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Syllabus outline 
1. Welcome and introduction to NVM (today) 
2. Host interfacing and software implications 
3. Flash Translation Layer (FTL) and Garbage Collection (GC) 
4. NVM Block Storage File systems 
5. NVM Block Storage Key-Value Stores 
6. Emerging Byte-addressable Storage
7. Networked NVM Storage 
8. Trends: Specialization and Programmability 
9. Distributed Storage / Systems - I 

10. Distributed Storage / Systems - II 
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The (new) triangle of storage hierarchy
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Tape 

Hard disk drive (HDD) 

DRAM Memory

CPU cache

CPU 
register

Cost: $ / GB 

capacity

~0.1ns

1-10ns

~10-100ns

~10-100ms

~100ms-10s

Access latencies

NAND Flash/Optane SSDs

Persistent Memory < 1 usec

~10-100 usec

- cache line granularity 
- volatile storage  
- load/store instructions

- cache line granularity 
- non-volatile storage 
- load/store instructions

- Block granularity 
- non-volatile 
- I/O commands 



Basic Model
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CPU DRAMMemory
Controller cache

Large, slow, and persistent storage 
device (NAND flash, HDD)

Data is stored persistently on storage devices 
● Block addressable 
● Use NVMe/SATA/SAS protocols to move 

data first to DRAM 
● CPU can _only_ access data from DRAM 
● To make data persistent write out again to the storage 

2-level of storage: Memory (fast, byte-addressable, small, volatile) and 
                                 Storage (slower, block-addressed, large, and non-volatile) 



NVM as Persistent Memory (pmem)
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Persistent Memories (pmem) have been the holy grail of memory hierarchies 

Ideally: performance close to DRAM, but persistent 

We have been anticipating these memories from many years, and hence, 
continued to do research in “software” architectures before they arrived
→ However, in this lecture we try to cover the latest research on these devices 

CPU

DRAM

pmem

Memory
Controller cache



Today: Intel Optane
Released in 2019 (latest and greatest piece of storage technology today) 

It is a byte-addressable, load-store accessible (from the CPU) storage that can 
be put in a DDR4 DIMM slot (uses the same mechanical and electrical 
protocols)

In comparison to DRAM 

● More capacity : 128, 256, and 512 GB DIMMs (DRAMs are usually at 32-64GB then 
they get super expensive) 

● Cheaper : than the DRAM (2-4x) times, but more expensive than Flash (10-100x) 
● Energy Efficient : Unlike DRAM, no need to constantly refresh 

Btw - be ready to refresh basic ideas in computer architecture now :) 6



Today: Intel Optane 
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https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm


Optane Memory Layout and Operation Modes 
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Memory Mode: Optane behaves 
as a large (slower) DRAM, thus not 
leveraging its persistent qualities 

● DRAM is used as a cache in 
front of XP DIMM 

● Good for applications with 
needs for large DRAM 

https://arxiv.org/abs/1908.03583


Optane Memory Layout and Operation Modes 
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Memory Mode: Optane behaves 
as a large (slower) DRAM, thus not 
leveraging its persistent qualities 

● DRAM is used as a cache in 
front of XP DIMM 

● Good for applications with 
needs for large DRAM 

AppDirect Mode: Optane is used 
as a persistent memory and 
exposed to the OS/application 

● Applications should be 
aware of its performance 
and persistence properties

https://arxiv.org/abs/1908.03583


Optane Memory Layout and Operation Modes 
Two modes: Memory Mode and App Direct Mode 
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Potential 
challenges?

https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm


How Does the Current CPU Work? (simplified)
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CPU DRAMMemory
Controller cache

Cache line size, 64B
Any size

All CPU load and store accesses go to the cache 
● Cache Hit: data is immediately transferred to the CPU 
● Cache Miss: data is fetched from DRAM into the cache, and then transferred to the CPU

Caches are always managed in the cache line granularity (64B), and this is also the unit of 
DRAM access (so, is DRAM truly a byte-addressable memory?)

Memory controller can reorder loads and stores (out of order execution), hence, there is no 
guarantees in which order instruction get to DRAM 

Question 1: How can a (i) CPU make sure that data is always flushed/pushed to DRAM; (ii) ordering? 
Question 2: Why are these concerns important? 



How Does the Current CPU Work? (simplified)
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CPU pmemMemory
Controller cache

Cache line size, 64B
Any size

All CPU load and store accesses go to the cache 
● Cache Hit: data is immediately transferred to the CPU 
● Cache Miss: data is fetched from DRAM into the cache, and then transferred to the CPU

Caches are always managed in the cache line granularity (64B), and this is also the unit of 
DRAM access (so, is DRAM truly a byte-addressable memory?)

Memory controller can reorder loads and stores (out of order execution), hence, there is no 
guarantees in which order instruction get to DRAM 

Question 1: How can a (i) CPU make sure that data is always flushed/pushed to PMEM; (ii) ordering? 
Question 2: Why are these concerns important? 

Now instead of DRAM, there is persistent memory 

1. What if my writes are only stored in the cache? 
2. Do you program cache? Isn’t cache suppose to be a micro-architecture, programmer 

invisible CPU feature 
3. What if my writes to pmem are-reordered? 



How Does the Current CPU Work? (simplified)
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Special instructions available on modern CPUs 

1. Non-temporal instructions, e.g., (bypasses the CPU cache) 
2. Explicitly flush cache lines 

Further use  to ensure all writes are globally visible and flushed 

CPU pmemMemory
Controller cache

Cache line size, 64B
Any size

https://hadibrais.wordpress.com/2019/02/26/the-significance-of-the-x86-sfence-instruction/
https://lwn.net/Articles/255364/
https://en.wikipedia.org/wiki/X86_instruction_listings
https://stackoverflow.com/questions/40096894/do-current-x86-architectures-support-non-temporal-loads-from-normal-memory


CPU Instructions
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Once flushed, data will move to the memory controller … 

https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf


Optane Internals - the Write Path 
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iMC 

Write Pending 
Queue (WPQ)

CPU 
load/store
64-bytes

Optane Controller Buffer
Address

Indirection Table 
(AIT) - cache

Optane Media

256 bytes

AIT

Writes end up in iMC, at WPQ 

Then flushed into Optane DIMM 

Optane DIMM has a write buffer, 
where 64 bytes r/w are merged 
into 256 bytes accesses to Optane 

There is indirection table mapping 
and its cache 

The Optane controller runs the 
logic. Many of the Optane details are 
secret

How do we make sure that data is not lost in the case of a power cut?



Optane Internals - the Write Path 
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iMC 

Write Pending 
Queue (WPQ)

CPU 
load/store
64-bytes

Optane Controller Buffer
Address

Indirection Table 
(AIT) - cache

Optane Media

256 bytes

AIT

A new Intel platform feature 
called Asynchronous DRAM 
Refresh (ADR) domain (area 
covered inside the dotted 
red line) 

Power storage (battery, 
supercapacitor) on the 
platform to ensure writeback 
in case of a failure (typically 
within 100 usec) 



ADR and eADR - Bringing Persistency to the whole CPU
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Optionally eADR available 
with the 3rd generation of 
Xeon processors 
(CopperLake, 2020) 

https://software.intel.com/content/www/us/en/develop/articles/build-pmem-apps-with-ras.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html


An Empirical Guide to the Behavior and Use of Scalable Persistent 
Memory (Feb, 2020)  

18



System Setup
2 x CPU 24 cores Cascade Lake 

Each CPU: 2 x iMC with 3 memory 
channels each 

Total 6 channels for DRAM and 
Optane 

2 CPU x 6 Ch. x 32 GB = 192 GB DRAM

2 CPU x 6 Ch. x 256GB = 3TB Optane

19

There are 2 of such CPUs 



Basic Performance: Latency 
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● The read latency for Optane is 2-3x higher than DRAM
● The random-vs-sequential gap is 20% for DRAM but 80% for Optane memory
● Write performance measures write reaching the ADR domain (not necessarily Optane) 



Optane Bandwidth Comparison - Scalability 
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● Peak DRAM bandwidth can be significantly higher than the Optane bandwidth
○ NI = non-interleaved (single Optane DIMM)

● Both scale nicely with the number of threads. Optane write performance dips as 
the content on the device increases. Interleaving helps with improved 
performance. 



Optane Bandwidth Comparison - Size 
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● Larger gap between read/write performance in Optane than in DRAM 
● Interleaving improves peak read and write bandwidth by ~5x (see y-axis) 
● Optane bandwidth for random accesses under 256 B is poor 

Recommendation - use 256 bytes aligned data structures and accesses 



Detecting Optane Buffer Size 

Write addresses repeatedly which are separated by certain XP Line size (256B) 

Measure WA (DIMM counter), which shows at 16 lines, 16 x 256 = 16 KB buffer 

Recommendation: Try to put related data items together in a buffer of 16kB 23



Which Write/Flush Mechanism to Use?

● Non-temporal instruction has better bandwidth (lower latency) for large accesses 
(because it does not bring cache line) 

● For small accesses (<256B), clwb is fast 

Recommendation: Based on what you are writing back, pick one - dynamic selection
24



Persistent Memory Programming (2017)
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So, How Do You Program/Manage Your NVDIMMs?
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I am going to use the term 
NVDIMM to refer to a 
general pmem technology 
not specifically to Optane



Understand: Storage and Memory 
Storage and Memory are what is known as classical two-level storage system 

● Memory (DRAM) is fast, byte-addressable and keeps data (technically 
cached) that is being worked on 

● Storage (block storage) is slower, block-addressable and keeps data 
persistently 

○ Optane and DRAM is also block-addressable, 64B blocks 

Why do we want to run a file system on top of a persistent memory? 
● Because it is known familiar interface which maintains the two-level distinction of 

storage and memory
● Data must be brought into DRAM from storage before being accessed 

27



Looking at the Storage Stack Again 

28

User space applications (databases, key-value store, browsers, file and email servers) 

The virtual file system (VFS) 

The page buffer 
cache Network-fs 

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs) 

Block-FS
(ext4, f2fs, brtfs)

Linux Block Layer

Device drivers 
(NVMe)

Kernel



Looking at the Storage Stack Again 
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User space applications (databases, key-value store, browsers, file and email servers) 

The virtual file system (VFS) 

The page buffer 
cache Network-fs 

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs) 

Block-FS
(ext4, f2fs, brtfs)

Kernel

NVDIMMs (e.g., Optane)



What Happens When I  a Page?

mmap takes pages from the page 
cache 

If no page exist then the FS brings 
the page in the cache 

Once in the cache then those DRAM 
address is used in the mmap and 
the pages are shared between the 
kernel and application

Does this make sense on NVDIMM?
30

applications

The virtual file 
system (VFS) 

Page
Cache 

Block-FS
(ext4, f2fs, brtfs)

Kernel

NVDIMMs 
(e.g., Optane)



Direct Access (DAX) Extensions for files
New file system support to directly mapped 
pages from NVDIMMs instead of making 
copies into the page cache 

Needs modification into the file system to 
support this operation 

The block size must be equal to the page 
size 

Currently 3 filesystems support DAX: ext2, 
ext4 and xfs

https://www.kernel.org/doc/Documentation/filesystems/dax.txt 
31

applications

The virtual file 
system (VFS) 

Page
Cache 

Block-FS
(ext4, f2fs, brtfs)

Kernel

NVDIMMs 
(e.g., Optane)

https://www.kernel.org/doc/Documentation/filesystems/dax.txt


Direct Access (DAX) Extensions for files
New file system support to directly mapped 
pages from NVDIMMs instead of making 
copies into the page cache 

Needs modification into the file system to 
support this operation 

The block size must be equal to the page 
size 

Currently 3 filesystems support DAX: ext2, 
ext4 and xfs

https://www.kernel.org/doc/Documentation/filesystems/dax.txt 
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applications

The virtual file 
system (VFS) 

Page
Cache 

Block-FS
(ext4, f2fs, brtfs)

Kernel

NVDIMMs 
(e.g., Optane)

https://www.kernel.org/doc/Documentation/filesystems/dax.txt


Updated Stack Image

33

MMU mappings



Updated Stack Image
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MMU mappings

What are 
pmem fs?



NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main
Memories (2016) 
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We will discuss this briefly
(this is homework)



Why do We Need Yet Another File System
Why do we need a new file system for NVMDIMM?

1. High software overheads 
2. CPU may reorder writes : need to use fence and flush appropriately 
3. Different atomicity guarantees : page vs 8-bytes or 64-bytes 
4. With directly mapped areas (DAX), how do you provide data and metadata 

consistency? 
5. Decrease contention on a shared NVDIMM from multiple cores (cache coherency 

and locking overheads) 
6. Performance: high concurrency of NVDIMMs vs block devices 

Developed NOVA file system for hybrid DRAM-NVDIMM memories 

36

https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_xu.pdf


NOVA Design and Ideas 
A Log-structured file system 

Each inode has its own log (concurrency
and parallelism) 

Each CPU has its own set of inodes and 
free list to manage 

Performance: logs in NV, and index in DRAM

Smaller segments (4kB) and implement the log as a link list 

Single inode updates (in the inode log), multiple inodes (uses the journal, 64B 
entries) 37



Nova : Write Example
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We are modifying Data2 and add Data3 

Step 1: find and copy blocks which are 
to be updated (Copy-on-write) 

Step 2: Add to the file inode log 

Step 3: Update the log tail pointer (after 
this the write is it durable) 

Step 4: Update the DRAM index for fast 
lookup 

Step 5: Garbage collect old pages 



Nova Performance Comparison 

For varmail (this workload) : 3.1-216x outperforms other file systems 

39



Is File System the Best Way to Use NVDIMM?
We do not use file system with DRAM, do we? 

With a file system 

1. Data must first be (de)serialized when reading in 
2. When writing out data must be serialized to be written out to a file 

Overheads from 

1. Complex buffer management (read, write) 
2. Serialization, deserialization process 
3. File system, block layer, I/O operations etc. 

So, coming back to the point -- how do we use DRAM actually?
40



Updated Stack Image
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MMU mappings

How do we use 
DRAM?

What are pmem 
fs - NOVA



How do We Acquire/Use DRAM?
1. Mmap → page granularity
2. malloc / calloc → small memory, allocated on the process heap 

We then build data structures in the allocated heap space (link list, trees, hash 
table)

Can we do calloc or malloc on NVDIMM memory area? 

How do we build a data structure in NVDIMM memory area? 

What are the concerns here? 

What does that would mean after a system restart?
42



NV-Heaps: Making Persistent Objects Fast and Safe with 
Next-Generation, Non-Volatile Memories (2011)
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NV Heaps 
A more interesting way to use NVDIMM is to make a persistent heap from where various 
data types can be allocated, tree, link list, hash table, etc. 

44



NV Heaps 
A more interesting way to use NVDIMM is to make a persistent heap from where various 
data types can be allocated, tree, link list, hash table, etc. 

45

Is “a” pointer suppose to be non-volatile or volatile?

Is “l” pointer suppose to be non-volatile or volatile?

Let’s say if “a” came from DRAM, and we inserted it into “*l” which came from NV memory, then 
after a restart,  “*l” will contain a bogus pointer 



NV Heaps 
A more interesting way to use NVDIMM is to make a persistent heap from where various 
data types can be allocated, tree, link list, hash table, etc. 

So, what do we need to consider? 

1. Pointer management: 
a. Non-Volatile pointers within a NV heap 
b. Non-Volatile across NV heaps 
c. Volatile pointers to a NV heap
d. NV heap pointer to a volatile pointer 

2. Memory management: memory leaks, double free
3. How and when to make structure consistent, and concurrent 

a. Locking, transaction issues ← hard to get it right even with DRAM 

Which one of the 4 pointers type should be allowed, or not allowed? 46

Non-Volatile heap

Volatile heap 



NVHeaps
Simple primitives: 

● persistent objects
● specialized pointer types
● a memory allocator
● atomic sections 

A heap “root” object (a NV pointer) can be created or 
opened by passing a file name to HVHeap 

Files are self sufficient and contains offset based 
references from the “root” to maintain integrity 

47



Example 
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A base class 

A special pointer type 

Open a heap

Get the “root” of this heap 

Atomically iterate and remove 
the item 



NVHeap - Managing Memory 
How to implement safe memory management? 

Uses operational logging and reference counting together 

● Operational logs is kept in NVM and tracks operations (free, alloc, moving, transactions, 
read, write) → helps to find bad operations

● Reference counting on each object with automatic garbage collection of objects by 
scanning if their count has hit 1 (1 because they are internally always referenced by the 
root node in the NVHeap) 

● Locks to protect reference counting with concurrent threads, where should lock be stored?
○ In DRAM: lose protection in case of a failure 
○ In NVDIMM: then you need to scan the whole NVDIMM to find all taken but failed locks

49



NVHeap - Managing Memory 
How to implement safe memory management? 

Uses operational logging and reference counting together 

● Operational logs is kept in NVM and tracks operations (free, alloc, moving, transactions, 
read, write) → helps to find bad operations

● Reference counting on each object with automatic garbage collection of objects by 
scanning if their count has hit 1 (1 because they are internally always referenced by the 
root node in the NVHeap) 

● Locks to protect reference counting with concurrent threads, where should lock be stored?
○ In DRAM: lose protection in case of a failure 
○ In NVDIMM: then you need to scan the whole NVDIMM to find all taken but failed locks

50

Use generational locks: everytime a NVHeap file is open, increment its generation and 
discard all old dirty locks 



NVHeap - How to do pointer management 

 
How to do pointer management? 

Smart pointers and overloading 

● Not supported: inter NV heap pointers or NV pointers to volatile structures 
● Operator overloading : a pointer internally contain offset and heap id to identify which heap 

they belong to 
○ Thus, creation of an inter NVheap pointer can be rejected 

● Two types of NV pointers : normal and weak 
○ Normal : increment the reference count 
○ Weak: do not increment the reference count (doubly link lists), can lead to a NULL but not 

corruption of NVHeap
● Volatile pointers to NV Heap pointers 

○ These references must count for incrementing references, however in case of a failure? 
○ Same trick as generational locks: use generational volatile→ NV reference counts 51
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How to do pointer management? 

Smart pointers and overloading 

● Not supported: inter NV heap pointers or NV pointers to volatile structures 
● Operator overloading : a pointer internally contain offset and heap id to identify which heap 

they belong to 
○ Thus, creation of an inter NVheap pointer can be rejected 

● Two types of NV pointers : normal and weak 
○ Normal : increment the reference count 
○ Weak: do not increment the reference count (doubly link lists), can lead to a NULL but not 
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○ Same trick as generational locks: use generational volatile→ NV reference counts 52
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How to do pointer management? 

Smart pointers and overloading 

● Not supported: inter NV heap pointers or NV pointers to volatile structures 
● Operator overloading : a pointer internally contain offset and heap id to identify which heap 

they belong to 
○ Thus, creation of an inter NVheap pointer can be rejected 

● Two types of NV pointers : normal and weak 
○ Normal : increment the reference count 
○ Weak: do not increment the reference count (doubly link lists), can lead to a NULL but not 

corruption of NVHeap
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NV Performance 
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● Variants: base, safe (pointers+mm), Tx (with logging), C-TX (concurrency) 
● Comparison with other alternatives: BerkeleyDB, and memcached 



Today, These Ideas...

55



Persistent Memory Development Kit (PMDK) 
A set of libraries and framework to 
manage NVDIMMs as 
1. Persistent memory; 
2. Volatile, but large memory 

Contains helper routines to allocate object, 
persistent them, transactions, log, bulk 
copying, and remote pmem access 

Binding for multiple languages 

https://pmem.io/ 

56

https://pmem.io/


Adoption Spectrum 
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https://www.slideshare.net/IntelSoftware/pmdk-essentials-parts-1-and-2-andy-rudoff-and-pawel-skowron


Adoption Spectrum 
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Memory mode

libmemkind

libvmemcache libpmemkv

libpmemobj

libpmem

https://www.slideshare.net/IntelSoftware/pmdk-essentials-parts-1-and-2-andy-rudoff-and-pawel-skowron


Example: libpmemobj
Transactional object store, providing memory allocation, transactions, 
and general facilities for persistent memory programming: 

● direct byte-level access to objects is needed
● using custom storage-layer algorithms
● persistence is required

59

https://pmem.io/pmdk/libpmemobj/


PMDK Stack Overview 
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●
●
● ←

https://pmem.io/2020/03/04/pmemkv-bindings.html
https://pmem.io/pmdk/


Want to Try NVDIMMs?
Use QEMU
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https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/virtualization/qemu


Now Image a System
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CPU
512 GB of Optane DIMM

A CPU
● With a typical 12 DIMM slots 
● Dual socket = 24 
● 24 x 512 GB = 12.3 TB of persistent storage 

No DRAM, only persistent memory  



Imagine a System with Just Optane DRAM
1. What do storage and memory mean then? Two-level of storage? 

a. Virtual memory, paging, address translation? 
b. File systems, buffer caches, files, permissions? 
c. Single address space operating systems 

2. What does execution mean? 
a. What does application installation (on fs) and execution (in DRAM) mean? 
b. What do updates mean? A new checkpointed application state? 

3. Operating system design 
a. Booting? What is that 
b. How does OS (no temporary state) interacts with devices (have DRAM, can restart) 
c. Data corruption, fault isolation in architecture specific code (less portability) 
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https://www.usenix.org/legacy/events/hotos11/tech/final_files/Bailey.pdf


Most Importantly - This will not work anymore!
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https://www.pinterest.com/pin/61572719880076742/


More New Technologies are Coming 
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https://www.eenewsanalog.com/news/first-carbon-nanotube-nram-products-due-2020-says-nantero


What You Should Know From This Lecture 
1. NV memory (Optane) integration options 
2. Optane ballpark performance numbers 
3. Concerns with the integration of NVRAM 

a. How do they integrate into the caching hierarchy 
b. Various options to write back 
c. What is ADR (eADR) and why is it necessary 

4. Basic idea of a NVRAM file system (e.g., NOVA) 
5. Basic idea and challenges in building a persistent heap (NVHeap) 
6. PMDK and pmem project, and what do they do and what they provide 

This is a very active area of research as the real hardware becomes available
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https://course.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture25-mainmemory.pdf
http://cseweb.ucsd.edu/~swanson/Pubs.php
https://www.usenix.org/system/files/atc20-bittman.pdf


Examples on Github 
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