
1

Storage Systems (StoSys)
XM_0092

Lecture 6: Byte-Addressable Persistent
Memories

Animesh Trivedi
Autumn 2020, Period 2

Syllabus outline
1. Welcome and introduction to NVM (today)
2. Host interfacing and software implications
3. Flash Translation Layer (FTL) and Garbage Collection (GC)
4. NVM Block Storage File systems
5. NVM Block Storage Key-Value Stores
6. Emerging Byte-addressable Storage
7. Networked NVM Storage
8. Trends: Specialization and Programmability
9. Distributed Storage / Systems - I

10. Distributed Storage / Systems - II

2

The (new) triangle of storage hierarchy

3

Tape

Hard disk drive (HDD)

DRAM Memory

CPU cache

CPU
register

Cost: $ / GB

capacity

~0.1ns

1-10ns

~10-100ns

~10-100ms

~100ms-10s

Access latencies

NAND Flash/Optane SSDs

Persistent Memory < 1 usec

~10-100 usec

- cache line granularity
- volatile storage
- load/store instructions

- cache line granularity
- non-volatile storage
- load/store instructions

- Block granularity
- non-volatile
- I/O commands

Basic Model

4

CPU DRAMMemory
Controller cache

Large, slow, and persistent storage
device (NAND flash, HDD)

Data is stored persistently on storage devices
● Block addressable
● Use NVMe/SATA/SAS protocols to move

data first to DRAM
● CPU can _only_ access data from DRAM
● To make data persistent write out again to the storage

2-level of storage: Memory (fast, byte-addressable, small, volatile) and
 Storage (slower, block-addressed, large, and non-volatile)

NVM as Persistent Memory (pmem)

5

Persistent Memories (pmem) have been the holy grail of memory hierarchies

Ideally: performance close to DRAM, but persistent

We have been anticipating these memories from many years, and hence,
continued to do research in “software” architectures before they arrived
→ However, in this lecture we try to cover the latest research on these devices

CPU

DRAM

pmem

Memory
Controller cache

Today: Intel Optane
Released in 2019 (latest and greatest piece of storage technology today)

It is a byte-addressable, load-store accessible (from the CPU) storage that can
be put in a DDR4 DIMM slot (uses the same mechanical and electrical
protocols)

In comparison to DRAM

● More capacity : 128, 256, and 512 GB DIMMs (DRAMs are usually at 32-64GB then
they get super expensive)

● Cheaper : than the DRAM (2-4x) times, but more expensive than Flash (10-100x)
● Energy Efficient : Unlike DRAM, no need to constantly refresh

Btw - be ready to refresh basic ideas in computer architecture now :) 6

Today: Intel Optane

7

https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm

Optane Memory Layout and Operation Modes

8

Memory Mode: Optane behaves
as a large (slower) DRAM, thus not
leveraging its persistent qualities

● DRAM is used as a cache in
front of XP DIMM

● Good for applications with
needs for large DRAM

https://arxiv.org/abs/1908.03583

Optane Memory Layout and Operation Modes

9

Memory Mode: Optane behaves
as a large (slower) DRAM, thus not
leveraging its persistent qualities

● DRAM is used as a cache in
front of XP DIMM

● Good for applications with
needs for large DRAM

AppDirect Mode: Optane is used
as a persistent memory and
exposed to the OS/application

● Applications should be
aware of its performance
and persistence properties

https://arxiv.org/abs/1908.03583

Optane Memory Layout and Operation Modes
Two modes: Memory Mode and App Direct Mode

10

Potential
challenges?

https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm

How Does the Current CPU Work? (simplified)

11

CPU DRAMMemory
Controller cache

Cache line size, 64B
Any size

All CPU load and store accesses go to the cache
● Cache Hit: data is immediately transferred to the CPU
● Cache Miss: data is fetched from DRAM into the cache, and then transferred to the CPU

Caches are always managed in the cache line granularity (64B), and this is also the unit of
DRAM access (so, is DRAM truly a byte-addressable memory?)

Memory controller can reorder loads and stores (out of order execution), hence, there is no
guarantees in which order instruction get to DRAM

Question 1: How can a (i) CPU make sure that data is always flushed/pushed to DRAM; (ii) ordering?
Question 2: Why are these concerns important?

How Does the Current CPU Work? (simplified)

12

CPU pmemMemory
Controller cache

Cache line size, 64B
Any size

All CPU load and store accesses go to the cache
● Cache Hit: data is immediately transferred to the CPU
● Cache Miss: data is fetched from DRAM into the cache, and then transferred to the CPU

Caches are always managed in the cache line granularity (64B), and this is also the unit of
DRAM access (so, is DRAM truly a byte-addressable memory?)

Memory controller can reorder loads and stores (out of order execution), hence, there is no
guarantees in which order instruction get to DRAM

Question 1: How can a (i) CPU make sure that data is always flushed/pushed to PMEM; (ii) ordering?
Question 2: Why are these concerns important?

Now instead of DRAM, there is persistent memory

1. What if my writes are only stored in the cache?
2. Do you program cache? Isn’t cache suppose to be a micro-architecture, programmer

invisible CPU feature
3. What if my writes to pmem are-reordered?

How Does the Current CPU Work? (simplified)

13

Special instructions available on modern CPUs

1. Non-temporal instructions, e.g., (bypasses the CPU cache)
2. Explicitly flush cache lines

Further use to ensure all writes are globally visible and flushed

CPU pmemMemory
Controller cache

Cache line size, 64B
Any size

https://hadibrais.wordpress.com/2019/02/26/the-significance-of-the-x86-sfence-instruction/
https://lwn.net/Articles/255364/
https://en.wikipedia.org/wiki/X86_instruction_listings
https://stackoverflow.com/questions/40096894/do-current-x86-architectures-support-non-temporal-loads-from-normal-memory

CPU Instructions

14
Once flushed, data will move to the memory controller …

https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf

Optane Internals - the Write Path

15

iMC

Write Pending
Queue (WPQ)

CPU
load/store
64-bytes

Optane Controller Buffer
Address

Indirection Table
(AIT) - cache

Optane Media

256 bytes

AIT

Writes end up in iMC, at WPQ

Then flushed into Optane DIMM

Optane DIMM has a write buffer,
where 64 bytes r/w are merged
into 256 bytes accesses to Optane

There is indirection table mapping
and its cache

The Optane controller runs the
logic. Many of the Optane details are
secret

How do we make sure that data is not lost in the case of a power cut?

Optane Internals - the Write Path

16

iMC

Write Pending
Queue (WPQ)

CPU
load/store
64-bytes

Optane Controller Buffer
Address

Indirection Table
(AIT) - cache

Optane Media

256 bytes

AIT

A new Intel platform feature
called Asynchronous DRAM
Refresh (ADR) domain (area
covered inside the dotted
red line)

Power storage (battery,
supercapacitor) on the
platform to ensure writeback
in case of a failure (typically
within 100 usec)

ADR and eADR - Bringing Persistency to the whole CPU

17

Optionally eADR available
with the 3rd generation of
Xeon processors
(CopperLake, 2020)

https://software.intel.com/content/www/us/en/develop/articles/build-pmem-apps-with-ras.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html

An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory (Feb, 2020)

18

System Setup
2 x CPU 24 cores Cascade Lake

Each CPU: 2 x iMC with 3 memory
channels each

Total 6 channels for DRAM and
Optane

2 CPU x 6 Ch. x 32 GB = 192 GB DRAM

2 CPU x 6 Ch. x 256GB = 3TB Optane

19

There are 2 of such CPUs

Basic Performance: Latency

20

● The read latency for Optane is 2-3x higher than DRAM
● The random-vs-sequential gap is 20% for DRAM but 80% for Optane memory
● Write performance measures write reaching the ADR domain (not necessarily Optane)

Optane Bandwidth Comparison - Scalability

21

● Peak DRAM bandwidth can be significantly higher than the Optane bandwidth
○ NI = non-interleaved (single Optane DIMM)

● Both scale nicely with the number of threads. Optane write performance dips as
the content on the device increases. Interleaving helps with improved
performance.

Optane Bandwidth Comparison - Size

22

● Larger gap between read/write performance in Optane than in DRAM
● Interleaving improves peak read and write bandwidth by ~5x (see y-axis)
● Optane bandwidth for random accesses under 256 B is poor

Recommendation - use 256 bytes aligned data structures and accesses

Detecting Optane Buffer Size

Write addresses repeatedly which are separated by certain XP Line size (256B)

Measure WA (DIMM counter), which shows at 16 lines, 16 x 256 = 16 KB buffer

Recommendation: Try to put related data items together in a buffer of 16kB 23

Which Write/Flush Mechanism to Use?

● Non-temporal instruction has better bandwidth (lower latency) for large accesses
(because it does not bring cache line)

● For small accesses (<256B), clwb is fast

Recommendation: Based on what you are writing back, pick one - dynamic selection
24

Persistent Memory Programming (2017)

25

So, How Do You Program/Manage Your NVDIMMs?

26

I am going to use the term
NVDIMM to refer to a
general pmem technology
not specifically to Optane

Understand: Storage and Memory
Storage and Memory are what is known as classical two-level storage system

● Memory (DRAM) is fast, byte-addressable and keeps data (technically
cached) that is being worked on

● Storage (block storage) is slower, block-addressable and keeps data
persistently

○ Optane and DRAM is also block-addressable, 64B blocks

Why do we want to run a file system on top of a persistent memory?
● Because it is known familiar interface which maintains the two-level distinction of

storage and memory
● Data must be brought into DRAM from storage before being accessed

27

Looking at the Storage Stack Again

28

User space applications (databases, key-value store, browsers, file and email servers)

The virtual file system (VFS)

The page buffer
cache Network-fs

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs)

Block-FS
(ext4, f2fs, brtfs)

Linux Block Layer

Device drivers
(NVMe)

Kernel

Looking at the Storage Stack Again

29

User space applications (databases, key-value store, browsers, file and email servers)

The virtual file system (VFS)

The page buffer
cache Network-fs

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs)

Block-FS
(ext4, f2fs, brtfs)

Kernel

NVDIMMs (e.g., Optane)

What Happens When I a Page?

mmap takes pages from the page
cache

If no page exist then the FS brings
the page in the cache

Once in the cache then those DRAM
address is used in the mmap and
the pages are shared between the
kernel and application

Does this make sense on NVDIMM?
30

applications

The virtual file
system (VFS)

Page
Cache

Block-FS
(ext4, f2fs, brtfs)

Kernel

NVDIMMs
(e.g., Optane)

Direct Access (DAX) Extensions for files
New file system support to directly mapped
pages from NVDIMMs instead of making
copies into the page cache

Needs modification into the file system to
support this operation

The block size must be equal to the page
size

Currently 3 filesystems support DAX: ext2,
ext4 and xfs

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
31

applications

The virtual file
system (VFS)

Page
Cache

Block-FS
(ext4, f2fs, brtfs)

Kernel

NVDIMMs
(e.g., Optane)

https://www.kernel.org/doc/Documentation/filesystems/dax.txt

Direct Access (DAX) Extensions for files
New file system support to directly mapped
pages from NVDIMMs instead of making
copies into the page cache

Needs modification into the file system to
support this operation

The block size must be equal to the page
size

Currently 3 filesystems support DAX: ext2,
ext4 and xfs

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
32

applications

The virtual file
system (VFS)

Page
Cache

Block-FS
(ext4, f2fs, brtfs)

Kernel

NVDIMMs
(e.g., Optane)

https://www.kernel.org/doc/Documentation/filesystems/dax.txt

Updated Stack Image

33

MMU mappings

Updated Stack Image

34

MMU mappings

What are
pmem fs?

NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main
Memories (2016)

35

We will discuss this briefly
(this is homework)

Why do We Need Yet Another File System
Why do we need a new file system for NVMDIMM?

1. High software overheads
2. CPU may reorder writes : need to use fence and flush appropriately
3. Different atomicity guarantees : page vs 8-bytes or 64-bytes
4. With directly mapped areas (DAX), how do you provide data and metadata

consistency?
5. Decrease contention on a shared NVDIMM from multiple cores (cache coherency

and locking overheads)
6. Performance: high concurrency of NVDIMMs vs block devices

Developed NOVA file system for hybrid DRAM-NVDIMM memories

36

https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_xu.pdf

NOVA Design and Ideas
A Log-structured file system

Each inode has its own log (concurrency
and parallelism)

Each CPU has its own set of inodes and
free list to manage

Performance: logs in NV, and index in DRAM

Smaller segments (4kB) and implement the log as a link list

Single inode updates (in the inode log), multiple inodes (uses the journal, 64B
entries) 37

Nova : Write Example

38

We are modifying Data2 and add Data3

Step 1: find and copy blocks which are
to be updated (Copy-on-write)

Step 2: Add to the file inode log

Step 3: Update the log tail pointer (after
this the write is it durable)

Step 4: Update the DRAM index for fast
lookup

Step 5: Garbage collect old pages

Nova Performance Comparison

For varmail (this workload) : 3.1-216x outperforms other file systems

39

Is File System the Best Way to Use NVDIMM?
We do not use file system with DRAM, do we?

With a file system

1. Data must first be (de)serialized when reading in
2. When writing out data must be serialized to be written out to a file

Overheads from

1. Complex buffer management (read, write)
2. Serialization, deserialization process
3. File system, block layer, I/O operations etc.

So, coming back to the point -- how do we use DRAM actually?
40

Updated Stack Image

41

MMU mappings

How do we use
DRAM?

What are pmem
fs - NOVA

How do We Acquire/Use DRAM?
1. Mmap → page granularity
2. malloc / calloc → small memory, allocated on the process heap

We then build data structures in the allocated heap space (link list, trees, hash
table)

Can we do calloc or malloc on NVDIMM memory area?

How do we build a data structure in NVDIMM memory area?

What are the concerns here?

What does that would mean after a system restart?
42

NV-Heaps: Making Persistent Objects Fast and Safe with
Next-Generation, Non-Volatile Memories (2011)

43

NV Heaps
A more interesting way to use NVDIMM is to make a persistent heap from where various
data types can be allocated, tree, link list, hash table, etc.

44

NV Heaps
A more interesting way to use NVDIMM is to make a persistent heap from where various
data types can be allocated, tree, link list, hash table, etc.

45

Is “a” pointer suppose to be non-volatile or volatile?

Is “l” pointer suppose to be non-volatile or volatile?

Let’s say if “a” came from DRAM, and we inserted it into “*l” which came from NV memory, then
after a restart, “*l” will contain a bogus pointer

NV Heaps
A more interesting way to use NVDIMM is to make a persistent heap from where various
data types can be allocated, tree, link list, hash table, etc.

So, what do we need to consider?

1. Pointer management:
a. Non-Volatile pointers within a NV heap
b. Non-Volatile across NV heaps
c. Volatile pointers to a NV heap
d. NV heap pointer to a volatile pointer

2. Memory management: memory leaks, double free
3. How and when to make structure consistent, and concurrent

a. Locking, transaction issues ← hard to get it right even with DRAM

Which one of the 4 pointers type should be allowed, or not allowed? 46

Non-Volatile heap

Volatile heap

NVHeaps
Simple primitives:

● persistent objects
● specialized pointer types
● a memory allocator
● atomic sections

A heap “root” object (a NV pointer) can be created or
opened by passing a file name to HVHeap

Files are self sufficient and contains offset based
references from the “root” to maintain integrity

47

Example

48

A base class

A special pointer type

Open a heap

Get the “root” of this heap

Atomically iterate and remove
the item

NVHeap - Managing Memory
How to implement safe memory management?

Uses operational logging and reference counting together

● Operational logs is kept in NVM and tracks operations (free, alloc, moving, transactions,
read, write) → helps to find bad operations

● Reference counting on each object with automatic garbage collection of objects by
scanning if their count has hit 1 (1 because they are internally always referenced by the
root node in the NVHeap)

● Locks to protect reference counting with concurrent threads, where should lock be stored?
○ In DRAM: lose protection in case of a failure
○ In NVDIMM: then you need to scan the whole NVDIMM to find all taken but failed locks

49

NVHeap - Managing Memory
How to implement safe memory management?

Uses operational logging and reference counting together

● Operational logs is kept in NVM and tracks operations (free, alloc, moving, transactions,
read, write) → helps to find bad operations

● Reference counting on each object with automatic garbage collection of objects by
scanning if their count has hit 1 (1 because they are internally always referenced by the
root node in the NVHeap)

● Locks to protect reference counting with concurrent threads, where should lock be stored?
○ In DRAM: lose protection in case of a failure
○ In NVDIMM: then you need to scan the whole NVDIMM to find all taken but failed locks

50

Use generational locks: everytime a NVHeap file is open, increment its generation and
discard all old dirty locks

NVHeap - How to do pointer management

How to do pointer management?

Smart pointers and overloading

● Not supported: inter NV heap pointers or NV pointers to volatile structures
● Operator overloading : a pointer internally contain offset and heap id to identify which heap

they belong to
○ Thus, creation of an inter NVheap pointer can be rejected

● Two types of NV pointers : normal and weak
○ Normal : increment the reference count
○ Weak: do not increment the reference count (doubly link lists), can lead to a NULL but not

corruption of NVHeap
● Volatile pointers to NV Heap pointers

○ These references must count for incrementing references, however in case of a failure?
○ Same trick as generational locks: use generational volatile→ NV reference counts 51

NVHeap - How to do pointer management

How to do pointer management?

Smart pointers and overloading

● Not supported: inter NV heap pointers or NV pointers to volatile structures
● Operator overloading : a pointer internally contain offset and heap id to identify which heap

they belong to
○ Thus, creation of an inter NVheap pointer can be rejected

● Two types of NV pointers : normal and weak
○ Normal : increment the reference count
○ Weak: do not increment the reference count (doubly link lists), can lead to a NULL but not

corruption of NVHeap
● Volatile pointers to NV Heap pointers

○ These references must count for incrementing references, however in case of a failure?
○ Same trick as generational locks: use generational volatile→ NV reference counts 52

+3

NVHeap - How to do pointer management

How to do pointer management?

Smart pointers and overloading

● Not supported: inter NV heap pointers or NV pointers to volatile structures
● Operator overloading : a pointer internally contain offset and heap id to identify which heap

they belong to
○ Thus, creation of an inter NVheap pointer can be rejected

● Two types of NV pointers : normal and weak
○ Normal : increment the reference count
○ Weak: do not increment the reference count (doubly link lists), can lead to a NULL but not

corruption of NVHeap
● Volatile pointers to NV Heap pointers

○ These references must count for incrementing references, however in case of a failure?
○ Same trick as generational locks: use generational volatile→ NV reference counts 53

NV Performance

54
● Variants: base, safe (pointers+mm), Tx (with logging), C-TX (concurrency)
● Comparison with other alternatives: BerkeleyDB, and memcached

Today, These Ideas...

55

Persistent Memory Development Kit (PMDK)
A set of libraries and framework to
manage NVDIMMs as
1. Persistent memory;
2. Volatile, but large memory

Contains helper routines to allocate object,
persistent them, transactions, log, bulk
copying, and remote pmem access

Binding for multiple languages

https://pmem.io/

56

https://pmem.io/

Adoption Spectrum

57

https://www.slideshare.net/IntelSoftware/pmdk-essentials-parts-1-and-2-andy-rudoff-and-pawel-skowron

Adoption Spectrum

58

Memory mode

libmemkind

libvmemcache libpmemkv

libpmemobj

libpmem

https://www.slideshare.net/IntelSoftware/pmdk-essentials-parts-1-and-2-andy-rudoff-and-pawel-skowron

Example: libpmemobj
Transactional object store, providing memory allocation, transactions,
and general facilities for persistent memory programming:

● direct byte-level access to objects is needed
● using custom storage-layer algorithms
● persistence is required

59

https://pmem.io/pmdk/libpmemobj/

PMDK Stack Overview

60

●
●
● ←

https://pmem.io/2020/03/04/pmemkv-bindings.html
https://pmem.io/pmdk/

Want to Try NVDIMMs?
Use QEMU

61

https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/virtualization/qemu

Now Image a System

62

CPU
512 GB of Optane DIMM

A CPU
● With a typical 12 DIMM slots
● Dual socket = 24
● 24 x 512 GB = 12.3 TB of persistent storage

No DRAM, only persistent memory

Imagine a System with Just Optane DRAM
1. What do storage and memory mean then? Two-level of storage?

a. Virtual memory, paging, address translation?
b. File systems, buffer caches, files, permissions?
c. Single address space operating systems

2. What does execution mean?
a. What does application installation (on fs) and execution (in DRAM) mean?
b. What do updates mean? A new checkpointed application state?

3. Operating system design
a. Booting? What is that
b. How does OS (no temporary state) interacts with devices (have DRAM, can restart)
c. Data corruption, fault isolation in architecture specific code (less portability)

63

https://www.usenix.org/legacy/events/hotos11/tech/final_files/Bailey.pdf

Most Importantly - This will not work anymore!

64

https://www.pinterest.com/pin/61572719880076742/

More New Technologies are Coming

65

https://www.eenewsanalog.com/news/first-carbon-nanotube-nram-products-due-2020-says-nantero

What You Should Know From This Lecture
1. NV memory (Optane) integration options
2. Optane ballpark performance numbers
3. Concerns with the integration of NVRAM

a. How do they integrate into the caching hierarchy
b. Various options to write back
c. What is ADR (eADR) and why is it necessary

4. Basic idea of a NVRAM file system (e.g., NOVA)
5. Basic idea and challenges in building a persistent heap (NVHeap)
6. PMDK and pmem project, and what do they do and what they provide

This is a very active area of research as the real hardware becomes available

66

Further Reading
1. DRAM internals,

https://course.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture25-mainmemory.pdf
2. Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better

I/O through byte-addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles (SOSP '09).

3. Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020. Pronto: Easy and Fast Persistence for Volatile Data
Structures. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS '20).

4. Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017. Persistent memcached: bringing legacy code to
byte-addressable persistent memory. In Proceedings of the 9th USENIX Conference on Hot Topics in Storage and File Systems
(HotStorage'17). USENIX Association, USA, 4.

5. Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Minimally Ordered Durable Data structures for Persistent Memory. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS '20).

6. Dushyanth Narayanan and Orion Hodson. 2012. Whole-system persistence. In Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVII).

7. http://cseweb.ucsd.edu/~swanson/Pubs.php
8. Lu Zhang and Steven Swanson. 2019. Pangolin: a fault-tolerant persistent memory programming library. In Proceedings of the 2019

USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '19). USENIX Association, USA, 897–911.
9. Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell D. E. Long, Ethan L. Miller, Twizzler: a Data-Centric OS for Non-Volatile Memory,

USENIX ATC 2020, https://www.usenix.org/system/files/atc20-bittman.pdf
67

https://course.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture25-mainmemory.pdf
http://cseweb.ucsd.edu/~swanson/Pubs.php
https://www.usenix.org/system/files/atc20-bittman.pdf

Examples on Github

68

