of asynchronous I/O bandwidth for
DAX-enabled file systems, and compared it to conventional file systems. From this we
identified that DAX bypassing page cache improves performance by up to 32.85%. Next,
we measured performance of different file system operations to identify how DAX affects
such operations. Our findings show that DAX-enabled file systems bypassing the page
cache can improve performance for I/O operations by up to 67.96%, but operations not
involving I/O are not affected by DAX. Last, we measured the cost of page faults across the
file systems, and identified that ext4-DAX outperforms ext4 by 50.28%, due to avoiding
the page cache.

RQ2. We ask the research question of what design decisions were made during the
development of the PMDK software environment, how these decisions affect its perfor-
mance, and what overheads are coming from the libraries themselves. We evaluated the
performance of using non-volatile memories as memory, with the PMDK software infras-
tructure, by measuring the performance of its key-value store, and comparing its volatile-
to persistent- use. Our findings show that the average cost of persistence is 3x higher
than volatile use, making it important to carefully organize persistent and volatile data
structures. Additionally, we identified what the cost of persistence depends on, by mea-
suring the cost of issuing instructions to persist data. We show that the cost of persistence
can be amortized when persistent data structures are kept close together, and are flushed
together. Flushing together is most efficient for data sizes between 1KiB and 4KiB, as for
larger sizes performance gains become less significant. These results present two practices
to minimize software overheads and maximize performance.
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A Self-Reflection

Personal experience. Starting with this project, there was not much I knew about non-
volatile memories, and I had never done any real systems research before. My expectations
were, that I would do research for 2-3 months, write a thesis, present the results, and be
finished with the research. Once I actually started the research, it sparked real interest
for me. Being part of the early stages of new technology is very exciting, and with new
technology comes the possibility for a great deal of future research, which makes it even
more interesting. After this thesis, I will continue research in this field, alongside my
future studies.

Besides sparking interest in this field of technology, this project gave me important
lessons on research, and on larger projects. I personally, had little experience with projects
of this scale, spanning several months. I have learned the importance of planning projects
from the beginning, presenting and discussing findings with peers and supervisors, and
most importantly, managing time properly. Managing time properly is very difficult, but
setting a daily work schedule with goals and milestones, helps the progress and quality of
the research significantly.

Time spent on research. Starting a new project is always difficult. This is why, the
first 4-5 weeks of this research were spent on understanding this new technology and the
new software stack, setting up the environment for our experiments, and generating our
baseline. After this, experiments were typically done within a 1-2 week time span, one
after each other, in the same order as they are presented in this thesis. This includes
preparing experiments, either learning to use tools or coding the benchmark, running the
actual experiment, and evaluating the results. After the evaluation of results, sometimes
there was the need to further analyze certain behavior of performance, or to change the
benchmark. This usually added an extra week to the experiment. A large part of the
research was to bring all the collected data into this thesis, which was started alongside
the running of experiments.
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B Setup and Execution Commands

Commands for reproducing of benchmarks/results with included comments for important
flags and/or required adjustments. Most commands require root privileges.

Listing 1: Emulating PMEM. If Kernel already has required modules (LIBNVDIMM,
PMEM, DAX), skip to checking for available memory. Entire process is thouroughly
explained in [26].

1 # Preferably download latest Linux Kernel (or any Kernel above 4.2)

2 # Create config and add required modules (LIBNVDIMM , PMEM , DAX)

3 $ make nconfig

4 # Compile Kernel (modify flag to number of threads)

5 $ make -j 12

6 # By default modules are installed with debug symbols , unless symbols are

needed , add flag to minimize size of initrd

7 $ make INSTALL_MOD_STRIP =1 modules_install install

8

9 # Check available memory regions using one of two options

10 $ dmesg | grep BIOS -e820

11 # or

12 $ journalctl -k | grep BIOS -e820

13 # Reserve memory region by modifying the Kernel ’s command line arguments

14 # This will create 14GB of PMEM , starting at address 9G

15 memmap =14G!9G

Listing 2: Configuring PMEM Namespace. Emulated PMEM is by default already
configured to fsdax, but verify it or adjust to desired mode. Configuring using ndctl [3].

1 # Show available namespaces

2 $ ndctl list --human

3 # If mode is not ’fsdax ’, reconfigure

4 $ ndctl create -namespace -fe namespace0 .0 --mode=fsdax

Listing 3: Creating/mounting filesystems. Creating file system on emulated PMEM
and mounting file system. NOVA requires the needed modules, refer to Listing 5 for
compiling kernel for NOVA.

1 # Creating ext4 or xfs file system on PMEM

2 $ mkfs.ext4 /dev/pmem0

3 $ mkfs.xfs -m reflink =0 /dev/pmem0 -f

4 # Mounting file system to mount directory

5 $ mount -o dax /dev/pmem0 /mnt/mem

6 # NOVA file system does initializing on mounting (NOVA module required)

7 $ mount -t NOVA -o init /dev/pmem0 /mnt/mem

8 # Verify if mounted correctly

9 $ mount | grep /dev/pmem0

10 # Unmounting file system when finished benchmarking

11 $ umount /dev/pmem0

Listing 4: Emulate block device. Emulating block device in RAM, for file system
without DAX, and mounting file system.

1 # Creating a 14GiB block device in RAM (adjust to size needed)

2 $ modprobe brd rd_size =14680064 max_part =1 rd_nr =1

3 # Creating ext4 or xfs file system on the block device
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4 $ mkfs.ext4 /dev/ram0

5 $ mkfs.xfs /dev/ram0 -f

6 # Mounting file system to mount directory

7 $ mount /dev/ram /mnt/mem

8 # Verify if mounted correctly

9 $ mount | grep /dev/ram0

10 # Unmounting file system when finished benchmarking

11 $ umount /dev/ram0

Listing 5: NOVA. Compiling Linux Kernel 5.1.0 with NOVA modules, which are
required to use the NOVA file system.

1 # Clone Kernel 5.1.0 with NOVA modules

2 $ git clone https :// github.com/NVSL/linux -nova

3 # Create config file from current Kernel ’s config file and select all

required modules (LIBNVDIMM , PMEM , NOVA , DAX)

4 $ make nconfig

5 # Compile Kernel (modify flag to number of threads)

6 $ make -j 12

7 # If error of wrong gcc version appears

8 # install gcc -8

9 $ update -alternatives --install /usr/bin/gcc gcc /usr/bin/gcc -8 1

10 # By default modules are installed with debug symbols , unless symbols are

needed , add flag to minimize size of initrd

11 $ make INSTALL_MOD_STRIP =1 modules_install install

Listing 6: Baseline memory bandwidth. Measuring memory bandwidth using a
memory mapped file, and reading/writing from/to the memory. Available at
https://github.com/nicktehrany/membench. Since results have shown differenent
performance for random and sequential access, we profiled hardware performance using
perf [4] to identify the performance differences.

1 # adjust mode (read ,write ,randread ,randwrite), and copysize in workload

file

2 $ ./ membench -file=workloads/baseline.txt

3

4 # Profiling multiple hardware counters to identify differences in random vs

sequential access performance

5 $ perf stat -e cpu -cycles ,l2_rqsts.all_pf ,inst_retired.any ./ membench -file

=workloads/baseline.txt

Listing 7: Baseline memory latency. Baseline Benchmark to measure memory
latency. Available at https://github.com/nicktehrany/membench

1 # Uses default 300MiB memory buffer (specify e.g. -size =400M for larger

buffer) with 10 iterations

2 $ ./ membench -engine=mem_lat -iter =10

Listing 8: Filesystem I/O bandwidth. FIO Benchmark to measure bandwidth for
asynchronous I/O with a 1GiB file on mounted device.

1 # modify --rw (read ,write ,randread ,randwrite), --directory to mount dir

2 # set buffered =1 for tmpfs

3 $ fio --directory =/mnt/mem --name=fio_bench --ioengine=libaio --iodepth =8

--bs=4K --direct =0 --buffered =0 --size=1G --numjobs =1 --group_reporting

--time_based --runtime =60 --rw=read --norandommap =1
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Listing 9: File operation latency. For measuring latencies of file system operations we
are using filebench [34]. We use three different workloads. One to create 100,000 64KiB
files and write to the whole file. A second workload to overwrite data on the already
created files. A third workload for deleting all the files. Filebench presents results as
operations/second, from which we calculate the latency of one operation.

1 # Create a file called micro_create.f containing

2 set $dir=/mnt/mem # for tmpfs set to /dev/shm

3 set $nfiles =100000

4 set $filesize =0

5 set $nthreads =1

6 set $meandirwidth =10

7 set $appendsize =64k

8 set mode quit firstdone

9 define fileset name=bigfileset ,path=$dir ,size=$filesize ,dirwidth=

$meandirwidth ,entries=$nfiles ,prealloc =0

10 define process name=benchmark ,instances =1

11 {

12 thread name=benchmarkthread ,instances=$nthreads

13 {

14 flowop createfile name=createfile1 ,filesetname=bigfileset ,fd=1

15 flowop appendfile name=append ,filesetname=bigfileset ,fd=1,iosize=

$appendsize

16 flowop closefile name=closefile1 ,fd=1

17 }

18 }

19 run 30

20

21 # Create a file called micro_write.f containing

22 set $dir=/mnt/mem # for tmpfs set to /dev/shm

23 set $nfiles =100000

24 set $filesize =64k

25 set $nthreads =1

26 set $iosize =64k

27 set $meandirwidth =10

28 set mode quit firstdone

29 define fileset name=bigfileset ,path=$dir ,size=$filesize ,dirwidth=

$meandirwidth ,entries=$nfiles ,prealloc =100

30 define process name=benchmark ,instances =1

31 {

32 thread name=benchmarkthread ,instances=$nthreads

33 {

34 flowop openfile name=open ,filesetname=bigfileset ,fd=1

35 flowop writewholefile name=write ,fd=1, filesetname=bigfileset ,iosize=

$iosize

36 flowop closefile name=closefile1 ,fd=1

37 }

38 }

39 run 10

40

41 # Create a file called micro_delete.f containing

42 set $dir=/mnt/mem # for tmpfs set to /dev/shm

43 set $nfiles =100000

44 set $filesize =64k

45 set $nthreads =1

46 set $meandirwidth =10
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47 define fileset name=bigfileset ,path=$dir ,size=$filesize ,entries=$nfiles ,

dirwidth=$meandirwidth ,prealloc =100

48 define process name=deleter ,instances =1

49 {

50 thread name=deleter ,instances=$nthreads

51 {

52 flowop deletefile name=deleting ,filesetname=bigfileset ,iters=$nfiles

53 flowop finishoncount name=finish ,value=$nfiles

54 }

55 }

56 run 30

57

58 # Run each benchmark with respective file name

59 $ filebench -f micro_create.f

60 # If error code 3 shows up run

61 $ echo 0 > /proc/sys/kernel/randomize_va_space # as root

Listing 10: Filesystem mmap latency. Measuring the cost of mapping a file into
memory for he different filesystems, and tracing the call stack of calling mmap on each
filesystem.

1 # Store file with random data somewhere (adjust sizes however needed)

2 # /dev/urandom is very slow , quicker to get from it once , and copy that

file

3 $ dd if=/dev/urandom of=file bs=1G count =1 iflag=fullblock

4 # Copy file to mount location

5 $ dd if=file of=/mnt/mem/file bs=1G count =1 iflag=fullblock ,direct

6 # Run Benchmark on file (adjust flags if needed)

7 $ ./ membench -engine=mmap_lat -dir=/mnt/mem/file -map_pop =0 -map_shared =0

-iter =1000000

8

9 # Trace call stack of a single mmap call

10 $ trace -cmd record -p function_graph -l __x64_sys_mmap -F ./ membench

-engine=mmap_lat -dir=/mnt/mem/file -map_pop =0 -map_shared =0 -iter=1

11 # Redirect trace output to a file for reading or use tools such as

kernelshark

12 $ trace -cmd report &> temp.txt

Listing 11: Page fault latency. Benchmark for measuring latencies of page faults,
used for comparing cost of non DAX-enabled file systems to file systems without DAX.
Results will show added latency of bringing page into page cache vs. providing direct
access. Available at https://github.com/nicktehrany/membench. We additionally trace
page faults to examine the DAX call stack.

1 # Store file with random data somewhere (adjust sizes however needed)

2 # /dev/urandom is very slow , quicker to get from it once , and copy that

file

3 $ dd if=/dev/urandom of=file bs=1G count =4 iflag=fullblock

4 # Copy file to mount location

5 $ dd if=file of=/mnt/mem/file bs=1G count =4 iflag=fullblock ,direct

6 # Run Benchmark on file

7 $ ./ membench -engine=page_fault -dir=/mnt/mem/file

8

9 # Trace call stack of a page fault

10 $ trace -cmd record -p function_graph -l do_page_fault -F ./ membench -engine

=page_fault -dir=/mnt/mem/file
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11 # Redirect trace output to a file for reading or use tools such as

kernelshark

12 $ trace -cmd report &> temp.txt

Listing 12: Key-value store bandwidth. Measuring the bandwidth of PMDK’s key-
value store using pmemkv bench [19]. We are measuing bandiwdth for different engines
running the key-value store (volatile and persistent), and different data sizes.

1 # Add flag to cmake to build release version with debug symbols for

profiling

2 $ cmake .. -DCMAKE_BUILD_TYPE=RELWITHDEBINFO

3 # Running benchmark (adjust engine ,size , and all other flags as needed ,

some engines require a file name in --db flag)

4 $ ./ pmemkv_bench --db=/mnt/mem --db_size_in_gb =9 --engine=vcmap --

benchmarks=fillrandom ,readrandom ,deleterandom --num =45000 --reads

=100000 --value_size =4096

5

6 # Profile pmemkv debug symbols

7 # Add libc debug version to perf buildid -cache , for libc debug symbols

(path/version might differ)

8 $ perf buildid -cache -u /usr/lib/debug/lib/x86_64 -linux -gnu/libc -2.31. so

9 # Run perf profiling with a 5 second delay

10 $ perf record -D5000 ./ pmemkv_bench --db=/mnt/mem --db_size_in_gb =9 --

engine=vcmap --benchmarks=fillrandom ,readrandom ,deleterandom --num

=45000 --reads =100000 --value_size =4096

11 # Report the results in several ways

12 $ perf report --header

13 # or annotate the assembly of a function (adjust the function name)

14 $ perf annotate --symbol=pmem::kv::vcmap ::get

Listing 13: Cost of achieving persistence. Benchmarking the latency of flushing a
cache line with the PMDK, using the benchmark provided by it. We are measuing flushing
of differently sized data to compare the cost.

1 # Create a file called pmembench_flush.cfg and safe the following in it

(adjust numbers for flags as needed)

2 [global]

3 group = pmem

4 file = /mnt/mem/testfile.flush

5 ops -per -thread = 10000

6 repeats = 100

7 threads = 1

8 data -size = 4096

9 mode = rand

10 no-warmup = true

11 [flush_persist]

12 bench = pmem_flush

13 operation = persist

14

15 # Run the benchmark

16 $ ./ pmembench pmembench_flush.cfg flush_persist
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C Plot: Baseline Bandwidth Increased Hardware Prefetch-
ing on Sequential Access

Figure 16: Baseline bandwidth benchmark, hardware prefetching per CPU cycle for the
different access types. Shows increased prefetching for sequential access, corresponding to
the increased bandwidth in Figure 7.

D Plot: PMDK Key-Value Store Hardware Prefetching Drop
on Writing

Figure 17: Prefetching of two of the pmemkv engines for sizes from 4KiB to 64KiB. Drop
in prefetching explains the sudden drop at 16KiB data size, of writing bandwidth for
volatile engines in Figure 12.
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