
Vrije Universiteit Amsterdam

Bachelor Project

Analysing the Kafka Producer and
Benchmarking its Performance.

Author: De Vos Meaker (2617529)

1st supervisor: dr. ir. Animesh Trivedi
2nd reader: ir. Jesse Donkervliet

A thesis submitted in fulfilment of the requirements for
the VU Bachelor of Science degree in Computer Science

August 14, 2020

Abstract

To determine and improve the performance of distributed systems like Apache Kafka is a
complex and necessary undertaking. Trends show that data generation is increasing at an
exponential rate, and a large portion of this is becoming real-time data. With mainstream
adoption, Apache Kafka is the de facto solution for real-time data streaming problems.
Here, real-time data refers to data that is sent or processed as it arrives, such as a feed of
weather or transport data. This study aims to understand Kafka and determine how to
improve its performance. Extending on previous work, it asks: What is the performance of
the Kafka Producer and can we explain and quantify its behaviour? The Kafka Producer
is the interface used to write data to Kafka.

Empirical measurements of a running computer system were made to answer this question.
The Producer’s “out-of-box” performance is set as the baseline, thereafter incremental con-
figuration changes are made, and their effects on performance are measured in isolation.
The source code of the experiments is at this Github repository [12]. Analysis of the mea-
surements showed unexpected behaviour which is caused by the batch.size configuration.
Findings indicate that the batching process is central to the Kafka Producer and therefore
it is recommended to focus on improving the batch.size configuration due to its influence
on this process. Further investigation is required to determine the overall behaviour and
performance of the Kafka system and generalise results in production environments.

2

Contents

1 Introduction 5
1.1 Context . 5
1.2 Problem Identification . 5
1.3 Objective of the Research . 6
1.4 Contribution of This Paper . 6
1.5 Approach and Methods . 6
1.6 Outline of Paper . 6

2 Research Questions 8

3 Background: A Quick Dive Into Kafka 10
3.1 What Is Kafka? . 10
3.2 Design Overview . 10
3.3 A Deep Dive Into the Kafka Producer’s Send() Method: 11
3.4 Important Kafka Configurations . 13
3.5 Kafka Use Cases . 14
3.6 Key Terms . 14

3.6.1 Related to Kafka: . 14
3.6.2 Related to Benchmarking . 15

4 Experimental Setup and Design 16
4.1 Outline . 16
4.2 Environment . 16
4.3 Metrics Used and Ensuring Their Correctness 16

4.3.1 Internal Measurements: . 17
4.3.2 Check Measurements: . 17
4.3.3 Error Between Measurements: . 17

5 Micro Benchmarking The Kafka Producer 18
5.1 Default Configuration Benchmark . 18
5.2 Incremental Changes to Default Configuration 20

5.2.1 Default + acks=0 Benchmark . 20
5.2.2 Default + batch.size + linger.ms Benchmark 21
5.2.3 Default + max.in.flight.requests.per.connection Bench-

mark . 25

6 Maximising Performance 27
6.1 Maximising Throughput . 27
6.2 Minimising Latency . 28

7 Findings 29
7.1 Discussion of Results . 29
7.2 Relevant Related Work And Comparing Results With Own Findings 30
7.3 Experience . 31
7.4 Limitations . 31

3

7.5 Future Work . 32

8 Conclusion 33

A Performance Comparison: acks=0 vs Default 37

B Performance Comparison: Range of batch.size vs Default 37

C Performance Comparison: Range of batch.size + linger.ms=10 vs
Default 38

D Performance Comparison: max.in.flight.connections.per
.request vs Default 39

4

1 Introduction

1.1 Context

At the time of writing more than 2.5 quintillion (1018) bytes of data are generated per
day [3]. This data generation will only increase due to more than half of the world’s pop-
ulation, which still has to connect to the internet [1] coupled with the trend of ubiquitous
technology [15]. Furthermore, by 2025 almost 30% of this generated data will be real-time
data, up from 15% in 2018 [9]. Real-time data refers to information that is immediately
delivered after it becomes available and usually seen as a real-time feed of events due to
its timeliness. Examples include weather data or financial trading data. This continuous
volume of events, or data streams, poses many challenges to organisations. One of which
is organising and moving the data between the data sources, which generates the data,
and data targets, which consumes the data. A challenge which can become very complex,
as illustrated in Figure 1:

Source Source Source Source

Target TargetTargetTarget

(a) The complexity of the problem.

\

Source Source Source Source

Target TargetTargetTarget

Apache Kafka

(b) The simplified solution Kafka provides.

Figure 1: The problem of connecting data sources with data targets and the solution Kafka
provides [25].

Apache Kafka is a popular real-time event processing platform to solve this problem.
Published as an open-source project [5] in 2011, it has since grown to become the second
most visited and downloaded Apache Project [8]. It is being used by over 60 Fortune 100
organisations [17]. These include Uber [13], Netflix [27] and LinkedIn [18], who are each
using it to send trillions of messages per day. Furthermore, it is deployed in a wide range
of domains ranging from finance [23] to online games [24].

Several trends are driving the adoption of Kafka and other platforms in the real-time
data streaming and processing space. A market that is expected to grow from USD 7.08
billion in 2019 USD to 38.53 billion by 2025 [19]. Big Data Analysis and Applications,
Microservices and Artificial Intelligence are some of these trends. Therefore the need for
Kafka will increase, both in scale and variety and it will still be held to strict performance
requirements that real-time data streaming demands.

1.2 Problem Identification

Thus Kafka has mainstream adoption and serves in a wide range of domains. The problem
is, therefore, to determine and improve Kafka’s performance. Solving this will improve the

5

quality of services deploying Kafka and save various resources, namely time, computing
and energy costs. Due to the complexity involved with measuring a distributed system
such as Kafka, this study will focus on the Kafka Producer, which is the interface used
to write data to Kafka. It is a very influential component in the Kafka system and can
be isolated to a high degree to be adequately investigated. Furthermore, the Producer is
involved with many intricate processes, such as ensuring the durability and synchronisation
of the data written to Kafka. Therefore, its performance is critical to the Kafka system
as a whole.

1.3 Objective of the Research

Therefore this study aims to understand the Kafka Producer’s implementation and de-
termine its default “out-of-the-box” performance. Additionally, analyse the influence of
various configurations on its performance. These configurations are settings that can be
changed to improve Kafka’s performance. Lastly, we determine to what extent it can
utilise the available networking and computing power.

1.4 Contribution of This Paper

The contributions of this thesis are:

(i) Provide an analysis of the Kafka Producer’s internals.

(ii) Thorough performance evaluation and analysis of influential Kafka Producer config-
urations.

(iii) Confirm if the Kafka Producer behaves as expected under different workloads.

(iv) Indicate the performance limits of the Kafka Producer on the available hardware.

1.5 Approach and Methods

Empirical measurements of a running computer system were made to reach the goal of
this study [21]. The performance of the Kafka Producer was measured on a local machine,
see Section 4.2 for the environment. The metrics measured to determine performance are
throughput and latency, which is defined in Section 5.3. The correctness of these metrics
is also ensured by having multiple measurements for the same metrics. The conducted
experiments were systematically guided by the research questions. Which begins with
Kafka’s default performance to establish its baseline and thereafter incrementally changing
and testing configurations in isolation to quantify their influence on performance.

1.6 Outline of Paper

First Section 2 names and comprehensively motivates the research questions. Next, Section
3 explains and analyses all the concepts and processes of Kafka and the Kafka Producer
necessary for the scope of this study is. Section 4 covers the setup and design of the
experiments and explains how the correctness of the measurements is ensured. Section 5
deals with the benchmarks performed and accompanied each with a thorough analysis of

6

the results, and the best results are summarised in Section 6. Section 7 provides more in-
depth analysis of the results, compares the findings with that of previous work performed
and propose ideas for potential future work. Lastly, Section 8 contains the conclusion.

7

2 Research Questions

The research question that is being addressed in this thesis is: What is the performance
of the Kafka Producer and can we explain and quantify its behaviour?

The following tangible questions and their motivations will serve to answer this central
question:

(RQ1) Can we understand the Kafka Producer at a level of depth necessary
to explain and quantify its behaviour?
In order to analyse the performance of the Kafka, it is necessary to understand it at a
significant level of depth. Which includes acknowledging its initial purpose as a solution for
real-time ‘website activity tracking data’ streaming [7] and identifying the design decisions
taken to address this problem. Furthermore, exploring more use cases and the performance
requirements that they demand. The central method in the Kafka Producer interface is
the send() method, which performs many functions that are abstracted away from the
developer and it is necessary to identify and evaluate the underlying processes that occur
when it is called. This knowledge will prohibit the developer from treating the Kafka
Producer as a black box and enable him or her to make more educated decisions when
tweaking configurations to improve the performance of their Kafka Producer and diagnose
unexpected behaviour.

(RQ2) How does the Kafka Producer perform with its default configurations?
The Kafka Producer alone has more than 70 configurations, and it also interacts with
other components in the Kafka system(see Section 3.1). The other components add many
additional configurations that need to be considered. Due to many of the configurations
being dependent on each other, they cannot necessarily be evaluated in isolation, but
their relationships must also be acknowledged. These configurations make Kafka highly
adaptable to many use cases [7]. Thus the most appropriate approach to generalising
Kafka is to run it on its default configurations, assess its performance on the default
configurations and treat this as its baseline performance.

(RQ3) What are the influences of the individual configurations on the perfor-
mance of the Kafka Producer?
The previous paragraph highlights the sheer number of configurations that can be config-
ured, which creates a problem of high complexity. Although daunting, it is necessary to
understand the influence of configuration on the Producer’s performance. Not knowing the
influence will lead to little more than random guessing. This testing must be performed
systematically, incrementally changing one configuration at a time at different intervals
while measuring its performance. The results must also continuously be compared against
the baseline to guide further experiments.

(RQ4) What are the minimal latency and maximal throughput of the Kafka
producer on the provided hardware?
What is the minimum latency that can be achieved on the available hardware, not consid-
ering the trade-offs that will result from this decision? To elaborate, configuring the Pro-
ducer for minimal latency will be at the expense of many other metrics, namely throughput
and durability. Although it will be rare to configure a Kafka Producer to serve such an

8

extreme use case in production, it is good to know where its limits are. Knowing these
limits will provide points of reference of where a configuration’s performance lies on the
possible spectrum. Moreover, they will aid in assessing if the performance of Kafka Pro-
ducer is sufficient given the available hardware and necessary trade-offs demanded by the
use case.

9

Broker

TopicA / Partition1

0 1 2 3 4 5 6 7

New_Client / Partition0

0 1 2 3 4 5

ConsumerProducer write read

Figure 2: Kafka Overview

3 Background: A Quick Dive Into Kafka

3.1 What Is Kafka?

Kafka is a distributed message streaming solution. The project began in LinkedIn as a
solution to the need for real-time event processing. An ‘event’ can, in the case of LinkedIn,
be a user connecting to another user. This event needs to trigger several processes such as
the updating of the users’ network, sending notifications and updating friend recommen-
dation systems. The process of connecting this data source event to all of the individual
data targets creates complexity. Each integration has a list of complexities such as data
format, protocol, data scheme and handling increased load. Kafka simplifies all this in-
tegration with a central commit log. This problem and solution are illustrated in Figure
1.

3.2 Design Overview

The main design decision of Kafka is the central commit log, a simple append-only data
structure containing the data written to Kafka. This log is persistent, immutable and
ordered. Another critical decision was to enable Kafka to scale horizontally to serve
large scale applications. To accomplish this, it is necessary to build distributed platform
concepts such as partitioning, replication and fault-tolerance into its design [11]. Thus, a
’topic’, which is an abstraction of the commit log, can be partitioned to scale and replicated
to increase fault-tolerance [10]. A topic can be compared to a table in a relational database.
Here it will contain a stream of events that are relevant to it.

The core components of the Kafka system [11] are:

(i) the Producer, which is the interface used to interact with the Broker and writes
records to the topic via high-level API operations.

(ii) the Broker that contains and maintains the topics and

10

(iii) the Consumer, which is the interface used to interact with the Broker and read
records from the topic via high-level API operations.

3.3 A Deep Dive Into the Kafka Producer’s Send() Method:

The purpose of this Section is to partially answer RQ1. The send() method is the method
in the Kafka Producer API used to write records to and interact with the Kafka cluster.
To better understand Kafka’s behaviour and its performance, it is necessary to know what
happens internally when send() is called. Send() is a member method of a KafkaProducer
class, it requires a ProducerRecord as a parameter and to create one, a topic and data
are required. Further optional metadata can be added, but these will not be discussed for
brevity. The series of steps that occurs after the send() method is called asynchronously
are illustrated in Figure 3 and are as follows:

1. The record is sent as a parameter of the send() method, by the application.

2. The record value will be serialised in the desired format by the serialiser.

3. The record will then be assigned a partition number that belongs to the record’s
topic. This partition number determines the record’s destination and is assigned by
the partitioner in a round-robin fashion.

4. The record will be compressed and batched together with other records that are
designated for the same topic and partition combination.

5. The batches destined for the same topic partition are queued together in the record
accumulator.

6. The sender thread polls the queues for new batches.

7. The batches available for sending are sent to the sender thread.

8. The sender thread groups batches together that are ready to be sent and destined
to the same leader broker. The records are ready to be sent when batch.size
has been reached or linger.ms has expired. These are two configurations that
determine the amount of batching performed and is discussed in Section 3.4. The
leader broker contains the topic partition and receives new data destined for this
partition from the producer. It also distributes it to other brokers, called follower
brokers, who contains the replicas of the topic partitions and keeps this in-sync with
the leader’s original.

9. The sender thread sends the grouped batches to the leader broker.

10. The leader broker adds the batches to the relevant topic partitions, by writing it to
its relevant local logs.

11. The follower broker/s sends a fetch request.

12. The leader broker sends the group of batches as one to all the follower brokers that
contains a replica of the topic partition.

13. The follower broker/s adds the batches to the relevant topic partitions, by writing
it to its relevant local logs.

11

Sequence Diagram for the Asynchronous send() Method

Application Producer Sender Thread TP Leader Broker TP Follower Broker/s

1. send(record)

batch.size
linger.ms

2-5. prepare and
 queue record

6. poll for batches

7. send available
 batches

8. group batches

9. send produce
request

max.in.flight.
requests.per.
connection

10. adds batches to
 topics

11. fetch request

12. sends batches

13. adds batches
 to topics

14. fetch request

15. update high
 water mark

16. ack +
 callback list

17. onCompletion(recordMetadata)

acks=0

acks=1

acks=-1

Figure 3: Kafka Producer Overview [5, 22].

12

Table 1: acks Configuration Performance Trade-Offs [22]

acks Throughput Latency Durability

0 high low no guarantee

1 medium medium leader

all low high in-sync replica

14. The follower broker/s sends another fetch request for a batch with an offset higher
than the previously sent batch, which confirms that these previous batches are suc-
cessfully written to its local partition.

15. The leader broker updates the high watermarks for each partition. High watermarks
are the offsets which have been successfully replicated on the follower brokers.

16. The acknowledgement of the original produce request and list of callbacks containing
metadata is sent from the leader broker to the sender thread.

17. The application receives a confirmation that the record has been either successfully
or unsuccessfully produced. Metadata also accompanies this confirmation which is
accessed through the onCompletion() method of the CallBack class.

This analysis helps to understand the Producer and identify the configurations which have
a significant influence on its processes and subsequently its performance. The next section
below discusses these configurations in detail.

3.4 Important Kafka Configurations

The important configurations [6] identified in the analysis and examined in the benchmarks
are provided below with their default values, units and short descriptions.

acks : 1
Depending on the acknowledgement configuration the record will be considered successfully
sent when each batch in the group has been:

• acks=0 : sent to the leader broker, with no acknowledgement from the broker.

• acks=1 : sent and written to the local partition of the leader broker and receives
an acknowledgement.

• acks=-1 : written to the local partition of the leader broker and each follower broker
containing a replica of the partition. The leader broker confirms that the replicas
are in-sync, of which an acknowledgement is received [6].

Table 1 illustrates the rule of thumb trade-offs involved when selecting an acknowledge-
ment configuration which can be changed to suit the intended use case.

batch.size : 16384 bytes
Determines the maximum batch size in bytes. Once this limit is reached the batch will be
made available to the sender thread for sending to the broker. This configuration can be
considered as batching based on size.

13

Table 2: Configuration Default Value Summary

Configuration Default Value Unit

acks 1 N\A
batch.size 16384 bytes

linger.ms 0 ms

max.in.flight. 5 N\A

linger.ms : 0 ms
Determines the maximum amount of time for a batch to fill up in milliseconds. Once the
time has expired the batch will be made available to the sender thread for sending to the
broker. This configuration can be considered as batching based on time. Note: The batch
will be considered ready once either batch.size or linger.ms is reached.

max.in.flight.requests.per.connection : 5
The maximum number of produce requests that can have outstanding acknowledgements
before the sending of more produce requests are halted. This configuration is only relevant
when acks=1 or acks=-1.

3.5 Kafka Use Cases

The original problem Kafka addressed was website activity tracking which demanded high
throughput in real-time [7]. Since then, addressing this performance requirement is cen-
tral to its design. Today, Kafka is serving many purposes beyond its initial problem, for
example, as a traditional message broker. This function requires low end-to-end latency
and durability guarantees for which Kafka can be configured to serve. Kafka also has
comparatively high throughput to alternatives such as ActiveMQ [4] and RabbitMQ [26]
and is suitable for large scale applications due to built-in features that welcome horizontal
scaling such as partitioning, replication and fault-tolerance [11]. Another use case is col-
lecting the metrics of distributed applications into a centralised feed. Further applications
are log aggregation, stream processing and event sourcing.

3.6 Key Terms

3.6.1 Related to Kafka:

• Record: the data that is written to a Kafka topic.

• Topic: the stream of data of a specific type of event and stored in the format of a
commit log. Producers write to the topics, and consumers read from it. It can be
compared to a table in a database.

• Batch: a collection of records destined to the same topic/partition combination.

• Produce request: the request sent by the Producer to the Broker to write a group
of batches to the specified topics.

• Offset: an index of a record in a topic’s partition.

14

• Broker: a node in a Kafka cluster, which contains and maintains the topic partitions.

• Cluster: one or more Kafka Brokers.

• Replication: duplicating partitions among brokers to prevent loss of data in case of
failure.

• Leader Broker: leader of one or more topic partitions. The broker contains the topic
partition and receives new data destined for this partition from the producer. It also
distributes it to other brokers, called followers, who contains the replicas.

• Follower Broker: contains a replica of a topic partition and keeps this in-sync with
the leader’s original.

• High watermark: the last log offset of which the follower broker is up to date with.

3.6.2 Related to Benchmarking

• Internal measurement: Kafka’s built-in measurement of a metric.

• Check measurement: self-made measurement to validate Kafka’s measurement of
the same metric.

• Throughput: the amount of data units that are sent from the producer to the broker
per second.

• Latency: the amount of time it takes from when a message is sent via the producer
interface until an acknowledgement is received from the broker by the producer. This
definition differs according to acks configuration setting.

• Batch-size-avg: the average size of a batch sent from the Producer to the Broker.
This is an internal metric provided by Kafka.

• Records-per-request-avg: the average amount of records sent by the Producer to the
Broker per produce request.

15

Table 3: Environment Specifications

Component
Local Machine:
Dell XPS 13 7390

CPU Intel(R) Core(TM) i7-10510U

Memory 16GB LPDDR3, 2133 MHz RAM

Storage M.2-PCIe-NVMe-SSD, 512GB

Network 10 Gbit/s

Operating System Ubuntu 18.04 LTS

Kafka 2.12-2.4.1

Java JDK 1.8

4 Experimental Setup and Design

4.1 Outline

In short, the approach is empirical measurements of a running computer system. Kafka
is deployed on a local machine, and several metrics are measured while it runs for a
fixed period per benchmark. The environment and metrics are specified and discussed
in sections 4.2 and 4.3 below. The total amount of time per benchmark is 6 minutes, of
which the first 1 minute accounts for the warm-up period and the remaining 5 minutes
are used to determine the performance. The motivation for the duration is to account for
the variation present in the measurements; this variation is especially evident for some
configurations [16] and might be caused by garbage collection pauses [28].

To prevent the experiments from being a ‘hacking’ exercise, they are carefully planned
and structured to answer the research questions in a systematic manner. Therefore the
motivations for the specific experiments reflect the motivations of the research questions
which can be found in Section 2. This systematic approach of starting with the default
configuration to establish the baseline performance and after that changing and testing the
influence of individual configurations in isolated experiments is, therefore, an appropriate
approach to measuring the performance of a complex distributed system.

4.2 Environment

The benchmarks are performed on a Dell XPS 13 7390 [2] and a list of the hardware
and software used to perform the benchmarks are listed in Table 3. It is good to note
that the hardware that the experiments are deployed on is not representative of a typical
production environment. Although it is not representative, many of the results from the
benchmarks can still be generalised. These are discussed in Section 7.1.

4.3 Metrics Used and Ensuring Their Correctness

During these benchmarks, two separate measurements are made of the same metric.
Kafka’s internal metrics are accessed and recorded, and concurrent measurements of the
same metrics are made to verify that Kafka’s internal measurements are indeed correct.

16

Table 4: Error Between Internal vs Check Measurements

Record Size 101B 105B

Metric
Throughput
(MB/s)

Latency
(Ms)

Throughput
(MB/s)

Latency
(Ms)

Internal measurement 2.87 0.535 336.44 94.841

Check measurement 2.86 0.531 336.27 96.088

error (%) 0.35% 0.75% 0.05% -1.30%

Here we refer to the Kafka’s measurement as ‘internal’ and the self-made measurements
as ‘check’. The source code for the program can be found on this repository [12].

4.3.1 Internal Measurements:

Below are the names and descriptions of the built-in metrics that are used and provided
by the Kafka Producer:

Measuring Throughput:
’record-send-rate’: The number of records sent per second, which is multiplied with the
record size to calculate the data rate.

Measuring Latency:
’record-queue-time-avg’: The average amount of time in milliseconds a record waits inside
Kafka before it has been sent to the broker.
’request-latency-avg’: The average amount of time in milliseconds that it takes for the
broker to serve a request of the producer.
Note: the two latency measurements are summed to calculate the total latency.

4.3.2 Check Measurements:

Measuring throughput: Counting the number of records sent with a simple counter
and multiplying it with the record size to calculate the throughput.

Measuring Latency: The time duration from sending the record until when the con-
firmation is received from the broker is calculated and recorded. The HdrHistogram li-
brary [14] is used for logging these recorded time durations. The library allows for high
dynamic range histograms and simplifies the recording and calculation of the measure-
ments.

4.3.3 Error Between Measurements:

To confirm that the measurements are correct, they are collected and compared during
default configuration benchmark of Section 5.1. They are determined as accurate based
on the fact that the measurements have an error that under is 3%. Table 4 compares
the internal and check measurements when a record of 101B and 105B are sent from the
Producer to Kafka. It also lists the error between the two measurements as a percentage.
This error is monitored during all of the performed experiments.

17

5 Micro Benchmarking The Kafka Producer

Key findings:

• Unexpected behaviour when running at the default configuration. In short the
throughput worsened and latency improved when the record size increased from
103 B to 104B. Analysis indicates that it is likely caused by batch.size, which is
not close to optimal at its default value for these two record sizes (Section 5.1).

• Results indicate significant gains in latency performance for record sizes 101B and
102B when acks is set to 0 instead of the default 1 (Section 5.2.1).

• The best performing batch.size for throughput is different for each record size
and a good rule of thumb is a record size : batch.size ratio of at least 1:100.
Increasing batch.size from the default can also be beneficial for latency (Section
5.2.2.1).

• Changing linger.ms in conjunction with batch.size indicates further perfor-
mance improvements for certain record sizes. Increasing linger.ms from the de-
fault 0 to 10 improves upon the throughout of all record sizes and surprisingly the
latency of most record sizes (Section 5.2.2.2).

• Results indicate that by changing the configuration
max.in.flight.requests.per.connection from its default of 5 to 1 and 10
does not deliver improvement except for the latency of records of size 10B and 102B
(Section 5.2.3).

5.1 Default Configuration Benchmark

What: This benchmark explores the performance of the Kafka Producer under its default
configurations. Therefore the experiment will be confined to the limitations of Kafka’s
default configurations [6].

Why: To answer RQ2, measure the Kafka Producer’s “out-of-the-box” performance on
the local system and establish this as the baseline.

Results: Figure 4(a) is the mean throughput, and Figure 4(b) is the mean latency for
a range of record sizes. On the y-axis of Figure 4(a) is the mean throughput measured
in megabytes per second and on the y-axis of Figure 4(b) is the mean latency measured
in milliseconds, both in log scale. For both, the x-axis is the corresponding record size in
bytes. The higher the throughput and the lower the latency, the better the performance.

Throughput: A surprising result from this benchmark is that the throughput of record
size 104B is lower than 103B, which bucks the trend of a larger record size having a higher
throughput. A possible reason for this is due to the batching process by the Producer.
Evidence of this reasoning can be found when looking at the metric “batch-size-avg”
and “records-per-request-avg” presented in Table 5. It shows that by having the default
batch.size of 16384 bytes, a record size of 103B on average batches 15.99 records to-
gether and send it in one request as opposed to 1 record per batch for record size 104B.
Thus an average of 16204.96 bytes are sent per request for record size 103B versus 10072.0

18

10 10^2 10^3 10^4 10^5
Record Size in Bytes

101

102

Th
ro

ug
hp

ut
 in

 M
B/

s (
lo

g
sc

al
e)

Mean Throughput At Various Record Sizes
mean_throughput_default

(a) Default throughput.

10 10^2 10^3 10^4 10^5
Record Size in Bytes

100

101

102

La
te

nc
y

in
 M

illi
se

co
nd

s (
lo

g
sc

al
e)

Mean Latency At Various Record Sizes

mean_latency_default

(b) Default latency.

Figure 4: Default configuration performance.

Table 5: Comparing Batch Size and Records Per Request

record size (bytes) 103B 104B

batch-size-avg (bytes) 16204.96 10072.0

records-per-request-avg (bytes) 15.99 1.0

bytes for record size 104B.

Latency: An unexpected result is a great increase in mean latency from record size 102B
at 0.582 to 103B at 261.591. Another unexpected result is the decrease in latency from
record size 103B to 104B and again from 104B at 192.018 to 105B at 94.841. This behaviour
of latency decreasing when the record size is increasing is not intuitive, but a reason can
be determined when taking into account the throughput analysis above, which proves that
there is batching performed with record size 103B and minimal batching performed with
record size 104B. Performing this batching takes time which will add delay and contribute
to the total latency. This delay is evident in the data in Table 6 where the record-queue-
time-avg of record size 103B is at 265.157ms, which is significantly higher than record size
104B is at 191.592ms. Note that this table does not contain the average values for the
entire benchmark, but the average values at a snapshot during the benchmark.

Summary: Unexpected behaviour was observed, which is a drop off in both throughput
and latency from record size 103B to 104B. When inspecting more granular metrics such as
batch-size-avg and records-per-request-avg it is apparent that this is due to the batching
of the Kafka producer. Thus batch.size seems to be a very influential configuration

19

Table 6: Comparing Queue Time Latency & Request Latency

record size (bytes) 103B 104B

record-queue-time-avg (ms) 265.157 191.592

request-latency-avg (ms) 0.638 0.462

10 10^2 10^3 10^4 10^5
Record Size in Bytes

101

102

Th
ro

ug
hp

ut
 in

 M
B/

s

Mean Throughput At Various Record Sizes
mean_throughput_acks=1
mean_throughput_acks=0

(a) Throughput performance.

10 10^2 10^3 10^4 10^5
Record Size in Bytes

10 1

100

101

102

La
te

nc
y

in
 M

illi
se

co
nd

s (
lo

g
sc

al
e)

Mean Latency At Various Record Sizes

mean_latency_acks=0
mean_latency_acks=1

(b) Latency performance.

Figure 5: acks=1(default) vs acks=0 performance comparison. Note: the colours of the
legend are different between the two figures.

concerning the performance of the Producer and needs to be properly investigated. See
appendix A Table 14 for raw values.

5.2 Incremental Changes to Default Configuration

5.2.1 Default + acks=0 Benchmark

What: This benchmark is identical to 5.1 except for the acknowledgement configuration
which is set to acks=0 instead of acks=1.

Why: To answer RQ3 and measure the difference in performance with the incremental
change to an influential configuration acks.

Results: Figure 5(a) is the mean throughput, and Figure 5(b) is the mean latency at
different acks configurations for a range of record sizes. On the y-axis of Figure 5(a) is
the mean throughput measured in megabytes per second and on the y-axis of Figure 5(b)
is the mean latency measured in milliseconds, both are log scaled. For both figures, the
x-axis is the corresponding record size in bytes. The higher the throughput and the lower
the latency, the better the performance. The raw values and percentage difference from
the baseline can be found in appendix A.

20

Table 7: Latency Breakdown At Different Record Sizes and acks Combination

Record size and acks setting
101B &
acks=1

101B &
acks=0

105B &
acks=1

105B &
acks=0

record-queue-time-avg 0.09 0.073 94.014 88.249

request-latency-avg 0.455 0 1.418 0

total latency 0.545 0.073 95.432 88.249

request-latency / total latency % 83.49% 0.00% 1.49% 0.00%

Throughput: Throughput increases from the baseline for all record sizes except 102B.
This observation of the throughput decreasing is counter-intuitive, because the overhead
that is incurred when waiting for an acknowledgement from the server is removed when
acks=0. Thus removing the overhead should intuitively lead to higher throughput.

Latency: The decrease in latency was greater for smaller record sizes than for the larger
record sizes: -85.98% for 101B compared to -7.93% for 105B. This is due to the sender
thread not waiting upon the request confirmation from the broker when acks=0. Out of
the total latency the request latency is proportionally much larger for a 101B record than a
105B record, 83.49% vs 1.49% respectively, therefore when this request latency is removed
the 101B’s total latency is reduced by -85.98% vs -7.93% for 105B. This observation is
illustrated in Table 7 below and Table 16 in appendix A.

Note: Table 7 does not contain the average values for the entire benchmark, but the
average values at a snapshot during the benchmark. Also, in this benchmark, there is a
significant difference between the internal measurement and the check measurement for
latency. This is due to onCompletion() method behaving differently when acks=0. Thus
only the internal measurements have been used to evaluate this benchmark.

Summary: The shape of the lines closely mirrors the baseline and as expected the
throughput is higher and latency lower for acks=0 than the default acks=1. For record
sizes 101B and 102B there are significant increases in latency performance, decreasing la-
tency by -85.98% and -69.93% respectively. For all record sizes the increase in throughput
performance is relatively small considering the durability sacrificed when acks=0, which
provides no guarantee that the record will be written to the desired topic.

5.2.2 Default + batch.size + linger.ms Benchmark

In this section, two benchmarks are performed. First, the batch.size changes to a
range of values, while keeping all configurations at their default values. Thereafter the
same benchmark is repeated, but linger.ms is incrementally changed with each iteration
of the benchmark. This is to determine linger.ms’s and batch.size’s combined
influence on performance.

5.2.2.1 linger.ms=0 (default)

What: This benchmark measures the default configurations at different values for batch.size
and record sizes.

21

10 10^2 10^3 10^4 10^5 10^6
Batch Size in Bytes

100

101

102

Th
ro

ug
hp

ut
 in

 M
B/

s (
lo

g
sc

al
e)

Throughput At Various Record and Batch Sizes
10^4B
10^3B
10^2B
10^1B
10^5B

(a) Throughput performance.

10 10^2 10^3 10^4 10^5 10^6
Batch Size in Bytes

100

101

102

103

104

Ti
m

e
In

 M
illi

se
co

nd
s (

lo
g

sc
al

e)

Mean Latency At Various Record and Batch Sizes
10^4B
10^3B
10^2B
10^1B
10^5B

(b) Latency performance.

Figure 6: batch.size configuration performance comparison. Note: the colours of the
legend are not ordered.

Why: To answer RQ3 and determine the influence of batch.size on the performance
of the Kafka Producer.

Results: Figure 6(a) is the mean throughput and Figure 6(b) is the mean latency for
a range of record and batch sizes. On the y-axis of Figure 6(a), the mean through-
put is measured in megabytes per second and on the y-axis of Figure 6(b) the mean
latency is measured in milliseconds, both in log scale. On the x-axis is the corresponding
batch.size in bytes. Each coloured line represents a different record size in bytes and
its corresponding throughput or latency given a specific batch.size.

Throughput: For the record sizes 101B, 102B and 103B selecting a batch.size of two
orders of magnitude larger than itself proves to provide the greatest increase in throughput.
Choosing a batch.size that is two orders of magnitude larger than the record size seems
to provide diminishing returns for record size 101B, 102B and 103B. Further analysis
is required to determine if the marginal increase in throughput is worth the additional
resources such as memory which is incurred when batch.size is further increased by
these orders of magnitude. Also, it is good to notice that the unexpected behaviour that
occurred during the default benchmark in 5.1, which was that the record size 104B has a
smaller throughput than record size of 103B did not occur in this benchmark. This point
further substantiates the argument made in 5.1, which reasons that batch.size caused
it.

Latency: The latency metric is displaying similar behaviour for record sizes 101B, 102B
and 103B, in that, the greatest decrease in latency is at a batch.size that is two orders
of magnitude larger than itself. From there onwards, the latency mostly flattens out with

22

Table 8: Difference Between the Mean Throughput Performance of Various Record
Size/batch.size Combinations vs Baseline. linger.ms=0 (expressed in %).

record sizes (bytes)
101 102 103 104 105

batch.size
(bytes)

101 -91.29 - - - -
102 -91.29 -95.23 - - -
103 -3.14 -66.79 -89.19 - -
104 -2.44 -6.54 -29.69 -0.94
105 -1.39 -7.37 61.88 204.00 -0.18
106 -3.48 0.58 64.26 255.10 12.72

Table 9: Difference Between the Mean Latency Performance of Various Record
Size/batch.size Combinations vs Baseline. linger.ms=0 (expressed in %)

record sizes (bytes)
101 102 103 104 105

batch.size
(bytes)

101 5135075.33 - - - -
102 4837371.03 2248192.44 - - -
103 3.93 478110.65 772.46 - -
104 0.56 1.72 31.11 63.96 -
105 1.50 0.00 -99.55 -51.62 0.19
106 1.87 3.09 -99.56 -55.10 -21.29

marginal increases and decreases. It is worth noting that the latency is extremely high
when the batch.size is equal or one order of magnitude larger than the record size.
This observation is valid for record sizes 101B, 102B and 103B and a reason for this have
not been found.

Compared to the Default Baseline: In Table 8, the mean throughput measured per
batch.size and record size combination is compared with the default configuration’s
throughput per respective record size. The difference vs the baseline is expressed in
percentage and improvements upon the baseline are highlighted in green. Table 8 is the
same information except comparing latency. The full tables with raw values are included
in the appendix B. The values highlighted in green indicates the performance is higher
than that of the default configuration.

Tables 8 and 9, therefore, indicates that the range of batch.size values and keeping
linger.ms at 0 provides minimal performance improvements for record sizes 101B and
102B. In contrast, significant improvements in throughput and latency can be achieved
for record sizes 103B, 104B and 105B if batch.size is increased. Another interesting
observation from these tables are that batch.size 106B produces the best throughput
and latency for record sizes 103B, 104B and 105B. This result is not intuitive due to latency
and throughput usually being at odds with each other. These values are marked in brown
in tables 8 and 9.

Summary: For record size 101B and 102B varying the batch.size in the benchmark

23

Table 10: Difference Between the Mean Throughput Performance of Various Record
Size/batch.size Combinations vs Baseline. linger.ms=10 (expressed in %)

record sizes (bytes)
101 102 103 104 105

batch.size
(bytes)

101 -92.33 - - - -
102 -92.33 -94.51 - - -
103 -3.14 -62.13 -87.63 - -
104 48.43 27.90 -20.44 11.68
105 43.90 56.09 114.90 240.31 10.74
106 44.95 48.28 125.53 298.62 26.38

Table 11: Difference Between the Mean Latency Performance of Various Record
Size/batch.size Combinations vs Baseline. linger.ms=10 (expressed in %)

record sizes (bytes)
101 102 103 104 105

batch.size
(bytes)

101 5779158.69 - - - -
102 5386760.75 1944002.41 - - -
103 -36.07 419494.33 663.03 - -
104 206.17 -31.10 15.85 45.40 -
105 1985.05 362.89 -99.63 -56.79 -9.69
106 1992.52 2019.07 -96.98 -60.01 -29.81

did not significantly improve performance. An interesting result is batch.size=106B
providing the best latency and throughput for record sizes 103B and 104B. It seems intu-
itive that you need to increase the performance of one metric at the expense of the other,
but both performing better at the same batch.size is interesting.

5.2.2.2 linger.ms=10

What: This benchmark is identical to the one performed in 5.2.2.1, with the exception
of changing the linger.ms configuration from the default value of zero to a range of
other values. Note: linger.ms was tested at values 5, 10 and 20, but 10 yields the best
performance and is thus evaluated.

Why: To answer RQ3 and determine the influence of linger.ms on the performance
of the Kafka Producer.

Compared to the Default Baseline: Tables 10 and 11 have identical structures to ta-
bles 8 and 9 respectively, but the values are from the benchmark with linger.ms set to
10 instead of the default 0 in 8 and 9. Looking at Table 10, as expected this additional de-
lay provided by linger.ms increases the throughput for most record size : batch.size
combinations. This increase was especially evident for record sizes 103B, 104B and 106B
in combination with batch.size 106B. The throughput did not only improve on the
baseline from Section 5.1, but also against the performance in 5.2.2.1. This is illustrated
by the higher percentages in Table 8 vs Table 10. Thus optimising batch.size and

24

10 10^2 10^3 10^4 10^5
Record Size in Bytes

101

102

Th
ro

ug
hp

ut
 in

 M
B/

s (
lo

g
sc

al
e)

Mean Throughput of Various Record Sizes
max.in.flight=5_default
max.in.flight=10
max.in.flight=1

(a) Throughput performance.

10 10^2 10^3 10^4 10^5
Record Size in Bytes

100

101

102

La
te

nc
y

in
 M

illi
se

co
nd

s (
lo

g
sc

al
e)

Mean Latency At Various Record Sizes

max.in.flight=5_default
max.in.flight=10
max.in.flight=1

(b) Latency performance.

Figure 7: max.in.flight.requests.per.connection performance comparison.

linger.ms together seem to bring additional performance gains for throughput. See ap-
pendix C for raw values and % difference. Moreover, as expected, increasing linger.ms
increases the latency of most record size : batch.size combinations. It is interesting
to note that the latency also decreases with some of the combinations, this is counter-
intuitive as it is expected that the linger.ms adds delay to the batching process in the
Kafka Producer and subsequently adds to the total latency of sending a record.

Summary: By increasing the linger.ms configuration the throughput increased for
most record size : batch.size combinations. The latency did however improve for
some batch.size configurations which are counter-intuitive. Further investigation is
required to determine its cause. As in Section 5.2.2.1, there are unexpected results were
the same record size : batch.size combinations provide the best performance for both
throughput and latency. In this benchmark, it is record sizes 104B and 105B providing
the best throughput and latency at the same batch.size of 106B.

5.2.3 Default + max.in.flight.requests.per.connection Benchmark

What: This benchmark is identical to the one performed in 5.1, except for changing the
max.in.flight.requests.per.connection configuration to 1 and 10 and measur-
ing the throughput and latency of both.

Why: To answer RQ3 and determine the influence of max.in.flight.requests.per.
connection on the performance of the Kafka Producer.

Results: Figure 7(a) illustrates the mean throughput and Figure 7(b) illustrates the
mean latency at various max.in.flight.requests.per.connection and record
sizes combinations. The y-axis represents the corresponding throughput in megabytes per

25

second for 8(a) and corresponding latency in milliseconds for 8(b). Both y-axes are log
scaled and x-axes represents the record size in bytes. The coloured lines represent the
various values tested for the max.in.flight.requests.per.connection configu-
ration, which is 1 and 10 and is indicated by the legend. These results are also compared
to the results obtained in the default benchmark of Section 5.1.

Throughput: Looking at Figure 7(a) it is evident that there is very little difference be-
tween the throughput performance of the default value 5 and the measured 10 in this
benchmark. Moreover, an expected result is that the throughput performance is gener-
ally lower when the max.in.flight.requests.per.connection is set at 1 vs the
default at 5.

Latency: Changing the max.in.flight.requests.per.connection from the de-
fault of 5 to 1 resulted in a significant improvement on latency performance for the record
sizes 10B, 102B. However, it decreases the latency performance for record sizes 103B, 104B
and 105B.

Summary: The throughput performance over the different record sizes have mostly de-
clined when the max.in.flight.requests.per.connection is changed from its
default value of 5 to 1 or 10. There are however significant improvements made in latency
performance for record size 101B and 102B when max.in.flight.requests.per.
connection is 1. See appendix D for raw values and % difference from baseline.

26

10 10^2 10^3 10^4 10^5
Record Size in Bytes

101

102

Th
ro

ug
hp

ut
 in

 M
B/

s (
lo

g
sc

al
e)

Mean Throughput At Various Record Sizes

mean_throughput_default
mean_throughput_best

(a) Throughput performance.

10 10^2 10^3 10^4 10^5
Record Size in Bytes

10 1

100

101

102

La
te

nc
y

in
 M

illi
se

co
nd

s (
lo

g
sc

al
e)

Mean Latency At Various Record Sizes

mean_latency_best
mean_latency_default

(b) Latency performance.

Figure 8: Best vs default performance

6 Maximising Performance

Aided by the results and insight in the benchmarks of Section 5 this section aims to
maximise the performance of the Kafka producer to answer RQ4. An analysis is done on
each record size’s performance, and the configuration values which yielded the best results
will be identified and analysed. Figure 8 is the same as Figure 4, but with the added best
performance configurations for each respective record size.

6.1 Maximising Throughput

Table 12 is the configurations found in Section 5 that provides the highest throughput per
record size. Evidently batch.size and linger.ms are the most important configura-
tions for throughput as they were the only two that had to be changed of the four tested
configurations. Furthermore, the best performing batch.size for record sizes 101B,
102B, 103B is three orders of magnitude larger than the record size. For 104B and 105B
the maximum batch.size is 106B and it seems like the throughput is plateauing from
record size 104B to 105B, which is 405.44 to 425.20 megabytes per second respectively
and illustrated in Figure 8(b). A possible reason for this is that their batch.size is
relatively small compared to their record size, but the batch.size has to be limited.
If the batch.size is increased beyond 106B then many other configurations have to be
increased beyond their default values and this would greatly increase the complexity of the
benchmarks. It would, therefore, be interesting to see if the throughput can be increased
by increasing these relevant configurations beyond their default values to allow sending
batches larger than 106B from the Producer to the Broker.

27

Table 12: Configuration Values Providing the Best Throughput Per Record Size

record size
(bytes)

configuration default
MB/s

best
MB/s

% increase
def. to bestacks b.s. l.ms m.i.f.

101 default 104 10 default 2.87 4.26 48.43

102 default 105 10 default 27.67 43.19 56.09

103 default 106 10 default 119.42 269.33 125.53

104 default 106 10 default 101.71 405.44 298.62

105 default 106 10 default 336.44 425.2 26.38

Table 13: Configuration Values Providing the Best Latency Per Record Size

record size
(bytes)

configuration default
MB/s

best
MB/s

% decrease
def. to bestacks b.s. l.ms m.i.f.

101 0 default default default 0.535 0.075 -85.98

102 0 default default default 0.582 0.175 -69.93

103 default 105 10 default 261.591 0.963 -99.63

104 default 106 10 default 192.018 76.791 -60.01

105 default 106 10 default 94.841 66.572 -29.18

6.2 Minimising Latency

Table 13 is the configurations found in Section 5 that provides the lowest latency, per
record size. For the lowest latency the best results are caused by a wider variety of
configurations. acks was the most influential configuration for the smaller record sizes of
10B and 102B. For record sizes 103B, 104B and 105B batch.size and linger.ms were
the most influential configurations. A couple of interesting observations are the relatively
low latency up until record size 103B and how much lower the latency is for record size
103B when its configurations are tuned vs its default configurations, a drop from 261.591
ms to 0.963 ms. Also, there is a significant increase in the best latency between record
size 103B to 104B, which is two orders of magnitude although the increase in record size
is one.

28

7 Findings

7.1 Discussion of Results

The analysis in Section 3.3 on the Kafka Producer’s internals provides many insights
into which processes it performs and how it implements these processes namely batching
records together, queuing the batches for the appropriate partitions and coordinating with
Brokers. This analysis provided sufficient depth of understanding to reason about most
of the observations found in the benchmark results. It especially comes to aid when
dealing with unexpected behaviour found in Section 5.1 on default configurations. The
two significant unexpected behaviours in this section are the throughput worsening and
latency improving as the record size is increasing between 103B and 104B. This behaviour
was resolved with the best configurations in Section 6, this is illustrated by the blue lines in
figures 8(a) and (b) which has a trend that is consistently increasing, instead of the increase
and decrease by the orange lines. There is still however a decline in latency between 104B
and 105B which cannot be explained. Through the use of the analysis in Section 3.3 and
investigating the granular internal metrics provided by Kafka, it becomes apparent that
the Producer’s batching process is most likely the cause. Control over the batching process
is limited, but it can be influenced by the batch.size and linger.ms configurations
and it must be prioritised when benchmarking for performance improvements.

Furthermore, in Section 5.2 it is apparent that the smaller records gain significant latency
performance when acks is switched to 0 instead of default 1. Although the gains are
significant, it must still be determined how it translates to a decrease in end-to-end latency,
which is the time duration it takes to send a record from the Producer via the Broker to
the Consumer. End-to-end latency might be more important for low latency applications
than the isolated Producer latency measured here.

Thorough testing of batch.size is performed in Section 5.3 to investigate if the reasoning
about the extent of this configuration influence on the performance can be substantiated.
The results indicate that increasing the batch.size 2-3 orders of magnitude larger than
the record size not only improves throughput but also latency performance. Furthermore,
is interesting that latency improves in conjunction with throughput and can also signal that
the throughput is not close to optimal for record sizes 104B and 105B due to the limitation
of batch.size at 106B in this study. Motivations for this limitation can be found in
Section 6.1. It is worth noting that max.in.flight.requests.per.connection
delivers mixed results and must be changed with caution and careful testing as it can
easily decrease performance.

When looking at the relative improvements from the default to the best performance in
Section 6, significant improvements in performance can be made by only tuning the config-
urations batch.size, linger.ms and acks. They are, therefore, a good starting point
in the tuning process. This difference in relative performance between default and best
configurations is overall higher for latency. In other words, the tuning of the configurations
from the default to the best performance shows larger gains in performance for latency
compared to throughput measurements. This point is illustrated in Figure 8. Thus the
default settings are leaning towards throughput, which ties in with Kafka prioritising high
throughput workloads [7].

29

The high throughput is in large part due to Kafka Producer’s batching process, which
adds a bit of delay to batch records together. Furthermore, the batching functionality is
built-in and cannot be by-passed by setting a configuration. In contrast, true low latency
requires the delivery of a record to be attempted immediately after it arrives, and the delay
of the batching functionality prevents this from occurring. From this, it is a reasonable
assumption that Kafka prioritises throughput over latency. This should be considered
when deploying Kafka in a domain where latency is the priority.

To conclude, it is good to note that the testing environment doesn’t reflect a typical pro-
duction environment, but the results are still useful and can be generalised to an extent.
For example, the unexpected behaviour during the default benchmark, the degree of in-
fluence that the configurations have on performance and the set of configurations that
produced the best performance can be generalised. The trends, comparisons and percent-
age differences between the benchmarks are also useful, although the raw performance
values are not. For example, knowing that the best-obtained throughput for a record size
of 103B on this local machine is 4.26MB/s doesn’t have general worth, although knowing
which configurations produced this best throughput and the margin it improved by is
48.43% from the baseline does have value.

7.2 Relevant Related Work And Comparing Results With Own Findings

Several studies have made interesting findings on Kafka’s performance. Here are a few of
them and highlights of important takeaways that are most relevant to the scope of this
study. Where appropriate, their results are also compared to that of this paper.

A particularly relevant study was conducted by Hesse et al. [16]. They aimed to find the
ingestion limits of Kafka; in other words, how fast one can write to Kafka brokers. The
study was however mainly limited to configuring the acks, read-in-ram and batch.size
configurations while measuring the number of incoming messages to the broker. The
remainder of configurations were kept at the default levels. A notable finding is that
acks=0 performed worse at times than acks=1, the reason for which was not explained
in the paper. A similar benchmark is performed in Section 5.2, which compares the
performance of different acks configurations. However, results from that benchmark
indicate an overall increase in performance in both throughput and latency. Another
finding was by keeping batch.size at the default of 16384B, the throughput remained
very steady over time and when the batch.size was increased to 32768B and 65536B
there was great inconsistency within the rate of throughput especially with the latter
batch.size. This greater variability is also observed in benchmarks performed in Section
5.3. When the record size and batch.size is set to 103B the throughput’s variance is
0.00712, compared against when the batch.size is set at 104B the variance is 0.51890.
Therefore on this particular point, the results of the benchmarks agree with the paper’s
findings.

Wiatr et al. [28] focused on Kafka’s consumption of system’s resources, specifically exam-
ining the effects of increased memory consumption of central processing unit(CPU) usage
due to garbage collection(GC) pauses. The amount of memory which Kafka allocates is
largely dependent upon the message size, buffer size and batch.size parameters. They
found that larger buffers increased the latency, moreover larger memory consumption did

30

increase the GC pauses, which they stated was caused by inefficient memory manage-
ment of the KafkaProducer. Another finding was that a buffer size of 512KB was optimal
for CPU consumption. In Section 5.2.2.1, a similar question was asked, namely if the
marginal increase in throughput caused by increasing the batch.size configuration is
worth the additional delay. This delay is in part due to the additional memory allocation
and accompanied garbage collection pauses. The answer depends on the requirements of
the application that will be using Kafka and is worthy of further investigation.

Le Noach et al.’s [20] study focused on the impact that the batch.size configuration has
on the performance of the consumer’s and producer’s latency and throughput performance.
Their main finding in their own words is a major decline in performance that occurs when
the number of nodes in the broker cluster is increased; they suspect this is due to internal
Kafka synchronisations and bottlenecks in the network. The charts included in the poster
indicate a greater throughput for a cluster with a smaller number of nodes as opposed to
clusters with a greater number of nodes. This phenomenon was especially evident when
the batch.size configuration was increased. Increasing the batch.size from 30KB
to 50KB decreased the throughput of the producers in Kafka clusters with 2 to 6 nodes.
Although different broker topologies are not benchmarked in this study, it is interesting to
see other studies validating the great influence of the batch.size on the performance.

Although the literature on benchmarking Kafka is fairly limited, most of their results
agree with those found in this study’s benchmarks. These include greater variability in
throughput occurring with an increase in batch.size, an increase in latency due to
increase in memory usage and batch.size playing a large role in the performance of
Kafka. However, there were conflicting results with acks=0 performing worse than the
default acks=1 in Hesse et al.’s study. Furthermore, the work gave insight into more
areas that are deserving of future work, such as benchmarking memory usage and more
expansive broker topologies.

7.3 Experience

This thesis was challenging and very rewarding. In the beginning, I was almost completely
green to the field of distributed systems, and it was, therefore, a steep learning curve
to understand the concepts around distributed systems and why Kafka requires them.
Furthermore, apart from creating a measurement to ensure the correctness of Kafka’s
internal latency measurements, there were no major technical problems which severely
hindered the study’s progress. It was more an iterative process, with the guidance of
the supervisor to improve the efficiency and accuracy of the measurements made in the
benchmarks. This includes writing multithreaded code to reduce the overhead incurred
when recording the relevant measurements.

7.4 Limitations

Kafka is a distributed system and therefore very complex with many moving components.
This makes it especially difficult to measure its performance. Besides, the amount of con-
figurations and combinations of configurations that can be evaluated is vast. Thus only a
few can be properly examined considering the time frame of this study. Moreover perform-
ing the benchmarks requires a significant amount of time and also the full dedicated use

31

of the local Dell machine. Thus having a dedicated machine for running the benchmarks
and another for writing benchmarks and visualising results will greatly boost productivity
when a similar study is made in the future. Also, running the benchmarks on the local
machine is not a good representation of a general production environment. Thus it must
be considered if the aim is to obtain results that can be generalised.

7.5 Future Work

Following up on the tests performed on the Kafka Producer the equivalent benchmarks
can be done on the remaining components of Kafka, namely the Broker and Consumer.
This will establish the end-to-end performance and overall influence of the configurations
on the Kafka system. Also worthy of further exploration are more production-like cluster
topologies, as Kafka is intended to be used as a distributed system and testing it in
that domain on realistic use cases would be valuable. Furthermore, more configurations
can be investigated, and their influence determined. Lastly creating an automated testing
system that tests an array of configuration combinations and provides the best performing
combination would be extremely useful. As doing the testing manually can be a tedious
process. An equivalent approach can be found in the Machine Learning domain when
optimising hyper-parameters, namely the Grid Search process.

32

8 Conclusion

This study began by obtaining an overview of how Kafka as a system works, understanding
its use cases and the major design decisions that influence its performance. Moreover, the
Kafka Producer was investigated and analysed at a level that proved necessary in under-
standing and explaining its behaviour during the latter performed benchmarks. RQ1 can,
therefore, be answered as yes, the Kafka Producer can be understood at a sufficient level
to explain and quantify its behaviour. This was valid for the majority of unexpected cases
where they can be explained after investigating the finer metrics available and matching
it with what is known about its internal processes.

Furthermore, the Kafka Producer’s performance was measured at its default configura-
tions to determine its “out-of-the-box” performance. This resulted in interesting and
some unexpected behaviour. After some investigation, it quickly became apparent that
the batch.size configuration is very influential in the behaviour and performance of the
Kafka Producer. These results also served as a good baseline to compare the subsequent
benchmarks against. RQ2 was therefore sufficiently answered, knowing what the perfor-
mance of the default configurations are and thorough investigation was made to explain
the reason for the results.

To answer RQ3, some configurations deemed of significant influence were further tested.
First of them were acks that delivered good overall performance improvement and an es-
pecially significant reduction in latency for record sizes in the 10B to 100B range. Second
were combinations of batch.size and linger.ms, which is a challenging benchmark to
design and perform due to the sheer number of combinations that have to be tested. Re-
sults indicate that to obtain optimal throughput the batch.size has to be several orders
of magnitude larger than the record size. Thirdly max.in.flight.requests.per.
connection was tested and except for improving the latency of small records, it proved
not to be a very influential configuration.

The best results from all the benchmarks are listed together with the configuration combi-
nation that produced the respective result. Providing a good indication of the performance
limits available in an attempt to answer RQ4. Furthermore, the results indicated that a
trade-off between latency and throughput don’t always have to be made and that both
metrics can improve at the same time. Lastly, significant improvements have been made
from the baseline performance set by the default configurations. Thus to conclude, it is vi-
tal to plan and execute careful testing of the Kafka Producer as the default configurations
are not close to its optimal performance. Doing the testing correctly would significantly
increase the performance of the service deploying Kafka and decrease the usage of com-
puting resources. This paper provides a few rules of thumb that can aid with this testing
process.

33

References

[1] Individuals using the internet (% of population). The World Bank. [Online; ac-
cessed May 10, 2020] https://data.worldbank.org/indicator/IT.NET.
USER.ZS.

[2] Xps 13 inch 10e generatie 4k-laptop. [Online; accessed July 15, 2020] https:
//www.dell.com/nl-nl/shop/cty/pdp/spd/xps-13-7390-laptop?
view=configurations.

[3] I. Ahmad. How much data is generated every minute? Social Media Today, Jun
2018. [Online; accessed May 10, 2020] https://www.socialmediatoday.com/
news/how-much-data-is-generated-every-minute-infographic-1/
525692/.

[4] Apache Software Foundation. Active mq. [Online; accessed July 3, 2020] ://ac-
tivemq.apache.org/.

[5] Apache Software Foundation. Apache kafka. [Online; accessed April 25, 2020] https:
//github.com/apache/kafka.

[6] Apache Software Foundation. Documentation. [Online; accessed May 5, 2020]
https://kafka.apache.org/documentation/#producerconfigs.

[7] Apache Software Foundation. Use cases. [Online; accessed July 25, 2020] https:
//kafka.apache.org/uses.

[8] Apache Software Foundation. Apache software foundation annual report fy2019,
2019. [Online; accessed May 10, 2020] https://files-dist.s3.amazonaws.
com/AnnualReports/FY2019+Annual+Report.pdf.

[9] S. Condon. By 2025, nearly 30 percent of data generated will
be real-time, idc says. ZDNet, Nov 2018. [Online; accessed
May 10, 2020] https://www.socialmediatoday.com/news/
how-much-data-is-generated-every-minute-infographic-1/
525692/.

[10] Confluent. Introduction to kafka. [Online; accessed April 22, 2020] https://docs.
confluent.io/current/kafka/introduction.html.

[11] Confluent. Kafka design. [Online; accessed April 10, 2020] https://docs.
confluent.io/current/kafka/design.html.

[12] De Vos Meaker. Project code. [Online; accessed August 4, 2020] https://github.
com/De-Vos/Kafka_Benchmarks.

[13] Y. Fu. Disaster recovery for multi-region kafka at uber, May 2019. [Online; accessed
July 15, 2020] https://www.youtube.com/watch?v=SqusdVrUTWM.

[14] Gill Tene. Hidrhistogram. [Online; accessed May 21, 2020] ://hdrhistogram.org/.

[15] B. Heslop. By 2030, each person will own 15 connected devices — here’s what
that means for your business and content. Martech Advisor, Mar 2019. [Online;

34

accessed May 10, 2020] https://www.martechadvisor.com/articles/iot/
by-2030-each-person-will-own-15-connected-devices-heres-what-\
\that-means-for-your-business-and-content/.

[16] G. Hesse, C. Matthies, T. Rabl, and M. Uflacker. How fast can we insert? a perfor-
mance study of apache kafka. arxiv.org, Mar 2020. [Online; accessed April 5, 2020]
https://arxiv.org/abs/2003.06452.

[17] J. Kreps. Every company is becoming a software company. Tech blog, Sep
2019. [Online; accessed April 18, 2020] https://www.confluent.io/blog/
every-company-is-becoming-software/.

[18] J. Lee and W. Wu. How linkedin customizes apache kafka for 7 trillion messages per
day. Tech blog, Oct 2019. [Online; accessed July 15, 2020] https://engineering.
linkedin.com/blog/2019/apache-kafka-trillion-messages.

[19] Markets and Markets. Streaming analytics market, Jun 2020. [On-
line; accessed Mar 10, 2020] https://www.marketsandmarkets.com/
Market-Reports/streaming-analytics-market-64196229.html#:

˜:text=%5B289%20Pages%20Report%5D%20The%20global,25.2%25%
20during%20the%20forecast%20period.

[20] P. L. Noach, A. Costan, and L. Bouge. A performance evaluation of apache kafka in
support of big data streaming applications. 2017 IEEE International Conference on
Big Data (Big Data), 2017.

[21] J. Ousterhout. Always measure one level deeper. Communications of the ACM,
61(7):74–83, June 2018.

[22] J. Qin. Producer performance tuning for apache kafka, Jun 2015. [On-
line; accessed May 21, 2020] https://www.slideshare.net/JiangjieQin/
producer-performance-tuning-for-apache-kafka-63147600.

[23] B. Stopford. Is event streaming the new big thing for finance? Tech blog, Oct
2018. [Online; accessed July 15, 2020] https://www.confluent.io/blog/
event-streaming-new-big-thing-finance.

[24] Y. Tkachenko. Building scalable and extendable data
pipeline for call of duty games. [Online; accessed July
15, 2020] https://www.slideshare.net/ConfluentInc/
building-scalable-and-extendable-data-pipeline-for-call-of\
\-duty-games-yaroslav-tkachenko-activision-kafka-summit-nyc-\
\2019.

[25] N. Viswanathan. Apache kafka — an introduction. Tech blog, Mar 2020.
[Online; accessed May 8, 2020] https://medium.com/analytics-vidhya/
apache-kafka-an-introduction-beaaaedb6cfa.

[26] VMware. Rabbitmq. [Online; accessed July 3, 2020] ://activemq.apache.org/.

[27] A. Wang. Inca — message tracing and loss detection for
streaming data @netflix. Tech blog, Sep 2019. [Online; ac-

35

cessed July 15, 2020] https://medium.com/@NetflixTechBlog/
inca-message-tracing-and-loss-detection-for-streaming-data-\
\netflix-de4836fc38c9.

[28] R. Wiatr, R. S lota, and J. Kitowski. Optimising kafka for stream processing in latency
sensitive systems. Procedia Computer Science, 136:99–108, 2018.

36

A Performance Comparison: acks=0 vs Default

Table 14: Default Performance Per Record Size (acks=1). (megabytes per second)

Record Size (bytes) 101 102 103 104 105

Throughput (MB/s) 2.87 27.67 119.42 101.71 336.44

Latency (ms) 0.535 0.582 261.591 192.018 94.841

Table 15: Default Performance Per Record Size (acks=0). (milliseconds)

Record Size (bytes) 101 102 103 104 105

Throughput (MB/s) 3.27 26.08 150.74 134 364.31

Latency (ms) 0.075 0.175 206.786 145.684 87.317

Table 16: Difference Between the Performance of acks=1(default) vs acks=0. (%)

Record Size (bytes) 101 102 103 104 105

Throughput (MB/s) 13.94 -5.75 26.23 31.75 8.28

Latency (ms) -85.98 -69.93 -20.95 -24.13 -7.93

B Performance Comparison: Range of batch.size vs De-
fault

Table 17: Raw Values of Throughput of batch.size/Record Size Combinations
(megabytes per second)

record sizes (bytes)
101 102 103 104 105

batch.size
(bytes)

101 0.25 - - - -
102 0.25 1.32 - - -
103 2.78 9.19 12.91 - -
104 2.8 25.86 83.96 100.75 -
105 2.83 25.63 193.32 309.2 335.83
106 2.77 27.83 196.16 361.17 379.23

default 2.87 27.67 119.42 101.71 336.44

37

Table 18: Raw Values of Latency of batch.size / Record Size Combinations (millisec-
onds)

record.size (bytes)
101 102 103 104 105

batch.size
(bytes)

101 27473.188 - - - -
102 25880.47 13085.062 - - -
103 0.556 2783.186 2282.284 - -
104 0.538 0.592 342.965 314.824 -
105 0.543 0.582 1.174 92.897 95.021
106 0.545 0.6 1.145 86.208 74.654

default 0.535 0.582 261.591 192.018 94.841

C Performance Comparison: Range of batch.size + linger.ms=10
vs Default

Table 19: Raw Values of Throughput of batch.size / Record Size Combinations and
linger.ms=10 (megabytes per second)

record sizes (bytes)
101 102 103 104 105

batch.size
(bytes)

101 0.22 - - - -
102 0.22 1.52 - - -
103 2.78 10.48 14.77 - -
104 4.26 35.39 95.01 113.59 -
105 4.13 43.19 256.63 346.13 372.57
106 4.16 41.03 269.33 405.44 425.2

default 2.87 27.67 119.42 101.71 336.44

Table 20: Raw Values of Latency of batch.size / Record Size Combinations and
linger.ms=10 (milliseconds)

record sizes (bytes)
101 102 103 104 105

batch.size
(bytes)

101 30919.034 - - - -
102 28819.705 11314.676 - - -
103 0.342 2442.039 1996.011 - -
104 1.638 0.401 303.052 279.195 -
105 11.155 2.694 0.963 82.977 85.654
106 11.195 12.333 7.903 76.791 66.572

default 0.535 0.582 261.591 192.018 94.841

38

D Performance Comparison: max.in.flight.connections.per
.request vs Default

Table 21: Raw Values of Throughput of max.in.flight.connections.per.request
(megabytes per second)

Record Size (bytes)
101 102 103 104 105

max.in.
flight.requests.
per.connection

1 2.85 28.21 90.5 73.1 254.97
10 2.92 26.41 117.08 101.55 332.55

default 2.87 27.67 119.42 101.71 336.44

Table 22: Raw Values of Latency of max.in.flight.connections.per.request
(milliseconds)

Record Size (bytes)
101 102 103 104 105

max.in.
flight.requests.
per.connection

1 0.256 0.3 345.363 267.164 125.199
10 0.97 1.069 266.49 192.304 95.972

default 0.535 0.582 261.591 192.018 94.841

39

