Storage Systems (StoSys)
XM_0092

Lecture 6: Byte-Addressable Persistent
Memories

Animesh Trivedi
Autumn 2020, Period 2

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

Syllabus outline

2—Hestinterfacing-and-software-implications
4—NVM-Bleelk-Sterage Fiesystems
5—NVM-Bleek-Sterage key-Value-Steres

6. Emerging Byte-addressable Storage <:

7. Networked NVM Storage

8. Trends: Specialization and Programmability

9. Distributed Storage / Systems - |

0. Distributed Storage / Systems - Il

The (new) triangle of storage hierarchy

Cost: $/GB

- cache line granularity

cache line granularity

- non-volatile storage Persistent Memory <1usec
- load/store instructionS/ -----
NAND Flash/Optane SSDs ~10-100 usec

- Block granularity : . ~
- non-volatile Hard disk drive (HDD) 10-100ms
- 1/0 commands Tape 100ms.10s

- . -
capacity

Basic Model

cache

A,

CPU

Memory
Controller

DRAM

Y

Data is stored persistently on storage devices
e Block addressable
e Use NVMe/SATA/SAS protocols to move

data first to DRAM
e (CPU can _only_access data from DRAM

Large, slow, and persistent storage
device (NAND flash, HDD)

e To make data persistent write out again to the storage

2-level of storage: Memory (fast, byte-addressable, small, volatile) and
Storage (slower, block-addressed, large, and non-volatile)

NVM as Persistent Memory (pmem)

/ pmem
CPU > cache A LiEels)
Controller \
DRAM

Persistent Memories (pmem) have been the holy grail of memory hierarchies

Ideally: performance close to DRAM, but persistent

We have been anticipating these memories from many years, and hence,
continued to do research in “software” architectures before they arrived
— However, in this lecture we try to cover the latest research on these devices

Today: Intel Optane

Released in 2019 (latest and greatest piece of storage technology today)

It is a byte-addressable, load-store accessible (from the CPU) storage that can
be put in a DDR4 DIMM slot (uses the same mechanical and electrical
protocols)

In comparison to DRAM

e More capacity: 128, 256, and 512 GB DIMMs (DRAMs are usually at 32-64GB then
they get super expensive)

Cheaper : than the DRAM (2-4x) times, but more expensive than Flash (10-100x)
Energy Efficient : Unlike DRAM, no need to constantly refresh

Btw - be ready to refresh basic ideas in computer architecture now :)

Today: Intel Optane

ller

DDR-T protocol DDR4 protocol

|
l

SeuaS [OTU0Y PonPOWN
sjeudis jonuo)

seudis |0U0) papowun

DDR4 DRAM

(inteD OPTANE DC 0%

PERSISTENT MEMORY

Intel Optane DC Persistent Memory Module (PMM,), https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm

https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm

Optane Memory Layout and Operation Modes

Memory Mode: Optane behaves Far Mem Near Menm

as a large (slower) DRAM, thus not
leveraging its persistent qualities

e DRAM is used as a cachein

o ———

front of XP DIMM

|

|

:

i

|

e Good for applications with m !
needs for large DRAM !
|

|

EXIN

|

|

Direct-mapped Cache
(4KB Block) CPU

Memory Mode

LLC cache

o1
Mesh Interconnect

————— —

An Empirical Guide to the Behavior and Use of Scalable Persistent Memory, https://arxiv.org/abs/1908.03583

https://arxiv.org/abs/1908.03583

Optane Memory Layout and Operation Modes

Memory Mode: Optane behaves Far Mem Near Mem AppDirect Mode

as a large (slower) DRAM, thus not el
leveraging its persistent qualities

e DRAM is used as a cachein

front of XP DIMM

|

|

!

|

|

e Good for applications with m !
needs for large DRAM !
|

|

|

|

|

AppDirect Mode: Optane is used
as a persistent memory and m
exposed to the OS/application |
e Applications should be Direct-mapped Cache
aware of its performance (4KB Block) CPU
and persistence properties Memory Mode

Interleaved

LLC cache

oo
Mesh Interconnect

————— —

An Empirical Guide to the Behavior and Use of Scalable Persistent Memory, https://arxiv.org/abs/1908.03583

https://arxiv.org/abs/1908.03583

Optane Memory Layout and Operation Modes

Two modes: Memory Mode and App Direct Mode

/ DRAM Cache Hit \

-

CPU CACHES

Sugss /

/ DRAM Cache Miss

inteD
N Do

S

/ App Direct Read \

CPU CACHES

v

https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm

\ @ OPTANEDCO)

Potential
challenges?

10

https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm

How Does the Current CPU Work? (simplified)

Any size
4 Cache line size, 64B
—
CPU = cache ISRl DRAM
— Controller | —
— —
— —
— —

All CPU load and store accesses go to the cache
e Cache Hit: data is immediately transferred to the CPU
e Cache Miss: data is fetched from DRAM into the cache, and then transferred to the CPU

Caches are always managed in the cache line granularity (64B), and this is also the unit of
DRAM access (so, is DRAM truly a byte-addressable memory?)

Memory controller can reorder loads and stores (out of order execution), hence, there is no
guarantees in which order instruction get to DRAM

Question 1: How can a (i) CPU make sure that data is always flushed/pushed to DRAM; (ii) ordering?

11
Question 2: Why are these concerns important?

How Does the Current CPU Work? (simplified)

Any size
4 Cache line size, 64B
—
CPU = cache Memory
— Controller
—
—
—

pmem

[
[
[
[

Now instead of DRAM, there is persistent memory

—_—

What if my writes are only stored in the cache?

invisible CPU feature
3. What if my writes to pmem are-reordered?

Do you program cache? Isn't cache suppose to be a micro-architecture, programmer

Question 1: How can a (i) CPU make sure that data is always flushed/pushed to PMEM,; (ii) ordering?

Question 2: Why are these concerns important?

12

AN =

How Does the Current CPU Work? (simplified)

Any size
y Cache line size, 64B
M
— - emory
&Pt cadie — Controller | — pmem
— —
— —
— —

Special instructions available on modern CPUs

1. Non-temporal instructions, e.g., movnta,movntadqa (bypasses the CPU cache)
2. Explicitly flush cache lines (c1flush, clflushopt, clwb)

Further use sfence to ensure all writes are globally visible and flushed

The Significance of the x86 SFENCE Instruction, https://hadibrais.wordpress.com/2019/02/26/the-significance-of-the-x86-sfence-instruction/
Memory part 5: What programmers can do https:/lwn.net/Articles/255364/
https://en.wikipedia.org/wiki/X86 instruction listings

https://stackoverflow.com/questions/40096894/do-current-x86-architectures-support-non-temporal-loads-from-normal-memor

https://hadibrais.wordpress.com/2019/02/26/the-significance-of-the-x86-sfence-instruction/
https://lwn.net/Articles/255364/
https://en.wikipedia.org/wiki/X86_instruction_listings
https://stackoverflow.com/questions/40096894/do-current-x86-architectures-support-non-temporal-loads-from-normal-memory

CPU Instructions

This instruction, supported in many generations of CPU, flushes a single cache line. Historically, this instruction
CLFLUSH ! s . 4 : g .

is serialized, causing multiple CLFLUSH instructions to execute one after the other without any concurrency.

This instruction, newly introduced for persistent memory support, is like CLFLUSH but without the
CLFLUSHOPT serialization. To flush a range, software executes a CLFLUSHOPT instruction for each 64-byte cache line
(followed by an in the range, followed by a single SFENCE instruction to ensure the flushes are complete before continuing.
SFENCE) CLFLUSHOPT is optimized (hence the name) to allow some concurrency when executing multiple

CLFLUSHOPT instructions back-to-back.
CLWB Another newly introduced instruction, CLW B stands for cache line write back. The effect is the same as
(followed by an CLFLUSHOPT except that the cache line may remain valid in the cache (but no longer dirty, since it was
SFENCE) flushed). This makes it more likely to get a cache hit on this line as the data is accessed again later.
NT stores Another feature that has been around for a while in x86 CPUs is the non-temporal store. These stores are “write
(followed by an combining” and bypass the CPU cache, so using them does not require a flush. The final SFENCE instruction is
SFENCE) still required to ensure the stores have reached the persistence domain.

This kernel-mode-only instruction flushes and invalidates every cache line on the CPU that executes it. After

executing this on all CPUs, all stores to persistent memory are certainly in the persistence domain, but all cache
WBINVD lines are empty, impacting performance. In addition, the overhead of sending a message to each CPU to execute

this instruction can be significant. Because of this, WBINVD is only expected to be used by the kernel for

flushing very large ranges, many megabytes at least.

Once flushed, data will move to the memory controller ...

Andy Rudoff, Persistent Memory Programming, https://www.usenix.org/system/files/login/articles/login summer17 07 rudoff.pdf

14

https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf

Optane Internals - the Write Path

CPU
load/store
64-bytes

iMC

L

Write Pending

Queue (WPQ)

Address
Optane Controller Buffer Indirection Table
(AIT) - cache
256 bytes
Optane Media AIT

Writes end up in iMC, at WPQ
Then flushed into Optane DIMM

Optane DIMM has a write buffer,
where 64 bytes r/w are merged
into 256 bytes accesses to Optane

There is indirection table mapping
and its cache

The Optane controller runs the
logic. Many of the Optane details are
secret

How do we make sure that data is not lost in the case of a power cut? 15

Optane Internals - the Write Path

-| iMC
CCPU ™ """ T TN T werserrre |
Write Pending
load/st
604czb;teo‘sre 1 Queue (WPQ) A new Intel platform feature
] called Asynchronous DRAM

Refresh (ADR) domain (area
covered inside the dotted
red line)

1 1

1 1

1 |

1 1

1 1

1 1

1 |

1 1

1 1

: Buft Address :

I Optane Controller utrer Indirection Table ' p

ower storage (battery,

i (AIT) - cache ! ge (battery
1 |

1 1

1 1

1 1

1 |

1 1

1 1

1 1

1 |

supercapacitor) on the
platform to ensure writeback
in case of a failure (typically
within 100 usec)

256 bytes

Optane Media AIT

——

ADR and eADR - Bringing Persistency to the whole CPU

CLWB + fence :

: -or- Custom .

: CLFLUSHOPT + fence Power fail protected domain :

Q -or- indicated by ACPI property: :

: 3 CLFLUSH CPU Cache Hierarchy :

] z -or- : eADR

= NT stores + fence

: -or- :

é WBINVD (kernel only)
T S Optional/y eADR available
. g ':?r'_‘ Minimum Required E with the 3rd generation Of
: 2 WPQ Flush (kernel only) Power fail protected domain: : Xeon processors

o Memory subsystem -

: ADR (CopperLake, 2020)

Build Persistent Memory Applications with Reliability Availability and Serviceability, https:/software.intel.com/content/www/us/en/develop/articles/build-pmem-apps-with-ras.html
Third Generation Intel® Xeon® Processor Scalable Family Technical Overview,
https:/software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html

17

https://software.intel.com/content/www/us/en/develop/articles/build-pmem-apps-with-ras.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html

An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory (Feb, 2020)

An Empirical Guide to the Behavior and Use of Scalable Persistent Memory

Jian Yang ', Juno Kim', Morteza Hoseinzadeh', Joseph Izraelevitz*, and Steven Swanson’

{jianyang, juno, mhoseinzadeh, swanson) @eng.ucsd.edu’ joseph.izraelevitz @colorado.edu®
fUC San Diego ¥University of Colorado, Boulder

Abstract

After nearly adecade of anticipation, scalable nonvolatile
memory DIMMs are finally commercially available with the
release of Intel’s Optane DIMM. This new nonvolatile DIMM
supports byte-granularity accesses with access times on the or-
der of DRAM, while also providing data storage that survives
power outages.

Researchers have not idly waited for real nonvolatile
DIMMs (NVDIMMs) to arrive. Over the past decade. they
have written a slew of papers proposing new programming
models. file systems, libraries, and applications built to exploit
the performance and flexibility that NVDIMMs promised to
deliver. Those papers drew conclusions and made design de-
cisions without detailed knowledge of how real NVDIMMs
would behave or how industry would integrate them into com-
puter architectures. Now that Optane NVDIMMs are actually
here, we can provide detailed performance numbers,

have made about how NVDIMMs would behave and per-
form are incorrect. The widely expressed expectation was
that NVDIMMs would have behavior that was broadly sim-
ilar to DRAM-based DIMMs but with lower performance
(i.e.. higher latency and lower bandwidth). These assumptions
are reflected in the methodology that research studies used to
emulate NVDIMMs, which include specialized hardware plat-
forms [21], software emulation mechanisms [12,32,36,43 47|,
exploiting NUMA effects [19.20,29]. and simply pretending
DRAM is persistent [8.9, 38].

We have found the actual behavior of Optane DIMMs to
be more complicated and nuanced than the “slower. persis-
tent DRAM" label would suggest. Optane DIMM perfor-
mance is much more strongly dependent on access size. ac-
cess type (read vs. write). pattern, and degree of concurrency
th:m DRAM perfonnmwe Funhcrmme Optane DIMM’s per-

bined with the architectural support that Intel’s

guidance for programmers on these systems, reevaluate prior
art for performance. and reoptimize persistent memory soft-
ware for the real Optane DIMM.

In this paper. we explore the performance properties and
characteristics of Intel's new Optane DIMM at the micro and
macro level. First, we investigate the basic characteristics of
the device. taking special note of the particular ways in which
its performance is peculiar relative to traditional DRAM or
other past methods used to emulate NVM. From these obser-
vations, we recommend a set of best practices to maximize the
performance of the device. With our improved understanding,
we then explore and reoptimize the performance of prior art

latest p provide, leads to a wider range of design
choices for software designers.

This paper presents a detailed evaluation of the behavior
and performance of Optane DIMMs on microbenchmarks and
applications and provides ¢ ionable guidelines for
how programmers should tune their programs to make the
best use of these new memories. We describe these guidelines.
explore their q and d rate their utility by
using them to guide the optimization of several NVMM-aware
software packages. noting that prior methods of emulation
have been unreliable.

The paper prooeeds as follows. Section 2 provides archi-
1 dotoil, + lai A tbo Dot INIAAAS

18

System Setup

2 X CPU 24 cores Cascade Lake

Each CPU: 2 x iMC with 3 memory
channels each

Total 6 channels for DRAM and
Optane

2 CPU x 6 Ch. x 32 GB =192 GB DRAM

2 CPU x 6 Ch. x 256GB = 3TB Optane

Optane DIMM i@ Optane DIMM #3

CPU
II!H!IIIIII!IHIII

LLC cache

Optane DIMM #1 Optane DIMM i4

Optane DIMM #2 Optane DIMM #5

PhyAddr Offset: 0 24KB

Stripe Size

LU 2 #3 #1 #5 #0 #4 #2 #3
DIVITUCEE 0 0 (0 0 0 0 4K 4K

Interleaving Size
(c) Interleaved Optane DIMMs

There are 2 of such CPUs

19

Basic Performance: Latency

300 i 30> EE DRAM
= B Optane
e 200 -

3
3 8690
P 100 - 5762
L
. 1]
Read Read Write Write
Sequential Random (ntstore) (clwb)

e Theread latency for Optane is 2-3x higher than DRAM
e The random-vs-sequential gap is 20% for DRAM but 80% for Optane memory
e Write performance measures write reaching the ADR domain (not necessarily Optane) 20

Optane Bandwidth Comparison - Scalability

DRAM Optane-NI Optane
- 8 40
£ 100 -
) 6 - 30 A
e
§ 50 - 4 20 -
]
i 21 A 10 A
@
0 0 T T T T 0 T T T T
0 5 10 15 20 25 D 5 10 15 20 25 0 5 10 15 20 25

\ # Threads ‘\#Th reads # Threads

e Peak DRAM bandwidth can be significantly higher than the Optane bandwidth
o NI =non-interleaved (single Optane DIMM)

e Both scale nicely with the number of threads. Optane write performance dips as
the content on the device increases. Interleaving helps with improved
performance.

21

Optane Bandwidth Comparison - Size

DRAM (24/24/24) Optane-NI (4/1/2) Optane (16/4/12)

— 8 40

& 100 =1 PR S g

o | 6 - 30

L=

§ 50 - —a— Read 4 - 20 A

£ —— Write(ntstore) o 10 1

é = WritelciiE /j M

1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1
64B 512B 4KB 32KB 256KB 2MB q4B 512B 4KB 32KB 256KB 2MB 64B 512B 4KB 32KB 256KB 2MB

Access Size (bytes) _"\Access Size (bytes) _\ Access Size (bytes)

Larger gap between read/write performance in Optane than in DR
Interleaving improves peak read and write bandwidth by ~5x (see y-axis)
Optane bandwidth for random accesses under 256 B is poor

Recommendation - use 256 bytes aligned data structures and accesses

22

Detecting Optane Buffer Size

2.0 5

1.5 =

10 =

Write Amplification

T T T T T
64B 512B 4KB 32KB 256KB 2MB

Region size

Write addresses repeatedly which are separated by certain XP Line size (256B)
Measure WA (DIMM counter), which shows at 16 lines, 16 x 256 = 16 KB buffer

Recommendation: Try to put related data items together in a buffer of 16kB

23

Which Write/Flush Mechanism to Use?

15

Bandwidth (6 threads) (GB/s)

64B 256B 1K 4K
Access Size (bytes)

Latency (microsec)

0.1

—— ntstore
—v— store+clwb

64B 256B 1K 4K
Access Size (bytes)

e Non-temporal instruction has better bandwidth (lower latency) for large accesses
(because it does not bring cache line)

e For small accesses (<256B), clwb is fast

Recommendation: Based on what you are writing back, pick one - dynamic selection

24

Persistent Memory Programming (2017)

Persistent Memory Programming

ANDY RUDOFF

Andy Rudoff is a Senior
Principal Engineer at Intel

I

rporation, focusing on non-
ile memoary programming
i N H He is a contributor 1o the SNIA

NVM Programming Technical W p.

His more than 30 years” industry experience

ncludes design and development work in

ting systems, tems, networking,

lar

and fault management at com;

and small, including Sun Mi

ystems and
VMware. Andy has taught various operating
systems classes over the years and is a

ithor of the popular UNIX Network
ming textbook. Haint:

n the June 2013 issue of ;login:, I wrote about future interfaces for non-

volatile memory (NVM) [1]. In it, I described an NVM programming

model specification [2] under development in the SNIA NVM Program-
ming Technical Work Group (TWG). In the four years that have passed, the
spec has been published, and, as predicted, one of the programming models
contained in the spec has become the focus of considerable follow-up work.
That programming model, described in the spec as NVM.PM.FILE, states
that persistent memory (PM) should be exposed by operating systems as
memory-mapped files. In this article, I'll describe how the intended persistent
memory programming model turned out in actual OS implementations, what
work has been done to build on it, and what challenges are still ahead of us.

The Essential Background on Persistent Memory

The terms persistent memory and storage class memory are synonymous, describing media
with byte-addressable, load/store memory access, but with the persistence properties of
storage. In this article, I will focus on persistent memory connected to the system memory
bus, like a DRAM DIMM, creating a class of non-volatile DIMMs known as NVDIMMs.

To further clarify what [mean by persistent memory. I am only speaking about NVDIMMs
that allow software to access the media as memory (some NVDIMMs only support block
access and are not covered here). This provides all the benefits of memory semantics. like
CPU cache coherency, direct memory access (DMA) by other devices, and cache line granu-
larity access which programmers can treat as byte-addressability. To provide these seman-
tics, the media must be fast enough that it is reasonable to stall a CPU while an instruction

is accessing it. NAND Flash, for example, is too slow to be considered persistent memory

by itself, since access is typically done in block granularity and it takes long enough that
context switching to allow another thread to do work makes more sense than stalling. Where
hard drive accesses are typically measured in milliseconds, and NAND Flash SSD accesses
are d in mi d: i memory accesses are measured in nanoseconds.
Depending on the exact type of media, an NVDIMM may not be as fastas DRAM, but it isin
the neighborhood.

25

So, How Do You Program/Manage Your NVDIMMs?

Management Ul [Application J L Application] L Application m

! Tk = e
Management Library
A
v A
File System PM-Aware -
i File System i
o - PO 1 i I am going to use the term
NVDIMM to refer to a
general pmem technology
not specifically to Optane

y
NVDIMMs .I

26

Understand: Storage and Memory

Storage and Memory are what is known as classical two-level storage system

e Memory (DRAM) is fast, byte-addressable and keeps data (technically
cached) that is being worked on
e Storage (block storage) is slower, block-addressable and keeps data

persistently
o Optane and DRAM is also block-addressable, 64B blocks

Why do we want to run a file system on top of a persistent memory?
e Because itis known familiar interface which maintains the two-level distinction of

storage and memory
e Data must be brought into DRAM from storage before being accessed

27

Looking at the Storage Stack Again

User space applications (databases, key-value store, browsers, file and email servers)

Jread, write, open, stat, chmod (syscalls)

The virtual file system (VFS) I N

The page buffer
. \ cache
Network-fs Pseudo FS Special FS Block-FS

(NFS, samba) (proc, sys) (tmpfs) (ext4, f2fs, brtfs) {

Kernel Linux Block Layer

Device drivers
(NVMe)

28

Looking at the Storage Stack Again

User space applications (databases, key-value store, browsers, file and email servers)

Jread, write, open, stat, chmod (syscalls)

The virtual file system (VFS) I N

The page buffer
. cache
Network-fs Pseudo FS Special FS Block-FS
(NFS, samba) (proc, sys) (tmpfs) (ext4, f2fs, brtfs){

Kernel

NVDIMMs (e.g., Optane)

29

What Happens When | mmap a Page?

mmap takes pages from the page
cache

applications

If no page exist then the FS brings
the page in the cache

The virtual file
system (VES)

Block-FS
(extd, f2fs, brtfs),

Kernel

Once in the cache then those DRAM
address is used in the mmap and
the pages are shared between the
kernel and application

NVDIMMs Does this make sense on NVDIMM?

.g., Opt
(e.g., Optane) .

Direct Access (DAX) Extensions for files

New file system support to directly mapped
pages from NVDIMMs instead of making
copies into the page cache

applications

The virtual file Needs modification into the file system to
system (VES) . .
support this operation

Block-FS
(extd, f2fs, brtfs),

Kernel

The block size must be equal to the page
Size

Currently 3 filesystems support DAX: ext2,
ext4 and xfs

NVDIMMs
(e.g., Optane) https://www.kernel.org/doc/Documentation/filesystems/dax.txt

31

https://www.kernel.org/doc/Documentation/filesystems/dax.txt

Direct Access (DAX) Extensions for files

‘tly mapped
.| » Before DAX * DAX-enabled aking.
ﬂ ystem o

the page

Memory Contraller

data
[
(exts Memory Controller

Ss

m (DRAM [WML |DAX: ext2,
Kernel

Page Cache:
(e.g., uptarie)

esystems/dax.txt

32

https://www.kernel.org/doc/Documentation/filesystems/dax.txt

Updated Stack Image

Management Ul

!

Management Library
A

[Application J [Application J [Application -]

Standard Standard Standard Load/Store
Raw Device File API File API User
Access Space
File System | DAX SN Aware |
I File System
Kernel
> NVDIMM Driver Fpace
MMU mappings

NVDIMMs

33

Updated Stack Image
Management Ul [Application J [Application } [Application -]

! rh s e T R
Access Space
Management Library
A
File System | DAX = What are
PM-Aware e 5
File System = pmem fs:
! ! |
Kerne
> NVDIMM Driver Space
MMU mappings

NVDIMMs

NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main

Memories (2016)

NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main
Memories

Jian Xu

Steven Swanson

University of California, San Diego

Abstract

Fast non-volatile memories (NVMs) will soon appear on
the processor memory bus alongside DRAM. The result-
ing hybrid memory systems will provide software with sub-
microsecond, high-bandwidth access to persistent data, but
managing, accessing, and maintaining consistency for data
stored in NVM raises a host of challenges. Existing file sys-
tems built for spinning or solid-state disks introduce software
overheads that would obscure the performance that NVMs
should provide, but proposed file systems for NVMs either in-
cur similar overheads or fail to provide the strong consistency
guarantees that applications require.

‘We present NOVA, a file system designed to maximize
performance on hybrid memory systems while providing
strong consistency guarantees. NOVA adapts conventional
log-structured file system techniques to exploit the fast ran-
dom access that NVMs provide. In particular, it maintains
separate logs for each inode to improve concurrency, and
stores file data outside the log to minimize log size and re-
duce garbage collection costs. NOVA's logs provide meta-
data, data, and mmap atomicity and focus on simplicity and
reliability, keeping complex metadata structures in DRAM
to accelerate lookup operations. Experimental results show
that in write-intensive workloads, NOVA provides 22% to
216x throughput improvement compared to state-of-the-art
file systems, and 3.1x to 13.5x improvement compared to
file systems that provide equally strong data consistency guar-

Hybrid DRAM/NVMM storage systems present a host of
opportunities and challenges for system designers. These sys-
tems need to minimize software overhead if they are to fully
exploit NVMM’s high performance and efficiently support
more flexible access patterns, and at the same time they must
provide the strong consistency guarantees that applications
require and respect the limitations of emerging memories
(e.g., limited program cycles).

Conventional file systems are not suitable for hybrid mem-
ory systems because they are built for the performance char-
acteristics of disks (spinning or solid state) and rely on disks’
consistency guarantees (e.g., that sector updates are atomic)
for correctness [47]. Hybrid memory systems differ from
conventional storage systems on both counts: NVMMs pro-
vide vastly improved performance over disks while DRAM
provides even better performance, albeit without persistence.
And memory provides different consistency guarantees (e.g.,
64-bit atomic stores) from disks.

Providing strong consistency guarantees is particularly
challenging for memory-based file systems because main-
taining data consistency in NVMM can be costly. Modern
CPU and memory systems may reorder stores to memory to
improve performance, breaking consistency in case of system
failure. To compensate, the file system needs to explicitly
flush data from the CPU’s caches to enforce orderings, adding
significant overhead and squandering the improved perfor-
mance that NVMM can provide [6, 76].

We will discuss this briefly
(this is homework)

35

Why do We Need Yet Another File System

Why do we need a new file system for NVMDIMM?

W=

6.

High software overheads

CPU may reorder writes : need to use fence and flush appropriately

Different atomicity guarantees : page vs 8-bytes or 64-bytes

With directly mapped areas (DAX), how do you provide data and metadata
consistency?

Decrease contention on a shared NVDIMM from multiple cores (cache coherency
and locking overheads)

Performance: high concurrency of NVDIMMs vs block devices

Developed NOVA file system for hybrid DRAM-NVDIMM memories

https://www.usenix.org/sites/default/files/conference/protected-files/fast16 slides xu.pdf 36

https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_xu.pdf

NOVA Design and Ideas

CPUT ~ CPU2 ~ CPU3 ~ CPU4
:/ Free list } :r Free list : :/ Free list } :/ Free list }
| | | |
A Log-structured file system oraM | OO i__i_@?gj__i_gﬁ_?@_l_{_@?gj
NVMM i [Journal | : i [Journal | : i [Journal | : i [Journal | :
. . uper | | |
Each inode has its own log (concurrency s L:Tﬁﬂﬁtlar:‘i | :\'”°"e,t’f‘,b,'f‘i (T | :\.'”,‘H‘iﬁb,'? |
] Recovery | 7777 ___"'_“ T T
and para”ellsm) hodo Inode || Head | Tail
Each CPU has its own set of inodes and Inode log 1 N
free |ISt tO manage |:] Committed log entry m Uncommitted log entry

Performance: logs in NV, and index in DRAM
Smaller segments (4kB) and implement the log as a link list

Single inode updates (in the inode log), multiple inodes (uses the journal, 64B
entries) 87

Nova : Write Example

File radix tree (root

& —— 1
0 1! 2| 3|\ step4
DRAM }
__________ ___/___ s e Wl el s S i i e
o XN | e 1
BN 1 Old tail E_New tail Step 3|
/ I ———f———————— A
A A A 4
File log <0, 1> <1,2> <2, 2>
/ / | ___|Step2]
Data 0 Data 1 | Data 2 Data 2 | Data 3
| Step5 | Step 1 i

[_1 File write entry ~ [_] Data page

We are modifying Data2 and add Data3
<write order, number of page affected>

Step 1: find and copy blocks which are
to be updated (Copy-on-write)

Step 2: Add to the file inode log

Step 3: Update the log tail pointer (after
this the write is it durable)

Step 4: Update the DRAM index for fast
lookup

Step 5: Garbage collect old pages

38

Nova Performance Comparison

Va rma|| — Btrfs = Ext4-data

450 . , B NILFS2 [Z3 Ext4-DAX |-
B F2FS EEA PMFS
400} M I Ext4 1 NOVA

350} il .
300 i -
250
200} .

1

=
ul
o

Ops per second (x1000)
o
o

Ul
o
T

o

STTRAM-small STTRAM-large PCM-small PCM-large

For varmail (this workload) : 3.1-216x outperforms other file systems

39

Is File System the Best Way to Use NVDIMM?

We do not use file system with DRAM, do we?
With a file system

1. Data must first be (de)serialized when reading in
2. When writing out data must be serialized to be written out to a file

Overheads from

1. Complex buffer management (read, write)
2. Serialization, deserialization process
3. File system, block layer, I/0 operations etc.

So, coming back to the point -- how do we use DRAM actually?

40

Updated Stack Image

How do we use
Management Ul [Application J [Application } [Application -] DRAM?

ndart A ndar naar:

I Rz:va Dc:avi‘:e SFt;e ‘:\P:’ sFt: e ‘;\Pld Load/Store Uear

Access Space
Management Library
A
DAX 3
File System | DAX O . What are pmem
File System fS - NO VA

N _
> NVDIMM Driver Space

MMU mappings

NVDIMMs

41

How do We Acquire/Use DRAM?

1. Mmap — page granularity
2. malloc/ calloc — small memory, allocated on the process heap

We then build data structures in the allocated heap space (link list, trees, hash
table)

Can we do calloc or malloc on NVDIMM memory area?

How do we build a data structure in NVDIMM memory area?

What are the concerns here?

What does that would mean after a system restart?

42

NV-Heaps: Making Persistent Objects Fast and Safe with
Next-Generation, Non-Volatile Memories (2011)

NV-Heaps: Making Persistent Objects Fast and Safe
with Next-Generation, Non-Volatile Memories

Joel Coburn Adrian M. Caulfield

Ameen Akel Laura M. Grupp

Rajesh K. Gupta Ranjit Jhala Steven Swanson
Department of Computer Science and Engineering
University of California, San Diego
{jdcoburn, acaulfie, aakel, Igrupp, rgupta, jhala, swanson }@cs.ucsd.edu

Abstract

b

Persistent, user-defined objects present an attractive for
working with non-volatile program state. However, the slow speed
of persistent storage (i.¢., disk) has restricted their design and lim-
ited their performance. Fast, byte-addressable, non-volatile tech-
suchas phase change memary, will remove this constraint
and allow p: 10 build high-p data
structures in non-volatile storage that is almost as fast as DRAM.
Creating these data structures requires a system that is lightweight
enough to expose the performance of the underlying memaries but
also ensures safety in the presence of application and system fail-
ures by avoiding familiar bugs such as dangling pointers, multiple
free()s, and locking emors. In addition, the system must prevent
new types of hard-to-find pointer safety bugs that only arise with
persistent objects. These bugs are especially dangerous since any
comruption they cause will be permanent.

We have implemented a lightweight, high-performance persis-
tent object system called NV-heaps that provides transactional se-
mantics while preventing these emors and providing a model for
persistence that is easy to use and reason about. We implement
search trees, hash tables, sparse graphs, and amays using N V-heaps,
BerkeleyDB, and Stasis. Our results show that NV-heap perfor-
mance scales with thread count and that data structures imple-
mented using NV-heaps out-perform BerkeleyDB and Stasis im-
plementations by 32x and 244x, respectively, by avoiding the op-
erating system and minimizing other software overheads. We also
quantify the cost of enforcing the safety guarantees that NV-heaps
provide and measure the costs of NV-heap primitive operations.

Cal(gnnu and Subject Dntnplnn D 4 2 IOperaﬂn,e Snlenu]
S

gu.rhngc collec-
ons

The notion of memory-mapped persistent data structures has long
been compelling: Instead of reading bytes serially from a file and
building data structures in memory, the data structures would ap-
pear, ready to use in the program’s address space, allowing quick
access to even the largest, most complex persistent data structures.
Fast, persistent structures would let programmers leverage decades
of work in data structure design to implement fast, purpose-built
persistent structures. They would also reduce our reliance on the

! I, un-yped file-based 10 operations that do not integrate
well with most programming languages.

Many systems (e.g., object-oriented databases) have provided
persistent data structures and integrated them tightly into pro-
gramming languages. These systems faced a common challenge
that arase from the performance and interface differences between
volatile main memory (i.e., DRAM) and persistent mass stor-

i.c., disk): They required complex buffer management and
n) mechanisms to move data to and from DRAM.
ades of work optimizing this process, slow disks ul-
v limit performance, especially if strong consistency and
durability guarantees are necessary.

ew non-volatile memory technologies, such as phase change
and spin-torque transfer memories, are poised to remove the disk-
imposed limit on persistent object performance. These technolo-
gies are hundreds of times faster than the NAND flash that makes
up existing solid state disks (SSDs). While NAND, like disk, is
fundamentally block-oriented, these new technologies offer both
a DRAM-like byte-addressable interface and DRAM-like perfor-
mance. This potent combination will allow them to reside on the
processar's memary bus and will nearly eliminate the gap in per-

formance hclwccn \ul.mlc and nun-\ul.mlc storage.
Naith, 4 Bl 2 i

43

NV Heaps

A more interesting way to use NVDIMM is to make a persistent heap from where various
data types can be allocated, tree, link list, hash table, etc.

Insert(Object * a, List<Object> * 1);

44

NV Heaps

A more interesting way to use NVDIMM is to make a persistent heap from where various
data types can be allocated, tree, link list, hash table, etc.

Insert(Object * a, List<Object> * 1);

Is “I” pointer suppose to be non-volatile or volatile?

Is “a” pointer suppose to be non-volatile or volatile?

Let’s say if “a” came from DRAM, and we inserted it into “*I” which came from NV memory, then
after a restart, “*I” will contain a bogus pointer

45

NV Heaps

A more interesting way to use NVDIMM is to make a persistent heap from where various

data types can be allocated, tree, link list, hash table, etc. O Non-Volatile heap

So, what do we need to consider? Q Volatile heap

1. Pointer management:
a. Non-Volatile pointers within a NV heap
b. Non-Volatile across NV heaps

c. Volatile pointers to a NV heap
d. NV heap pointer to a volatile pointer
2. Memory management: memory leaks, double free

3. How and when to make structure consistent, and concurrent
a. Locking, transaction issues « hard to get it right even with DRAM

Which one of the 4 pointers type should be allowed, or not allowed?

NVHeaps

Simple primitives:
persistent objects
specialized pointer types
a memory allocator
atomic sections

A heap “root” object (a NV pointer) can be created or
opened by passing a file name to HVHeap

Files are self sufficient and contains offset based
references from the “root” to maintain integrity

User-
space

OS

HW

Application

NV-heaps

allocation, garbage

. collection, and transactions :

Non-volatile memory
allocation and mapping

Non-volatile memory

47

Example

class NVList : public NVObject {

DECLARE_MEMBER(int, value);
DECLARE_PTR_MEMBER(NVList::NVP
)2

void remove (int k)
{
NVHeap * nv =
NVList::VPtr a =

AtomicBegin {
while (a->get— t()
if (a->get next (
a->set next (a->get neX

= NULL)

}
a = a->get_next();

}
} AtomicEnd;

NVHOpen ("foo.nvheap") ;

nv->GetRoot<NVList: :NVPtr> () ;

t value () == k) {

DECLARE POINTER TYPES (NVList);
public:

\\A base class
tr, next);

\
\

{

=>get next()):;

\\\\\\\\\

A special pointer type

——_ Openaheap

| Get the “root” of this heap

~—_ Atomically iterate and remove
the item

48

NVHeap - Managing Memory

How to implement safe memory management?

Uses operational logging and reference counting together

e Operational logs is kept in NVM and tracks operations (free, alloc, moving, transactions,
read, write) — helps to find bad operations

e Reference counting on each object with automatic garbage collection of objects by
scanning if their count has hit 1 (1 because they are internally always referenced by the
root node in the NVHeap)

e Locks to protect reference counting with concurrent threads, where should lock be stored?

o In DRAM: lose protection in case of a failure
o In NVDIMM: then you need to scan the whole NVDIMM to find all taken but failed locks

49

NVHeap - Managing Memory

How to implement safe memory management?

Uses operational logging and reference counting together

e Operational logs is kept in NVM and tracks operations (free, alloc, moving, transactions,
read, write) — helps to find bad operations

e Reference counting on each object with automatic garbage collection of objects by
scanning if their count has hit 1 (1 because they are internally always referenced by the

root node in the NVHeap)

e Locks to protect reference counting with concurrent threads, where should lock be stored?

Use generational locks: everytime a NVHeap file is open, increment its generation and
discard all old dirty locks

50

NVHeap - How to do pointer management

How to do pointer management?

Smart pointers and overloading

e Not supported: inter NV heap pointers or NV pointers to volatile structures
e Operator overloading : a pointer internally contain offset and heap id to identify which heap
they belong to
o Thus, creation of an inter NVheap pointer can be rejected

class NVList : public NVObject {

DECLARE POINTER TYPES (NVList);
public:

DECLARE MEMBER (int, value);

DECLARE PTR MEMBER (NVList::NVPtr, next);
}i

NVHeap - How to do pointer management

How to do pointer management?

Smart pointers and overloading

e Not supported: inter NV heap pointers or NV pointers to volatile structures
e Operator overloading : a pointer internally contain offset and heap id to identify which heap
they belong to
o Thus, creation of an inter NVheap pointer can be rejected
e Two types of NV pointers : normal and weak
o Normal: increment the reference count
o Weak: do not increment the reference count (doubly link lists), can lead to a NULL but not
corruption of NVHeap

N
NN —

52

NVHeap - How to do pointer management

How to do pointer management?

Smart pointers and overloading

Not supported: inter NV heap pointers or NV pointers to volatile structures
Operator overloading : a pointer internally contain offset and heap id to identify which heap
they belong to
o Thus, creation of an inter NVheap pointer can be rejected
Two types of NV pointers : normal and weak
o Normal: increment the reference count
o Weak: do not increment the reference count (doubly link lists), can lead to a NULL but not
corruption of NVHeap
Volatile pointers to NV Heap pointers
o These references must count for incrementing references, however in case of a failure?
o Same trick as generational locks: use generational volatile— NV reference counts 53

NV Performance

PaYOBOWS|\

IngoN deay-AN

NVHQ desy-AN

INL1S desy-AN

NOd deay-AN
1se4 9d4
ﬁl 9Jes ddd
[I | I |
o o o o o o
o o o o o
o o (o o o
o o o o o
o [ee) © < Al
oas/suoleladp

[J 8threads

X1=D eAy
XL Ay
8JeS any
29 a5Eg 9AY
© © ©
O] X1=O YOSS
£ £ £ XL VOSS
<+ N - 9ES VOSS
9SEd VOSS
meE m

X1-0 sbegxis
XL sbagxis

afeg sbadxis
aseg sbaQxiS

T

X1-0 9@3llgy

X1 9alldgy
8jeg 93l1gy
aseq eaildy

X1-0 d|ge] yseH
X1 a|qelyseH
aes 9|de | ysey
aseg 9|qe] yseH

TR

ALY aseg SdSH
X1-O9dllg
XLoallg
ajeg 9al1g
aseg eailg

aseg 'sA dnpeaadg

Variants: base, safe (pointers+tmm), Tx (with logging), C-TX (concurrency)

Comparison with other alternatives: BerkeleyDB, and memcached

54

Today, These Ideas...

pmem.io

Persistent Memory Programming

Home Glossary Documents PMDK ndctl

Blog About

The Programming Persistent Memory book is
now available! This is a great resource, whether
you're just learning about persistent memory or
you want to deep dive into the programming
details. You can read the book on-line for free!

This site is dedicated to persistent memory programming. If you're
just getting started, head to the Documentation Area for links to
background information, a Getting Started Guide, and lots of
additional information.

Here are some of the top links to related information:

e Persistent Memory Development Kit

e Persistent Memory Summit

 Intel Developer Zone for persistent memory

* PIRL Conference (Persistent Programming In Real Life)

What Is Persistent Memory?

The term persistent memory is used to describe technologies which
allow programs to access data as memory, directly byte-
addressable, while the contents are non-volatile, preserved across
power cycles. It has aspects that are like memory, and aspects that

Recent Blog Posts

API overview of pmemkv-

java binding
Posted October 30, 2020

Pmemkv is a key-value
data store written in C and
C++, however, it also
opens up a way to
leverage...

MemKeyDB - Redis with

Persistent Memory
Posted September 25, 2020

Context Redis is an in-
memory database that
supports various data-
structures and stores them
in main memory. To
support data durability,...

55

Persistent Memory Development Kit (PMDK)

A set of libraries and framework to

manage NVDIMMs as
1. Persistent memory;
2. Volatile, but large memory

Contains helper routines to allocate object,
persistent them, transactions, log, bulk
copying, and remote pmem access

Binding for multiple languages

https://pmem.io/

README.md

PMDK: Persistent Memory Development Kit

coverity [passing

The Persistent Memory Development Kit (PMDK) is a collection of libraries and tools for System Administrators and
Application Developers to simplify managing and accessing persistent memory devices. For more Information, see
https://pmem.lo.

To Install PMDK libraries, either Install pre-built packages, which we build for every stable release, or clone the tree

and bulld It yourself. Pre-built packages can be found in popular Linux distribution package repositories, or you can
check out our recent stable releases on our github release page. Specific installation instructions are outlined below.

Bugs and feature requests for this repo are tracked in our GitHub Issues Database.

Contents

1. Libraries and Utllities

2. Getting Started

3. Version Conventions

4. Pre-Bullt Packages for Windows

5. Dependencies
© Linux

© Windows
© FreeBSD
6. Building PMDK on Linux or FreeBSD
© Make Options
© Testing Libraries
© Memory Management Tools

56

https://pmem.io/

Adoption Spectrum
DIFFERENT WAYS T0 USE PERSISTENT MEMORY

ersistent
value store

https://www.slideshare.net/IntelSoftware/pmdk-essentials-parts-1-and-2-and

https://www.slideshare.net/IntelSoftware/pmdk-essentials-parts-1-and-2-andy-rudoff-and-pawel-skowron

Adoption Spectrum
DIFFERENT WAYS T0 USE PERSISTENT MEMORY

libpmemobj

libmemkind 1-- L

https://www.slideshare.net/IntelSoftware/pmdk-essentials-parts-1-and-2-and

https://www.slideshare.net/IntelSoftware/pmdk-essentials-parts-1-and-2-andy-rudoff-and-pawel-skowron

Example: libpmemobj €) ik s e Wi

) bdemsky and pbalcer examples: add a NULL check in biree

Transactional object store, providing memory allocation, transactions,

and general facilities for persistent memory programming;: g aray exa
e direct byte-level access to objects is needed W hashmap com
e using custom storage-layer algorithms B libart cor
e persistence is required B linkedlist con
typedef struct foo { ol o
PMEMoid bar; // persistent pointer W map com
int value; B pmemblk com
} foo; B pmemiog
) pmemobjfs exa

int main() {
PMEMobjpool *pop = pmemobj open (...); B (e o
TX_BEGIN(pop) { W e
TOID(foo) root = POBJ_ROOT(fo0); B slab_allocator com
D_RW(root)->value = 5; B string_store con
} TX_END; W string_store_tx com
} J string_store_tx_type con
https://pmem.io/pmdk/libpmemob)/ (examples and documentation) B tree_map exa

59

https://pmem.io/pmdk/libpmemobj/

PMDK Stack Overview

[] Persistent ~ | Volatile [] Both
@ vcmap engine cmap engine I;‘:‘;tr("éz
- Node.js
libpmemky libpmemobij++ banding:
I NAPI ‘
userspace libpmemobyj Java Ruby Python
libpmem - PMDK bindings bindings bindings
C++ API (header only) 4
¢) FFI \ NAPI
libvmmalloc memkind libpmempool) CAPI
o s e e e e e e . o e . . L e ! P " £ . €2 #1045 .-
@ file system (e.g. ext4-DAX) pmemkv core (C++)
kernel devdax ~-DAX
fsdax libpmemobj++
-/
@ NVDIMM Hardware libpmemobj

e Evaluating Performance Characteristics of the PMDK Persistent Memory Software Stack, BSc thesis, Nick-Andian Tehrany
° https://pmem.io/2020/03/04/pmemkv-bindings.html
e https://pmem.io/pmdk/ « all libraries and their documentation 60

https://pmem.io/2020/03/04/pmemkv-bindings.html
https://pmem.io/pmdk/

Want to Try NVDIMMSs?

Use QEMU

gemu-system-x86_64 \
-drive file=ubuntu.img,format=raw,index=0,media=disk \
-m 4G,slots=4,maxmem=32G \
-smp 4 \
-machine pc,accel=kvm,nvdimm=on \
-enable-kvm \
-net nic \
-net user,hostfwd=tcp::2222-:22 \
-object memory-backend-file,id=meml,share,mem-path=./dimmo,size=4G \
-device nvdimm,memdev=meml,id=nv1,label-size=2M \
-object memory-backend-file,id=mem2,share,mem-path=./dimml,size=4G \
-device nvdimm,memdev=mem2,id=nv2,label-size=2M \
$ dmesg | grep user:
[mem 0x0000000000000000-0x000000000009fbff] usable
[mem 0x000000000009fcO0-0x000000000009Fffff] reserved
[mem 0x00000000000f0000-0x00000000000FFffff] reserved
[mem Ox0000000000100000-0x00000000bffd5fff] usable

.000000] [mem ©x00000000bffd6000-0x00000000bfffffff] reserved
.000000] [mem 0x00000000feffc000-0x00000000feffffff] reserved
000000] [mem—0x0000000011£c8000-0x00800000 £ £ 111 1F] d
.000000]

.000000]

.000000]
.000000]
.000000]
.000000]

0
0
0
0
0
0
0
0
0

pmem.io
Persistent Memory Programming

Home Glossary Documents PMDK ndctl Blog About

How to emulate Persistent Memory

Data allocated with PMDK is put to the virtual memory address space, and concrete ranges are relying on
result of mmap(2) operation performed on the user defined files. Such files can exist on any storage
media, however data consistency assurance embedded within PMDK requires frequent synchronisation of
data that is being modified. Depending on platform capabilities, and underlying device where the files are,
a different set of commands is used to facilitate synchronisation. It might be msync(2) for the regular
hard drives, or combination of cache flushing instructions followed by memory fence instruction for the
real persistent memory.

[mem 0x0000000100000000-0x000000013Ffffffff] persistent (type 12)
[mem 0x0000000140000000-0x00000001ffffffff] persistent (type 12)

https://docs.pomem.io/persistent-memory/getting-started-guide/creating-development-environments/virtualization/gemu

61

https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/virtualization/qemu

Now Image a System

CPU

A CPU
e With a typical 12 DIMM slots

e Dual socket =24
e 24x512GB=12.3TB of persistent storage
No DRAM, only persistent memory

62

Imagine a System with Just Optane DRAM

1. What do storage and memory mean then? Two-level of storage?
a. Virtual memory, paging, address translation?
b. File systems, buffer caches, files, permissions?
c. Single address space operating systems

2. What does execution mean?

a. What does application installation (on fs) and execution (in DRAM) mean?
b. What do updates mean? A new checkpointed application state?

3. Operating system design
a. Booting? What is that
b. How does OS (no temporary state) interacts with devices (have DRAM, can restart)
c. Data corruption, fault isolation in architecture specific code (less portability)

Operating System Implications of Fast, Cheap, Non-Volatile Memory, https://www.usenix.org/legacy/events/hotos11/tech/final files/Bailey.pdf

63

https://www.usenix.org/legacy/events/hotos11/tech/final_files/Bailey.pdf

Most Importantly - This will not work anymore!

R ~ 4
A
-

HELPDESK

HAVE U TRIED TURNING IT OFF
AND ON AGAIN?

https://www.pinterest.com/pin/61572719880076742/

64

https://www.pinterest.com/pin/61572719880076742/

More New Technologies are Coming

First carbon nanotube NRAM products due in 2020,
says Nantero

April 14,2020 //By Peter Clarke 1 Comment

NRAM Cross-Section

| NRAM CELL |

NRAM™ cell with CMOS select transistor and CNT resistive
change memory element shown in SEM cross-section.

https://www.eenewsanalog.com/news/first-carbon-nanotube-nram-products-due-2020-says-nantero

https://www.eenewsanalog.com/news/first-carbon-nanotube-nram-products-due-2020-says-nantero

What You Should Know From This Lecture

1. NV memory (Optane) integration options
2. Optane ballpark performance numbers

3. Concerns with the integration of NVRAM

a. How do they integrate into the caching hierarchy
b. Various options to write back
Cc. Whatis ADR (eADR) and why is it necessary

4, Basicidea of a NVRAM file system (e.g., NOVA)
Basic idea and challenges in building a persistent heap (NVHeap)
6. PMDK and pmem project, and what do they do and what they provide

d

This is a very active area of research as the real hardware becomes available

66

Further Reading

1.

DRAM internals,
https://course.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture25-mainmemory.pdf
Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better
I/0 through byte-addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles (SOSP '09).

Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020. Pronto: Easy and Fast Persistence for Volatile Data
Structures. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS '20).

Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017. Persistent memcached: bringing legacy code to
byte-addressable persistent memory. In Proceedings of the 9th USENIX Conference on Hot Topics in Storage and File Systems
(HotStorage'17). USENIX Association, USA, 4.

Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Minimally Ordered Durable Data structures for Persistent Memory. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS '20).

Dushyanth Narayanan and Orion Hodson. 2012. Whole-system persistence. In Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVII).
http://cseweb.ucsd.edu/~swanson/Pubs.php

Lu Zhang and Steven Swanson. 2019. Pangolin: a fault-tolerant persistent memory programming library. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '19). USENIX Association, USA, 897-911.

Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell D. E. Long, Ethan L. Miller, Twizzler: a Data-Centric OS for Non-Volatile Memory,
USENIX ATC 2020, https://www.usenix.org/system/files/atc20-bittman.pdf

67

https://course.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture25-mainmemory.pdf
http://cseweb.ucsd.edu/~swanson/Pubs.php
https://www.usenix.org/system/files/atc20-bittman.pdf

Examples on Github

libpmem
libpmem2
libpmemblk
libpmemlog
libpmemobj++
libpmemobj
libpmempool
librpmem

pmreorder

C B R ERF R EECN

.gitignore

¥ master + pmdk/src/examples /

".:" bdemsky and pbalcer examples: add a NULL check in btree example

common: change SDK version needed by PMDK to 10.0.17134.12
examples: rework usc example to use deep flush

common: fix format of SPDX tag in all files In the repo

common: fix format of SPDX tag in all files in the repo

common: remove cpp bindings - sources

examples: add a NULL check in btree example

common: use SPDX license identifiers, for files copyrighted by Intel ...

examples: fix type signedness warnings

common: use SPDX license identifiers, for files copyrighted by Intel ...

common: Makefiles refactoring

Go to file Add file »

fa6d6d7 19 hours ago O History

7 months ago
2 months ago
3 months ago
3 months ago

2 years ago
19 hours ago
9 months ago
6 months ago
9 months ago

6 years ago

68

