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Syllabus outline

8. Programmable Storage <:

9. Distributed Storage / Systems - |
10. Distributed Storage / Systems - I



Any Guesses?

Why would we need programmable storage? And what is it actually?

Jaeyoung Do, Sudipta Sengupta, and Steven Swanson. 2019. Programmable solid-state storage in future cloud datacenters. Commun. ACM
62, 6 (June 2019), 54-62.



Conventional Data Processing (simplified)

2. Data processing

]
— ]
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3. Write results back 1. Read data in memory for processing
[] (can be local - PCle -- or networked over NVMeoF)
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Storage Device

LIAOCLOAC

Basic model how storage and data processing is organized typically
What are the challenges here?



Key Challenge - Data Movement Wall

CPU ;&E[

Storage Device

LIAOCLOAC
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The network (local or external) is a
bottleneck.

Why now? Emergence of Flash and
internal device parallelism creates
a data movement bottleneck!

The amount of data generated and
processed is increasing significantly
Recall: 200 Zettabytes by 2025



Recall: Flash Internal Structure

Flash SSD
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Presumes 8 die per bus
& 4 CS per bus

Flash devices consist of multiple independent packages, die, or planes

These components can work in parallel, giving a large amount of bandwidth

A single server can host multiple PCle connected flash devices

https://www.snia.org/sites/default/education/tutorials/2009/spring/solid/|JonathanThatcher NandFlash SSS PerformanceV10-nc.pdf



https://www.snia.org/sites/default/education/tutorials/2009/spring/solid/JonathanThatcher_NandFlash_SSS_PerformanceV10-nc.pdf

Data Movement Bottlenecks Inside a Single System

SSD Storage System
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L 64 SSDs X ~2 GB/s
! Throughput gap of 8x =-128 GB/s
16 lanes of PCIe
=-16 GB/s
64 SSDs X ~16 GB/s 32 channels X -500 MB/s
Throughput gap of 66x =~1TB/s =~16 GB/s

A rack-level SSDs deployment
64 SSDs connected in a system

Internally each SSD can have 32 flash
packages in parallel

At the green line you have 1TB/s

It drops to 128GB/s at the PCle
switches

It further drops to 16 GB/s at the CPU

Yes, PCle is improving, but not as fast!

Jaeyoung Do, Sudipta Sengupta, and Steven Swanson. 2019. Programmable solid-state storage in future cloud datacenters. Commun. ACM 7

62,6 (June 2019), 54-62.



Latency Pressure

-+ = host stack —— drive lat === PCle RTT

—~ 140 oststac — € fn find _in tree(n: &Node, key: u64)

= _in_

T 150 o120 -> Option<Value>

8 {

§ 100 Application| if n.key == key { // Found correct value

g 80 Some(n.value)

£ 60 } else {

= // Traverse left or right

g 40 let next = if key < n.key { n.left }

2 20 / else { n.right };

8 get()/put() if let Some(next) = next {

2007 // Fetch each node from storage
find_in tree(get(next), key)
} else {
None // Break if dead end
Crossing PCle bus takes time ~1 useconds Flomge } .
}

Over the years the drive latencies have been Kulkarni, Splinter: bare-metal extensions for multi-tenant low-latency
improving (ULLs drives - lecture 2) storage, OSDI 2018,

PCle latency has become a bottleneck for pointer chasing, latency-sensitive applications

What about over an external network?



? Server Client Server Client
Over the Network: - -

\ \

1 TB data with 8 bytes keys (237 values), — |

RTT of 40 usec (on 10 Gbps) >

\
Remote bsearch: fetch each node on

demand and pointer chasing left/right, 2000
~37 round trips

Binary search on 1TiB

1,761

1500
Offloaded bsearch: send code to the % -

remote, disaggregated storage server for %

execution, get the result, 1 round trip ~ 500 T
Shows up in performance difference 0 R

Remote bsearch Offloaded bsearch

Kornilios Kourtis, Animesh Trivedi, Nikolas loannou, Safe and Efficient Remote Application Code Execution on Disaggregated NVM Storage with
eBPF, https://arxiv.org/abs/2002.11528 (2020).



https://arxiv.org/abs/2002.11528

Enter: Programmable Storage

3. CPU can read the results

CPU lu
™~

1. Offload data processing to

storage device

DRAM

Fz. Transfer the result back to the host

\

Programmable layer

Storage Device
EHACLA O

A high-level idea of programmable storage

Ship computation to the storage device

o Over PCle or Ethernet
Gather results
Reduce unnecessary data movement
Deliver performance, low latency operations
Saves energy!

10




Why is Programmable Storage Useful?

1. Data processing is often reductive (not always!)
a. grep, filter, aggregate — results are often smaller than the original data

select (coll == RED)

| B T [ s ]
B : [ s ]

v (B (W [N (=

O [Of [0of [N [

project (col2, where
col3 > 8

| =

Z‘_____,,,,,,,ﬂ<::::::::::::::f average(col2) = 3
max(col3) = 9
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Why is Programmable Storage Useful?

1. Data processing is often reductive (not always!)
a. grep, filter, aggregate — results are often smaller than the original data

2. SSDs already are complex

a. FTLimplementation, GC logic
b. SSDs already have some “logic” implementation capabilities

3. Additional support from the devices have been helpful
a. Expose SSD internals to optimize for applications (SDF, OCSSDs)
b. Flash virtualization (DFS file system)
c. Further capabilities: caching, atomic updates and appends, transactions

Why not make programmable SSDs a standard feature where a

user can offload computation to the SSD? Y



The Idea Itself is Not New ...

The idea itself is not now (as with many ideas in Computer Science)

e Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. 1998. A case for intelligent
disks (IDISKs). SIGMOD Rec. 27, 3 (Sept. 1, 1998), 42-52.

e Erik Riedel, Garth A. Gibson, and Christos Faloutsos. 1998. Active Storage for Large-Scale Data
Mining and Multimedia. In Proceedings of the 24th International Conference on Very Large
Data Bases (VLDB '98).

e And many more ...

However, they did not become popular because

1. Too expensive technology
2. Gains from such disk-based setup were low. Disk performance was bottleneck, and
host/drive/link speeds were improving

13



What are the Challenges in Programmable Storage?

1. How to provide programmability?

a. Inhardware, software?
b. ASIC, embedded CPUs, FGPA, languages

2. What is the programming API?
a. Whatis a useful programing abstraction to perform any computation
b. How do you transfer computation logic to a remote end point (storage)
c. Integrate other known storage abstractions: files, key-value stores, etc.

3. How do you provide?
a. Multi-tenancy
b. Quality of service
c. Security and privacy

14



Willow: A User-Programmable SSD (2014)

Willow: A User-Programmable SSD

Sudharsan Seshadri  Mark Gahagan  Sundaram Bhaskaran  Trevor Bunker
Arup De  YanginJin  YangLiu  Steven Swanson
Computer Science & Engineering, UC San Diego

Abstract

We explore the potential of making programmability a
central feature of the SSD interface. Our prototype sys-
tem, called Willow, allows programmers to augment and
extend the semantics of an SSD with application-specific
fe without promising file system protections.
The SSD Apps running on Willow give applications low-
latency. high-bandwidth access to the SSD’s contents
while reducing the load that 10 processing places on the
host processor. The programming model for SSD Apps
provides great flexibility. supports the concurrent execu-
tion of multiple SSD Apps in Willow. and supports the
execution of trusted code in Willow.

We demonstrate the effectiveness and flexibility of
Willow by implementing six SSD Apps and measuring
their performance. We find that defining SSD semantics
in software is easy and beneficial, and that Willow makes
it feasible for a wide range of 10-intensive applications
to benefit from a customized SSD interface.

1 Introduction

For decades, computer systems have relied on the same
block-based interface to storage devices: reading and
writing data from and to fixed-sized sectors. It is no ac-
cident that this interface is a perfect fit for hard disks.
nor is it an accident that the interface has changed little
since its creation. As other system components have got-
ten faster and more flexible, their interfaces have evolved
to become more sophisticated and. in many cases, pro-
grammable. However. hard disk performance has re-

mously broad and includes both general-purpose and
application-specific approaches. Recent work has illus-
trated some of the possibilities and their potential ben-
efits. For instance. an SSD can support complex atomic
operations [10, 32, 35]. native caching operations [5, 38].
a large, sparse storage address space [16]. delegating
storage allocation decisions to the SSD [47]. and offload-
ing file system permission checks to hardware [8]. These
new interfaces allow applications to leverage SSDs” low
latency. ample internal bandwidth, and on-board compu-
tational resources, and they can lead to huge improve-
ments in performance.

Although these features are useful. the current one-at-
a-time approach to implementing them suffers from sev-
eral limitations. First, adding features is complex and
requires access to SSD internals, so only the SSD manu-
facturer can add them. Second. the code must be trusted.
since it can access or destroy any of the data in the SSD.
Third. to be cost-effective for manufacturers to develop.
market, and maintain, the new features must be useful
to many users and/or across many applications. Select-
ing widely applicable interfaces for complex use cases is
very difficult. For example, editable atomic writes [10]
were designed to support ARIES-style write-ahead log-
ging. but not all databases take that approach.

To overcome these limitations, we propose to make
programmability a central feature of the SSD interface.
so ordinary programmers can safely extend their SSDs’
functionality. The resulting system, called Willow. will
allow application, file system, and operating system
to install ized (and potentially un-

PIOE
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Key Challenge

[Zhang'12] | o5 Offioad

Virtualization

[Caulfield’12]

OS
Bypass

[Bhaskaran’13]
[Saxena’12]
Cachmg

[Caulfield’12]

< Specialized SSDs

[Coburn’13]
[Prabhakaran’08]

Transaction
[Kang’13] Support

[We:ng 14] Key Value
[De’13] Store

Query [Do’13]
Processing [Kang’13]

[Balakrishnan’12]

At')“ct’ve't!o [Huang'12]
stractions [Josephson’10]

https://www.usenix.org/sites/default/files/conference/protected-files/osdi14 slides seshadri.pdf

How to build a
usable abstraction
to build these
multiple of
applications?
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Willow Architecture

u—————Ll Host
“““ iy St = REI—_— —o oot
Conventional SSDs (figure (a)), Willow (figure (b)) Blowfé::;ommeo — Dr:’lzrle
NVMe Interface @:E
e Contains Storage Processor Unit (SPUs) [CPU 1| CPUT|CPU |
o that process requests for their TCPU 1| CPU1CPU |
attached NVM storage [ NV Memory |

PCle SSD Willow SSD

(a) (b)
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Willow Architecture

u—-——LI Host
“““ iy St B RE,—_— —o oot
Conventional SSDs (figure (a)), Willow (figure (b)) B|°CK¢D|:::§;<)Nvmeo — Dr:’/grle
NVMe Interface E:E
e Contains Storage Processor Unit (SPUs) [CPU 1| CPUT|CPU | Y
o that process requests for their [CPU1;CPU1;CPU I 0 ¢
attached NVM storage | NvMemory | QN

PCle SSD Willow SSD

e The host does not do conventional r/w
but uses Host RPC Endpoints (HREs)

(a) (b)

Remote procedure call

o  Why RPCs? The most flexible way of establishing a Clent Server
command/response protocol l

o HREs communicate with SPUs N O —

o What to communicate, how to communicate - ot k] @I_ procedure
the application/user decide Otart ~ ®c:aumreaa)

thread

So how do these HREs, SPUs work together to offer a programmable SSD?

https://networkencyclopedia.com/remote-procedure-call-rpc/

18



https://networkencyclopedia.com/remote-procedure-call-rpc/

Willow: An SSD-Application View

Each SSD application Application inter-SPU RPCs .
, ibDirectlO
1. Provides RPC handlers to the b et | | ———
, : , . HRE -
Willow driver to be installed inSSD | | e e | cpig
Q H -
2. Auser-space library to access SSD AL SPUo
di tl = DirectlO |
|re(.: y DirectiO || =50Anp
3. [optional] Kernel module to get Driver . :R’ spu.os | |
support for kernel routines - filesystem o | cartem) RS | ¥ |
3 Perm. Table |

Here in the figure (example): Design for a Direct-Access Storage

1. Ask the Willow driver to install direct-lO RPC handlers and request an HRE
At the open of a file for direct I/0O, the application asks the kernel driver to check file
permissions and install them in the SSD

3. Do adirect read/write using RPCs from HREs to SPUs

The customization with kernel module, user library and SPU RPC handler -- Programming !




What is Inside SPUs?

e 125 MHz MIPS processor

e 32 KB of Data and Instruction Memory

e Connected to a bank of NVM (here:
PCM)

e Network interface (PCle)

The SPU runs a simple operating system
(SPU-0S)

e Gives simple multi-threading

e Memory is managed by the host driver
o Statically allocated

SPU

uliedid SdIIN

Interface

:

Interconnect

Streamer <__/

lawealis

Emulated PCM

20



Protection and Sharing Features

1. How to track which user application is executing code on a shared SSDs?

a. Each HRE has an id which is always propagated with all RPC request and
responses to keep track of which process is responsible for computation

2. How to check if an SSD-Application has rights to modify and update data?
a. Each application has permissions associated with the HRE and data touched
b. In case not all permissions can be stored inside the SSD, a permission miss will
happen and the SPU will contact the kernel model to get updated permissions

3. Code and data protection inside SPU
a. Use SPU's memory segmentation support (segmentation registers)

21



Code Complexity

Description Name LOC Devel. Time
(C) | (Person-months)

Simple 10 operations [7] Base-IO 1500 1

Virtualized SSD interface with OS bypass and permission check- | Direct-IO 1524 1.2

ing [8]

Atomic writes tailored for scalable database systems based | Atomic-Write | 901 1

on [10]

Direct-access caching device with hardware support for dirty data | Caching 728 1

tracking [5]

SSD acceleration for MemcacheDB [9] Key—-Value 834 1

Offload file appends to the SSD Append 1588 1

Many ideas only take a 100s of lines of code to implement in Willow

4-6 weeks of development time (reasonable)

22



Performance

B HWDMACMD FH os(Fs+Syscall) L I BDB-BaselO
0 . HostlssueCMD D PermCheck Il BDB-DirectlO
[ spuApp 08 - B Key-Value
18 — L] NVMLatency .
_— E Hostsw Willow SSD app as KV
[ HostMemcpy 0.6
14 HWDMAData

©
o

-1 I

Time (us)
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8
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]
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e Direct /O helps to reduce FS + syscall overheads
e Key-value on Willow (RPC) can improve performance from 8% - 4.8x -



Query Processing on Smart SSDs: Opportunities and Challenges

Jaeyoung Do™, Yang-Suk Kee*, Jignesh M. Patel’,
Chanik Park®, Kwanghyun Park”, David J. DeWitt'

*Uni y of Wi g ol ey

AB@TRACT
vices are getting “smarter.” Smart Flash st
mart SSD™) are on the horizon and will pag
CPU processing and DRAM storage inside a Smart SSD, and
make that available to run user programs inside a Smart SSD. The
focus of this paper is on exploring the opportunities and
with is of Smart
SSDs for rlational amlytic query procesing. We have
implemented an initial prototype of Microsoft SQL Server
running on a Samsung Smart SSD. Our results demonstrate that
significant performance and energy gains can be achieved by
pushing selected query processing components inside the Smart
SSDs. We also identify various changes that SSD device
manufacturers can make to increase the benefits of using Smart
SSDs for data processing applications, and also \u!,bﬁl possible
research for the database

Categories and Subject Descriptors
H.24 [Database Management]: Systems — Query Processing

General Terms
Design, Performance, Experimentation.

Keywords
Smart SSD.

1. INTRODUCTION

It has generally been recognized that for data intensive
applmuom moving code to data is far more efficient than
moving data to code. Thus, data proc g systems try to push
code as far below in the query processing pipeline as passible by
using techniques wch as carly selection pushdown and early
(pre- ing systems
run as much oflhc qu:r) close to the node tha\ holds the data.
Traditionally these
implemented in
largely stayed static

“code pushdown” techniques have been
s with rigid hardware boundaries that have
e the start of the computing era. Data is

El ics Corp.; “Microsoft Corp.

caches). Various aras of computer science have focused on
making this data flow efficient using techniques such as
prefetching, prioritizing sequential access (for both fetching data
to the main memory, andor to the processor caches), and
pipelined query execution.

However, the boundary between persistent storage, volatile
storage, and processing is increasingly getting blumier. For
example, mobile devices today integrate many of these features
into a single chip (the SoC trend). We are now on the cusp of this
hardware trend sweeping over into the server world. The focus of
this project is the integ of power and latil

storage in a new class of storage products known as Smiart SSDs.
Smart SSDs are flash storage devices (like regular SSDs), but
ones that incorporate memory and computing inside the SSD
device. While SSD devices have always contained these resources
for managing the device for many years (e.g., for running the FTL
logic), with Smart $SDs some of the computing resources inside
the SSD could be made available to run general user-defined
progrms.

The focus of this paper is to explore the opportunities and
challenges associated with running selected database operations
inside a Smart SSD. The potential opportunities here are
threefold.

First, SSDs generally have a far larger aggregate internal
bandwidth than the bandwidth supported by common host /O
interfaces (typically SAS or SATA). Today, the internal aggregate
1/O bandwidth of high-end Samsung SSDs is about 5X that of the
fastest SAS or SATA interface, and this gap is likely to grow to
maore than 10X (see Figure 1) in the near future. Thus, pushing
operations, especially highly selective ones that return few result
rows, could allow the query to run at the speed at which data is
getting pulled from the intemal (NAND) flash chips. We note that
similar techniques have been used in IBM Netezza and Oracle
Exadata appliances, but these approaches use additional or
specialized hardware that is added right into or next to the IO
subsystem (FPGA for Netezza [12], and Intel Xeon processars in
Exadata [1]). In contrast, Smart SSDs have this processing in-built

Relational Data Processing Frameworks

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

Biscuit: A Framework for Near-Data Processing of Big Data Workloads

Boncheol Gu. Andre S. Yoon, Duck-Ho Bae. Insoon Jo. Jinyoung Lee, Jonghyun Yoon,
Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jacheon Jeong, Duckhyun Chang
Memory Business, Samsung Electronics Co., Lid.

Abstract—Data-i ive queries are in b
intelligence, data housing and Iyt li cati Typ-

data-intensive applications proliferate, the concept of user-
bl

ically, processing a query involves full inspection of large in-
storage data sets by CPUs. An intuitive way to speed up such
queries is to reduce the volume of data transferred over the
storage network to a host system. This can be achieved by filter-
ing out extraneous data within the storage, motivating a form
of dat. This work p Biscuit, a novel
dats ing [ designed for modem snlld-
state drlvcs. It allows to write a data-i
application to run on the host system and the storage system in
adistributed, yet seamless manner: In order to offer a high-level
programming model, Biscuit builds on the concept of data flow.
Data processing tasks communicate through typed and data-
ordered ports. Biscuit does not distinguish tasks that run on
the host system and the sloragc sysu'm. As the result, Biscuit
has desi traits like y and i while
promoting code reuse and naturally expmmg concurrency.
We implement Biscuit on a host system that runs the Linux
OS and a hlgh~pcrﬁ)rmmcv snlld state drive. We demonstrate
the effecti of o ch and i ion with
expenmemnl results, \\'hen dmu filtering is done by hardware
in the solid-state drive, the average speed-up obtained for the
top five queries of TPC-H is over 15x.

Keywords-near-data pi ing: in-storage ing: SSD;

1. INTRODUCTION

Increasingly more applications deal with sizable data sets
collected through large-scale interactions [1. 2]. from web
page ranking to log analysis to customer data mining to

progi active disk becomes even more compelling:
energy efficiency and performance gains of two to ten were
reported [12-15].

Most prior related work aims to quantify the benefits
of NDP with prototyping and analytical modeling. For
example, Do et al. [12] run a few DB queries on their “Smart
SSD” prototype to measure performance and energy gains.
Kang et al. [20] evaluate the performance of relatively simple
log analysis tasks. Cho et al. [13] and Tiwari et al. [14]
use analytical performance models to study a set of data-
intensive benchmarks. While these studies lay a foundation
and make a case for SSD-based NDP. they remain limitations
and areas for further investigation. First, prior work focuses
primarily on proving the concept of NDP and pays little
attention to designing and realizing a practical framework on
which a full data processing system can be built. Common to
prior prototypes, critical functionalities like dynamic loading
and unloading of user tasks, standard libraries and support
for a high-level language. have not been pursued. As a result,
realistic large application studies were omitted. Second. the
hardware used in some prior work is already outdated (e.g..
3Gbps SATA SSDs) and the corresponding results may not
hold for future systems. Indeed. we were unable to reproduce
reported performance advantages of in-storage data scanning
in software on a state-of-the-art SSD. We feel that there is a
strong need in the technical community for realistic system

design examples and solid application level results.
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Query Processing on Smart SSDs

One of the earliest attempt to revisit the idea of programmable storage for
relational query processing R i g gty

Advantages with relational query processing

e Structured operators and query plans

e Defined I/O access patterns

e Opportunities for “code-pushdown”,
early filtering, selection, and aggregation

Proposed: implemented the simple selection and aggregation operafors into
the device FTL and integrated with SQL Server query plans

25



Architecture

1. Open and close to maintain session
2. Getto getresults

User defined program is executed on
an event (open, close) or arrival of
a data page from flash

e Data pages can be staged in parallel

Host
Interface

Host Machine

Communication
Protocol
~

y

&

Proprietary SSD Firmware
Application Programing Interfaces

Command ( Thread Data Memory
APls . APls APls APls

User-Defined Programs
- 4

Flash SSD

Basic thread scheduling (a master and worker threads), and memory

management (static, per-thread)

— Focus on a single workload, no multi tenancy, no file system here!
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Performance

Time (second)

400

300

200

100

1

(a) Elapsed Time

D .

SAS SSD
—©@— Smart SSD (NSM)
--—9--- Smart SSD (PAX)

] o P < ¢ o
- ’. ______________ ",
0.1 10 100

Fraction of tuples that match the predicate (%)

SELECT SecondColumn
FROM SyntheticTable
WHERE FirstColumn < [VALUE]

Time (second)

250

200
150
100

50

(a) Elapsed Time

8- - SAS SSD
—O0— Smart SSD (NSM)
--—--- Smart SSD (PAX)

a (] O O
| /.
| el
. ____________ "’
0.1 10 100

Fraction of tuples that match the predicate (%)
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Energy Efficiency

sasHpp @ Compared to HDDs, SSDs are

more energy efficient

100 === "7  Smart SSDs further allow

faster, more energy efficient
SAS SSD [ execution
Smart SSD (NSM) A
Smart SSD (PAX) N-ary Storage Model (NSM)
and Partition Attributes Across
(PAX) data layouts - how data is
stored on the device

Total Energy (kJ), log scale

10 .
10 100 1000

Elapse Time(second), log scale R
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Biscuit: A Framework for Near-Data Processing of

Big Data Workloads

Flow-based programming model : build a graph of computation steps (very much like

SQL DAGsS)

Support (almost) full C++ 11/14 semantics
Split coordination and computation models
A typical application

e Host side : libsisc
e SSD side : libslet,
with IN/OUT coordination

Application

r /
|
/’ \‘
7
/, \‘
, \
3 \

Host-side program

libsisc
(coordinator)

SSD-side module

SSDlet ok (computation units)
>
// do
Computation
// access File
’ N
libslet
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SSDlets and Applications

class Filter : public SSDLet<IN_TYPE<int32_t>,
OUT_TYPE<int32_t, bool>, ARG_TYPE<double>> {
public:
void run() override {
auto in = getlnputPort<0>();
auto out0 = getOutputPort<0>();
auto out1 = getOutputPort<1>();
double& value = getArgument<0>();

// do some computation

H

2.
3.

Important for coordination and staging of

data

input port output port

// :
host-side @ | ’[fl | ‘ .
nrogrart B ] ssoiet § (a)ﬂ ssplet [§---

2 App- 1 H(0)

()

S | # ssolet [}~
host I/F i

Biscuit runtime

Inter-SSDlet (same application)
Host-device ports
Inter application ports
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Word Count Application

Mapper
rd <words”l Reducer
filename /"g
; Mapper —49%y Shuffler xw{’\
i d,
}‘4 vec>

x Flow-based Prog.

Reducer

host-side 12 Mapper
program

wordcount modu

class Mapper : public SSDLet<OUT_TYPE<std::pair<std::string, uint32_t>>,
ARG_TYPE<FilesS {

public:
void run() {
auto& file = getArgument<0>();
FileStream fs(std::move(file));
auto output = getOutputPort<0>();

while (true) { Read, split, count

if (Ireadline(fs, line)) break;

line.tokenize();

while ((word = line.next_token()) != line.cend()) {
// put output (i.e., each word) to the output port
if (loutput.put({std::string(word), 1})) return;

W

RegisterSSDLet(idMapper, Mapper) // register class in its container module

int main(int argc, char »argv[]) {

SSD ssd("/dev/invmeOn1");
auto mid = ssd.loadModule(File(ssd, "/var/isc/slets/wordcount.slet"));

// create an Application instance and proxy SSDLet instances
Application wc(ssd);

SSDLet mapper1(wc, mid, "idMapper", make_tuple(File(ssd, filename)));
SSDLet shuffler(we, mid, "idShuffler");
SSDLet reducert ieidReducer");

// make connections between SSDlets and from Reducers back to the host
wc.connect(mapperi.out(0), shuffler.in(0));

wc.connect(shuffler.out(0), reducer1.in(0));

auto port1 = we.connectTo<pair<string, uint32_t>>(reduceri.out(0));

// start application so that all SSDlets would begin execution

wec.start();

pair<string, uint32_t> value;

while (port1.get(value) || port2.get(value)) // print out <word,freq> pairs
cout << value.first << "\t" << value.second << endl;

// wait until all SSDlets stop execution and unload the wordcount module
we.wait();

ssd.unloadModule(mid);

return 0;

31



Performance

SSD Prototype has: Two ARM Cortex R7 cores @750MHz, L1$, no cache
coherence, and Key-based pattern matcher per channel (filtering)

Power [Watts]

1 I < 4 0 ] e T T

—a— Conv
—e— Biscuit

100 200 300 400
Time [sec]

TPC-H Q1, base system energy 103 Watts

I/0 Ratio

Speed-up
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160}
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In Summary

Fast NVMs put pressure on network/link and performance demands

Modern SSDs are already software-defined, why restrict their use to a block-storage
protocol like NVMe

Willow : a user programmable RPC-based SSD design (with limited memory and

multi-tenancy management) - uses SPUs
Smart Query and Biscuit: query processing designs, with operator offloading and flow

based programming - uses ARM

e C(lean, flexible, and powerful
e Block /0, direct I/0, Append, Transactions, Caching, and KV Store

Is running a general purpose MIPS/ARM processor a right choice? Are there alternative
hardware options for programmability?
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INSIDER: Designing In-Storage Computing System for Emerging
High-Performance Drive

Zhenyuan Ruan* Tong He Jason Cong
University of California, Los Angeles

Abstract

We present INSIDER. a full-stack redesigned storage sys-
tem to help users fully utilize the performance of emerging
storage drives with moderate programming efforts. On the
hardware side. INSIDER introduces an FPGA-based recon-

ble drive ller as the in-storage puting (ISC)
unit: it is able to saturate the high drive performance while
ing enough pr bility. On the software side. IN-

SIDER integrates with the existing system stack and provides
effective abstractions. For the host programmer, we introduce
virtual file abstraction to abstract ISC as file operations: this
hides the existence of the drive processing unit and minimizes
the host code modification to leverage the drive computing
apability. By separating out the drive pi ing unit to the
data plane, we expose a clear drive-side interface so that drive
programmers can focus on describing the computation logic:
the details of data movement between different system com-
ponents are hidden. With the software/hardware co-design.
INSIDER runtime provides crucial system support. It not only
transparently enforces the isolation and scheduling among
offloaded programs, but it also protects the drive data from
being accessed by unwarranted programs.
We build an INSIDER drive prototype and implement its

c ding softy stack. The evaluation shows that IN-
SIDER achieves an average 12X performance improvement
and 31X 1 cost effici when pared to the ex-

isting ARM-based ISC system. Ad’diliomlly‘ it requires much
less effort when implementing applications. INSIDER is open-
sourced [5]. and we have adapted it to the AWS F1 instance
for public access.

1 Introduction

In_the era of his data L SVslems are exneriencing an

ment of storage technology has been continuously pushing
forward the drive speed. The two-level hierarchy (i.e.. chan-
nel and bank) of the modern storage drive provides a scal-
able way to increase the drive bandwidth [41]. Recently. we
witnessed great progress in emerging byte-addressable non-
volatile memory technologies which have the potential to
achieve near-memory performance. However, along with the

d in storage technologies. the system bottleneck
is shifting from the storage drive to the host/drive intercon-
nection [34] and host I/O stacks [31.32]. The advent of such
a "data movement wall" prevents the high performance of the
emerging storage from being delivered to end users—which
puts forward a new challenge to system designers.

Rather than moving data from drive to host. one natural
idea is to move computation from host to drive. thereby avoid-
ing the aforementioned bottlenecks. Guided by this, existing
work tries to leverage drive-embedded ARM cores [33,57.63]
or ASIC [38,40.47] for task offloading. However, these ap-
proaches face several system challenges which make them
less usable: 1) Limited performance or flexibility. Drive-

bedded cores are originally d d to execute the drive

i they are g lly too weak for in-st comput-
ing (ISC). ASIC. brings high performance due to hardware
customization: however, it only targets the specific workload.
Thus. itis not flexible enough for general ISC. 2) High pro-
gramming efforts. First. on the host side. existing systems
develop their own customized API for ISC., which is not com-
patible with an existing system interface like POSIX. This
requires considerable host code modification to leverage the
drive ISC capability. Second, on the drive side. in order to
access the drive file data, the offloaded drive program has to
understand the in-drive file system metadata. Even worse. the
daval Licitl intain gk i

has 1 "

~

Insider : Designing In-Storage Computing System for
Emerging High-Performance Drive (2019)

APl and Abstractions

Runtime

Hardware
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Programmability needs Support from the Whole Stack

Hardware
1. ASIC: fast but not-programmable
2. CPU: programmable but not fast

Runtime
1. How to ensure correct access from a code
2. How to ensure multi-tenancy with codes

APl and Abstractions
1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications

APl and Abstractions

Runtime

Hardware
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How to make Programmable Hardware?

Hardware?

Candidates: ASIC, FPGA, GPU, ARM, X86
Need to support

©)

©)

©)

General programmability
Massive parallelism (all flash chips)
High energy efficiency

APl and Abstractions

Runtime

Hardware
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How to make Programmable Hardware?

Hardware?

Candidates: ASIC, FPGA, GPU, ARM, X86
Need to support

©)

©)

©)

General programmability
Massive parallelism (all flash chips)
High energy efficiency

Do you know what FPGA is?

APl and Abstractions

Runtime

Hardware
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Field Programmable Gate Array (FPGA)

DIY hardware, programs can be compiled

to be synthesized for FPGA
Very active area of research

- Performance
- Energy efficiency
- Domain-specific architectures

Flexibility Performance
Software FPGA ASIC

L LLLLLLLLLL.
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| 3 - g
| 3 = 5
ol - g
H $ie
ol i
[ 3 = "
H Tl
[ 3 i : 1 | s "
" T EE EEEEEREEE"
IC?ulzr?:tp;lto/ck) f:iicsmf;‘ —— EM":::;“ B DSPBlock

Image credit: B. Ronak et al, Mapping for Maximum
Performance on FPGA DSP Blocks,
https://ieeexplore.ieee.org/document/7229289



https://ieeexplore.ieee.org/document/7229289

What is special about FPGA?

instructions Input
SRAM
BRERE
CPU Memory
EEENEN
results
\ }
|

- Distance to memory - Layout logic in the circuit Out\;)ut
- Instruction dependencies - Reconfigurable
- Programming control units in CPUs - Close and fast memory access

- Heavily pipelined

e  Further reading: https://blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-gpu-b234cd4f309¢
e  ZsoltlIstvan, Building Distributed Storage with Specialized Hardware,
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/266096/1/zistvan-phd-dissert-rev.pdf 39



https://blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-gpu-b234cd4f309c
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/266096/1/zistvan-phd-dissert-rev.pdf

Sources of Performance Gains

1.

Hardware-software co-design
a. Trade easy operations in hardware
with difficult ones

Specialized operations
a. Use FPGA and specialized operations

Leverage parallelism
a. Processing elements (PEs) and space

Local memories
a. Leverage SRAM

Maximize off-chip DRAM access
a. Large sequential accesses

Reduce programming overheads
a. Heavy pipelining

Input

SRAM

Layout logic in the circuit
Reconfigurable

Close and fast memory access
Heavily pipelined

~~

Output
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How to make Programmable Hardware?

Hardware?

e (andidates: ASIC, FPGA, GPU, ARM, X86
e Need to support
o General programmability
o Massive parallelism (all flash chips)
o High energy efficiency

T Joeu aRw |xe6 |Asic_ FoA |

Programmability Good Good Good No
Data- Good Poor Fair Best
) Level
Parallelism
Pipeline- No No No Best
Level

Energy Efficiency Fair Fair Poor Best

Good
Good

Good

Good

APl and Abstractions

Runtime

Hardware

41




INSIDER Architecture

Host Program

Conventional SSD

a

Storage Chips

N

[

DMA

Firmware FTL
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INSIDER Architecture

Host Program

6. Result

1. Send code, offload

INSIDER SSD

a

HT Storage Chips

DMA

3. Read PBAs T

Firmware FTL

T 2. Read LBAs

FPGA Unit

N

4. Do
PGA

-
5. Processing in FPGA /

ta for
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INSIDER Architecture

Host Program

How to make sure a rogue FPGA
program is not able to read any
arbitrary storage location or write
to any location?

INSIDER SSD

a

HT Storage Chips \

DMA

3. Read PBAs 4. Dd
PGA

Firmware FTL

T 2. Read LBAs

FPGA Unit

-
5. Processing in FPGA /

ta for
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INSIDER Architecture

Host Program

1. Send code, offload

INSIDER SSD

a

Storage Chips

N

[

DMA

Firmware FTL

FPGA Unit

5. Processing in FPGA

/

Idea 1: Make FPGA program “Compute-Only”, hence the program itself cannot issue any r/w ops.
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INSIDER Architecture

Host Program

File paths (use file as the basic
abstraction)

File System

LBA ranges 2. Read LB/

INSIDER SSD

a

\s

HT Storage Chips

3. Read PBAs T

Firmware FTL

Insider Runtime

1. Send code, offload

DMA

FPGA Unit

5. Processing in FPGA

4. Do
PGA

Idea 1: Make FPGA program “Compute-Only”, hence the program itself cannot issue any r/w ops.

Idea 2: Make a separate “control plane” which issues read operations for data which FPGA processes

ta for
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INSIDER Architecture

Host Program

INSIDER SSD

a

\s

N

HT Storage Chips

3. Read PBAs T

Firmware FTL

Insider Runtime
\

- File paths (use file as the basic
3 abstraction)

&=

o .

< File System

IS

o LBA ranges 2. Read LB/
©

c ¥

()]

(Vp)]

-

\

DMA

Rate management

4. Do
FPGA

1(a) code offloading

Idea 1: Make FPGA program “Compute-Only”, hence the program itself cannot issue any r/w ops.
Idea 2: Make a separate “control plane” which issues read operations for data which FPGA processes

0000

5. Processing in FPGA

scheduler/

Idea 3: Partition the FPGA into independent processing spaces for parallelism + scheduler

ta for
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Programmability needs Support from the Whole Stack

Hardware :> Use FPGA

:> Compute-only programs with

Runtime FPGA partitioning
1. How to ensure correct access from a code

2. How to ensure multi-tenancy with codes

APl and Abstractions
1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications

APl and Abstractions

Runtime

Hardware
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Files, File, and Files everywhere!

Everything is a file - The UNIX philosophy :)

Tells INSIDER which files to prep

// get a virtual file L —

vfile = reg virt file (real file, accelerator id);
int fd = vopen(vfile, flags); 4,—f~”’””””~’f/”/

send_params(fd, void * argc, int argv); —

int sz
int sz

vread (fd, buf, buf size);.,  ——]
vwrite (fd, buf, buf_size);

// vsync - if written

. — for reading, reserve id

Check file systems permissions, and hold
— the file for processing

. Send FPGA program parameters
— These reads and writes move data from

flash to FPGA for processing. Hence, the
virtual. Only the final result is returned!

vclose(fd); )

Synchronize and close the file to release
resources

49



Files, File, and Files everywhere!

Everything is a file - The UNIX philosophy :) Tells INSIDER which files to prep

/I/ for reading, reserve id
// get A vintiunal £4ila

vfile = You can see the basic compute-only idea here that the s permissions, and hold
user program needs to issue vread/vwrites to trigger 8

int fd |
data movements from the flash chips to FPGA. am parameters

send_pa|

int sz | FPGA itself cannot issue a read or write request! lrites move data from

int sz | yrocessing. Hence, the
~nal result is returned!

// vsync - if written

- Synchronize and close the file to release
vclose(fd); r)e/sources /
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How Does FPGA Code Look Like?

Like a simple C++ code ... (INSIDER provides a compiler)

struct app_data {
char bytes[64];
int length;

bool eop;

}

void filter(Queue<app_data> input, Queue<app_data>
output, void *argv, int argc)
{
// use argv, argv to setup the environment
item to process = input.read();
result = process(item_to process);
output.append(result);

}

// Essentially a record by record processing
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Programmability needs Support from the Whole Stack

Hardware :> Use FPGA
1. ASIC: fast but not-programmable

2. CPU: programmable but not fast

. |:f> Compute-only programs with APl and Abstractions
Runtime FPGA partitioning
1. How to ensure correct access from a code
2. How to ensure multi-tenancy with codes Runtime
API and Abstractions [ Virtual files e

1. New APIs leads to less familiarity with developers
2. Might lead to significant code modifications



Is It Simple? Compared to Moneta

Description Name LOC Devel. Time
(C) | (Person-months)
Simple 10 operations [7] Base-IO 1500 1
Virtualized SSD interface with OS bypass and permission check- | Direct-IO 1524 1.2
ing [8]
Atomic writes tailored for scalable database systems based | Atomic-Write (| 901 1
on [10]
Direct-access caching device with hardware support for dirty data | Caching 728 1
tracking [5]
SSD acceleration for MemcacheDB [9] Key-Value 834 1
Offload file appends to the SSD Append II 1588 ﬂ 1
Application Devel.Time
(Person-Day)
Grep 3
KNN 2 77 72
Statistics 3 65 170
SQL Query 5 97 256
Data Integration 5 41 307
Feature Selection 9 50 632
Bitmap file decompression 5 94 213

File based interface does offer
tangible benefits in terms of

DL developer’s familiarity
51 193
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INSIDER: Performance

[ customized 10 stack B3 pipeline & offload  £X1 data reduction

Speedup
ON P~ OOOOON

GreP \k“w\ S‘a{\s\'\os SQ\;“xeg‘a’(\f\ea’\\“e e\ g\KmaQ

Baseline : implementation on POSIX files on host

Customized I/0 Stack: Host-bypass, and use vread of INSIDER to bypass the host fs/block overheads
Pipeline and offload : Overlap compute and data movement, and offload code to INSIDER drive
Data Reduction: Gains from reducing the amount of data movement from the drive to the host

Almost an order of magnitude performance gains
54



Is FPGA the only way to provide Programmability?

No - programmability is a large concept with multiple independent ideas

e Programmability in storage device
o Integrated : ASIC, FPGA, or embedded CPU
o Side-by-side: FGPA, GPUs, ASICs, co-processor (DSPs) etc.

e How to ensure multi tenancy and isolation?

55



Scheduling, Multi-Tenancy and Isolation

User 1 Installing and running user-provided extensions
safely
User 3
Scheduling, which extension to pick next
User 2

Would it yield? Preemption?

How to ensure isolation : security and
performance for multi-tenancy

Parallel themes in the OS/Kernel development,
fault isolation, static and dynamic verifications,
etc.

Programmable Storage * Architecture

e Systems software

e Language and runtimes




Is FPGA the only way to provide Programmability?

No - programmability is a large concept with multiple independent ideas

e Programmability in storage device
o Integrated : ASIC, FPGA, or embedded CPU
o Side-by-side: FGPA, GPUs, ASICs, co-processor (DSPs) etc.
e How to ensure multi tenancy and isolation?
o Hardware
m (INSIDER) FPGA: partition the FPGA
m  (Willow/Biscuit): Use SPU-OS/ARM process scheduling
o Software, use programming languages to provide isolation and correctness
e Rust, Java script, eBPF (<-- we are working on it, see further reading)

e Whatis the new programming abstraction?
o RPCs, Virtual Files, 7?7?



Computation Storage: New Emerging Standard

SNIA.

ABOUT STANDARDS

Cloud Storage Technologies
Computational Storage
Data Governance & Security
Networked Storage
Persistent Memory
> Physical Storage
Compute, Memory, and Storage Initiative

Computational
Storage

Computational
Storage Technical
Work Group

Persistent Memory

Solid State Storage

Knowledge Center

Solid State Drive Form
Factors

Members
SFF

Solid State Drive Special Interest Group (SSD SIG)
Solid State Storage Technical Work Group

Solid State Storage System Technical Work Group
NVMe SSD Classification

Solid State Drive Form Factors

EDUCATION

Computational Storage Technical Work Group
to promote the i ility of storage devices,

The SNIA Computational Storage Technical Work Group (TWG) has been formed to create
and to define interface for system isioning, and security. This will enable storage architectures and software to be integrated
with computation in its many forms.

The Computational Storage TWG:

« Acts as a primary technical entity for the SNIA to identify, develop, and coordinate computational features to be added to storage devices.

« Produces or extends interfaces to accommodate new features.

« Promotes interoperability (for example plugfests) among devices and systems implementing a new computational storage feature.

« Coordinates the submission of new feature proposals to standards groups (e.g., NVM Express, T10, and T13).

* Creates software to encourage adoption of these updated features.

* Will assist and cooperate with other SNIA Technical Work Groups, including the Security, Object Drive, and Scalable Storage Management TWGs, in their efforts to
incorporate or manage these features, and will consider leveraging other SNIA TWG and Alliance partner work

Current work in the Computational Storage TWG includes the Cc i Storage i and Model v0.3 rev 1, currently in draft form for public

Computational Storage Architecture

Move Compute Closer to Storage

) A A
m~— AP definitions here

v \ ¥ v

gL a8
B(® 0

50 50 csp D

CSD=ComputationalStorage Drive

A
SNIA

Advancing storage &
information technology

Computational Storage
Architecture and Programming
Model

Version 0.5 Revision 1

Abstract: This SNIA document defines recommended behavior for hardware and software that
supports Computational Storage.

Publication of this Working Draft for review and comment has been approved by the Computational
Storage TWG. This draft represents a “best effort” attempt by the Computational Storage TWG to
reach preliminary consensus, and it may be updated, replaced, or made obsolete at any time. This
document should not be used as reference material or cited as other than a “work in progress.”
Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Working Draft

August 61, 2020

° https.//www.snia.org/computationaltwg

° https://www.snia.org/sites/default/files/technical work/PublicReview/SNIA-Computational-Storage-Architecture-and-Programming-M

odel-0.5R1.pdf

58


https://www.snia.org/computationaltwg
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There are Various Settings Possible

Storage

Storage Storage

. “Offload” storage workloads . “Inline” storage services . Mostly Computational SSDs

. Memory bottleneck remains . Aggregation or End-Point " For Data-Intensive Workloads

Computational SSDs, Xilinx, https://www.snia.org/sites/default/files/SDCEMEA/2019/Presentations/Computational SSDs Final.pdf



https://www.snia.org/sites/default/files/SDCEMEA/2019/Presentations/Computational_SSDs_Final.pdf

So When Does Using CSD Makes Sense?

CSD: Computation Storage Device, or CS Computational Storage
When offloading computation to the device helps

e Large data transfer reduction is possible
e When data delivery or access does not need any CPU intervention

o Example, put a video compressor in the FPGA for storing video files, compression,

deduplication
When it might have limited gains?

e Compute heavy workloads with limited/small data transfers
e Little parallelism in the workload
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Before We Conclude

A large field with different application domains, and names

e Near-Data Processing (NDP), In Storage Computation (ISC), Computational Storage (CS)
and many more

There are many flavors of programming...

1.  Map/Reduce, Spark - also ship compute code to the data server for local execution

2. Thereis a big field of Database research on programmable storage where particular DB
operators or complete queries are offloaded in storage drives
a. Pushdown of filter predicates, aggregate operators from query plans

Programmability: custom untrusted code, protection, usability and expessibility

We are currently investigating how to design, build, and use programmable storage for
data processing - interested? 61



From this Lecture You Should Know

1. What is programmable storage, and why and when this idea make sense
(and when it does not)

a. Datareduction, aggregation, filtering
b. Energy benefits

2. What are different flavor of programmability - hardware (CPUs, FPGAs,
languages), software (runtime, compiler, languages), abstractions (RPCs,
Flow-based programming, or virtual files)

3. The basic idea behind:

a. Willow

b. Smart Queries SSDs
C. Biscuit

d. INSIDER
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