
1

Storage Systems (StoSys) 
XM_0092

Lecture 4: Flash-based File Systems

Animesh Trivedi 
Autumn 2020, Period 2



Syllabus outline 
1. Welcome and introduction to NVM (today) 
2. Host interfacing and software implications 
3. Flash Translation Layer (FTL) and Garbage Collection (GC) 
4. Flash-based File systems 
5. NVM Block Storage Key-Value Stores 
6. Emerging Byte-addressable Storage
7. Networked NVM Storage 
8. Trends: Specialization and Programmability 
9. Distributed Storage / Systems - I 

10. Distributed Storage / Systems - II 

2



The layered approach in the lectures

New devices (Flash) 

New host interfaces (NVMe protocol) 

Software implication in the block layer 

File systems

Applications (key-value store) 

3

Distributed Systems

L1

L2

L3

L4

L5

L6
Byte-addressable, 
persistent memories

L7
Networked NVM

L8

Specialization

L9-L10



Recap: File System (FS)
FS is responsible for 
1. storing hierarchical directories and files on a flat disk; 
2. translating user read/write to disk addresses 

File systems have (1) data ; (2) metadata 
1. Data: user data 
2. Metadata: user and fs informations (name, creation 

time, storage location) etc. 

Important data structures: inode (stores file system 
metadata, and location of data) 

More: free bitmaps, extent maps, superblock, etc. 

4Background reading

http://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf


Recap: File System (FS)

5



Why Do We Need a New File System?
NAND Flash SSD, even though “semantically” is 
like HDD (read/write sectors), internally it has: 

● Mixed performance spectrum:
○ Very good sequential performance 
○ Good random read performance 
○ Poor random write performance 
○ Very poor small random write performance 

● FTL implementation 
● GC interference 
● Chip-die-plane parallelism 
● Wear-leveling 
● Error handling 

6

https://blog.silicon-power.com/index.php/guides/nand-flash-memory-technology-basics/


What Could Happen if We Just Ignore It
Technically we can just run any file system. Sure it will work, but 

1. Poor degraded performance 
2. Unpredictable performance 
3. Poor reliability during expected failures 
4. Poor device lifetime 

Bad things will happen :) Let’s do our best try to avoid these things.  

Recall: we talked about how a “log” is a perfect match for flash-based I/O 

● Immutable, sequential, transactional → perfect for flash ! 

7



Interestingly Enough … 

8

A Log-structured file system (SpriteFS) was 
investigated back in the early 1990s 

Highly influential work 

Can you guess why such a design would make 
sense back in 1992 for a HDD based fs? 

https://doi.org/10.1145/146941.146943


Why Log-Structured File System (LFS) in 1992 

1. The amount of system DRAM was increasing 
a. More opportunity to cache data and serve “read” requests from DRAM 
b. DRAM is random access, hence, good “read” performance 

2. Access to disk will dominated by “writes” 
a. Writes can be sequential and random 
b. Writes can be small (metadata) and large (data) 

3. Hence, use a log-structured file system optimized for servicing fast writes 
a. Random “read” not so much -- must be served from the buffer cache 

It turned out that “log” is a very useful data structure for write-once media as 
well (like NAND flash). 

9



Log-Structured File System 
With the use of a log, a file system on a NAND-media can 

1. Convert all random accesses into a sequential accesses
2. Only perform out-of-place writes (no in-place erase cycle) 
3. Can distribute write, wear-leveling across the device 

But how do you make a working file system on a log? 

1. How do you layout inodes and directories?
2. How do you read and write files? 
3. What do you do when the log is full? 

10



The Basic Idea of LFS
With LFS, there cannot be a single known location where inodes are stored, they change 
every time they are updated  

LFS goal is to optimize inode metadata lookups -- why? 

All new writes are written to the log in a 
sequential manner,  and then a “ ” 
structure is written to identify the files/directories 

inode maps are also written to the log after each update  

File system checkpoint region contains all inode map information 

Inode maps are typically cached in the buffer cache for fast lookups
11



Simple example 
Let’s say we want to create 

12

fd fi
Data block 

File inode block On-disk log 



Simple example 
Let’s say we want to create 

13

fd fi dd di
Data block 

File inode block 

Directory data block 

Directory inode block

On-disk log 

Remember directories are just special files with a 
special format to keep track of all other files and 
directories inside it

fd = file data
fi  = file inode 
dd = directory data 
di = directory inode 

File entries 
● Name: “file1” 

○ ctime: Jan 1st, 1970 
○ inode 100, offset
○ permissions



Simple example 
Let’s say we want to create two locations  and 

14

fd fi dd di
Data block 

File inode block 

Directory data block 

Directory inode block

file1

dir2



Simple example 
Let’s say we want to create two locations  and 

15

fd fi dd di
x
xData block 

File inode block 

Directory data block 

Directory inode block

inode map file1

Every time a file is created, modified, and updated, the new data blocks 
with the new version of inodes are written to the log 

When a file is deleted, a NULL inode is written to mark a file deleted

There is an in-memory big inode map table that keeps track of all inode 
maps written to the log (optimization, not necessary for correctness)



Simple example 

16

Data block 

File inode block 

Directory data block 

Directory inode block

In-memory Inode map Table 

… 

In case there are concurrent updates 
→ The last one wins 
→ in case there is a crash, the in-memory 
table can be build again by scanning the log



Simple example 

17

Data block 

File inode block 

Directory data block 

Directory inode block

In-memory Inode map Table 

… 

In case there are concurrent updates 
→ The last one wins 
→ in case there is a crash, the in-memory 
table can be build again by scanning the log

The one thing it has to remember is where is the root inode location - that can be stored when 
the LogFS does checkpointing (like any other file system). The initial SuperBlock location and 2x 
checkpoint regions are fixed (stores inode map table, root inode location etc.) 

→



What happens when a log become full?
The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs)

So what can be done with this design? Two options: 

18



What happens when a log become full?
The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs)

So what can be done with this design? Two options: 

19

Threading
Compaction

pointers



What happens when a log become full?
The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs)

So what can be done with this design? Two options: 

20

Threading: no explicit GC (quick use), 
But (i) additional metadata; (ii) random access inside the log 

Compaction: GC, copy and clean (overhead)
(i) nice clean blocks; (ii) no random access 

pointers

Threading : no explicit garbage collection, but metadata to keep track of holes, random accesses

Compaction : explicit garbage collection phase, copy cost, but gives nice clean blocks with less overheads 

Sprite LFS used a hybrid, segments is always written sequentially and then copy and compacted 
However, the log is threaded segment-by-segment basis



In Log Cleaning 
The log is divided into large “segments” which are the unit of cleaning

After each segment there is a segment summary block to keep track of “live” 
and “dead” blocks 
● How does FTL keep track of this? 

Everytime GC is invoked - it need to select a target/victim segment for cleaning 

At the time of cleaning, when data is being re-arranged, the GC has an 
opportunity to re-arrange blocks in a segment to pack “hot and cold” data 
separately (lazy classification) 

21



Segment Cleaning Logic: Picking up a Victim 
Greedy 

22

Cost-Benefit Analysis

These mechanisms are exactly the same what we discussed in the context of GC, and even actually 
inspired many “victim” selection policies in FTL/GC implementations 

Greedy picks up the most utilized block (“u” is utilization between 0 and 1) 

Cost-benefit analysis does include the “hotness” or “age” of data (the probability of it being updated 
again) and how much space we will free 



Why Log-Structured FS is not Good Enough 
1. Segment cleaning overheads in Log-Structured file system 

a. Achilles heel for log-fses : a long and ongoing debate 
b. No expressive enough for modern file system workloads 

i. Dominated by random, small I/O on files (stresses the primitive segment cleaning) 
c. How would you identify hot/cold data? 

2. Ignoring the device geometry 
a. Different sector, page, block sizes and layouts 
b. Not all random writes are the same -- see coming slides 
c. Different read, write, and GC granularities 

3. Ignoring device parallelism 
a. Multiple read/write possible at the same time 
b. Performance 23



The Semantic Gap: File Systems and FTL
In both, FTL designs and Log-Structured file systems advocate to separate cold 
from hot data

In-place update file systems like FAT32 or ext4 
● Useful for FTL to identify hot and cold data by keeping track of invalidation

But in a log-structured file system, the same page is not written twice. How does 
the FTL knows now? Open challenge 

Generally this problem is known as “Semantic Gap” between layers, exists in 
multiple fields like virtualization, networking, storage, etc. 

24



SFS: Random Write Considered Harmful in Solid State Drives 
(2012)

25



SSD File System (SFS) (2012)  
Picks up two important issues 

26

Random writes are bad
● Any guesses why random write performance recovers 

for the large writes?

Modern workloads are very skewed 
● Majority of accesses going to a small set of pages 



Design Decisions
1. Use a log structured file system (as oppose to in-place update file 

systems) 
a. Use no-overwrite file systems (except log: brtfs, ZFS, and WAFL) 
b. Serve reads from DRAM, and optimize for write traffic on SSD

2. Always write in certain multiple of blocks, what is a good estimate? 
a. Put blocks in a segment, with a large multiple of block size to get to sequential write 

bandwidth 

3. Improving semantic gap by letting FS maintain hotness statistics 
a. Classify segments into different hotness groups
b. Use this hotness statistics to do better victim segment selection for GC
c. Do an “eager” classification than a “lazy” one as proposed in the original LFS paper 

27



SFS: Basic Workings
Hotness is maintained on three levels:  
(i) File; (ii) File-Block; and (iii) Segment 

When writing, find out which segment group 
this write belong to (hot, warm, cold, ro) 

Then collect enough dirty segments in a group 
and then write it out 

Segment cleaning is similar to LogFS, but it also goes through the same path of writing a 
segment 

Key Difference: Every write is classified (eagerly), unlike LFS which classifies data when 
doing GC (this design helps with managing traffic skewness) 28



Measuring Hotness 

29

It is not that bad as it looks :) 

1. Block-level       : Total number of writes divided by the time since the last modification  
2. File-level           : Total number of block updates divided by the time since the last modification
3. Segment-level : Sum of hotness of all the live blocks (then estimated) 

These running counters are maintained inside the file system which calculate “hotness” of a segment 

Next challenge: how do you classify a hotness number into hot and cold? Think between 1 and 10 
where is the cutoff? 



Iterative Segment Quantization 

30

Assign randomly into k-groups 

A three step process: iterate between step 2 and 3 (for “n” time) or it converges (clustering) 
Other simpler choices: equal height or width partitioning 



Cost-Hotness Victim Selection Policy

Recall: we looked at Greedy and Cost-Benefit policies before 

In Sprite FS, they just use the 
last modified time as an estimation of hotness 

SFS uses proposes Cost-Hotness policy 

● Us is segment utilization 
● Hs is segment hotness 

Similar logic, but now (more) accurately picks up victim segment for cleaning 

31



So, Is this Effective?

32

Multiple number of hotness groups help to 
decrease the write cost (WC) 
● (New W data + Old R data + Old W data) / 

New W data 
● Same as the write amplification but includes 

read cost too 

SFS beats 
(i) LFS-CostBenefit (CB); 
(ii) BrtFS (COW-mode); 
(iii) BrtFS (no-COW); 
(iv) ext4 (which uses logging for data journaling) 



Flash-Friendly File System (F2FS) (2015)

Highly influential work 

One of the first file systems designed from scratch for NAND flash and is part of the mainline kernel 
(production quality): 

Primary concerns: layout and parallelism inside flash devices (+previous best ideas) 33

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/f2fs?h=master
https://www.kernel.org/doc/html/latest/filesystems/f2fs.html


F2FS: Disk Layout

34

Device is split into: 
● Segments : unit of management, space allocation (can contain multiple flash blocks) 
● Sections    : consecutive segments  (unit of cleaning, some multiple of flash GC units)
● Zones        : large zones, typically aligned for parallelism 

Two areas: random writes and sequential writes 



F2FS: Disk Layout

35

All the file metadata is written in the start Zones (classified as Random Write Zones) 
● Superblock                                       : read-only information about the file system 
● Check point area (CP)                     : 2x to switch between stable and active 
● Segment Information Table (SIT)  : per-segment information, live blocks, used in GC 
● Node Address Table (NAT)             : address of “nodes” blocks in the Main Area 
● Segment Summary Area (SSA)      : to identify parent blocks and fs tree 
● Main Area                                         : data (metadata and data) segments are written 



F2FS : File Structure 
The file structure is not surprising, follows a typical 
“inode” based tree model 

There are direct, single, double, and triple indirect 
pointers 

In original LFS: there is an inode map to translate an 
inode number to an on-device location (written at the 
end of the segment) 

F2FS used NAT table to translate an inode number to its 
on-device location 

This design solves an important problem with log-based 
file system: Recursive update problem 36



Update Propagation in LFS vs. F2FS 

37

In a Log-Structured file system, updates at the bottom of the tree will be bubbled through the 
whole tree until reached at the top and a new inode map location is written - this is called 
recursive update problem (also known as Wandering Tree problem)

https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf


Update Propagation in LFS vs. F2FS 

38

In a Log-Structured file system, updates at the bottom of the tree will be bubbled through the 
whole tree until reached at the top and a new inode map location is written - this is called 
recursive update problem (also known as Wandering Tree problem)

In contrast, F2FS uses inode numbers for indexing and only immediate parent is updated with 
further updates in-place in NAT (which is at a fixed location) 

https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf


Random Writes in NAT?
The idea (I think) is that it is a reasonable tradeoff to build a general 
purpose FS with good performance in most of the cases. Log-FS has 
many “*” for it to operate efficiently 

39

https://lwn.net/Articles/518988/
https://www.pinterest.com/pin/440226932298031698/


Multi-Headed Stream Logging 
F2FS leverages device parallelism by 
opening multiple write segment streams 

These streams are classified based on their
hotness and separated in zones 

● Uses a simple classification (unlike SFS)

Different zones are mapped to different
parallel units inside the flash 

40



Victim Selection and Segment Cleaning 
Recall: Greedy and Cost-Benefit (CB) policies 
● Greedy is simple, but perhaps not the most effective 
● CB is more effective, but needs more homework

F2FS does two type of cleaning 
● Foreground: when the free segments drop below a threshold, uses Greedy  
● Background: routine, takes its time with a CB policy with hotness 

The rest of the trick is the same, move the data from the victim segment to the buffer 
cache, and mark them dirty. They will be written down to the device in the due time. Not to 
erase the old blocks until the checkpoint-ing is done. 

Also: F2FS dynamically switches between threading and cleaning for log management 
41



F2FS Performance 

42

SQLite workload on 3 different file systems, F2FS outperforms them all 
(more detailed performance evaluation in the paper)



F2FS Recap
Key choices in the design of F2FS 

1. Flash-friendly data layouts : align fs GC unit (segments) with FTL gc unit 
2. NAT updates to restrain writes update propagations

a. Accepts random writes for the FS metadata regions 

3. Multi-headed logging for parallelism 
4. Adaptive logging (threading vs. cleaning) and GC policies (foreground and 

background) 

It is highly influential work, and one of the few production quality code that we 
can test and benchmark 

43



So far 
You have seen the original Log-Structured File System design (Sprite FS)
● Design originally for disks, but fits perfectly with NAND flash too :)  
● Typically “GC” is the Achilles Heel of any log-structured file system 

SSD File system (SFS) that explores FS-assisted GC policies, but mostly kept 
the original Log-Structured layout
● File system maintains statistics for hotness  

F2FS, flash-friendly layouts with with multi-headed logging capabilities 

All these file system assumed a conventional SSDs, can we think of something 
new to do here?

44



Thinking outside the (flash) box
All conventional file systems, do these three steps: 

1. Determine a location (the on-device address) where to write data 
2. Write data 
3. Keep track of the location in the file system metadata 

We will talk two unique file system designs:

● Direct File System for virtualized Flash (DFS) (2009) 
● Nameless Writes (2012) 

(further reading) : Application-Managed Flash (USENIX FAST, 2016) 

45



DFS: Direct File System (2010) 

46



DFS: Context
The year is 2010, flash is this new cool technology that is going to solve all our 
problems (allegedly)  

● Server-class FTL designs are being explored 
● FS exploration is happening, but not much is understood yet 
● SSD device performance is increasing 
● PCIe-attached is the way to attach flash storage 

This work is from Fusion-IO, the company that put flash on PCIe and run the FTL in 
the device driver on the host-CPU (no-embedded FTL) 

● Attaching to the PCIe bus brings the device within CPU memory management
● Delivered 100K IOPS random read performance (!) 

47



Virtualize Flash Storage: Key Ideas  
Instead of restrictive “N” block interface to the device, present a large 64-bit block 
address space (like the virtual memory) 

FS does a redirection from file to block, so does FTL from block to physical locations : 
Combine them

File systems is just responsible for choosing the most easy/lightweight layout for file 
management 

Virtualized FTL: wear-leveling, remapping, and reliability 

64-bit page addressing for 512 bytes pages in Fusion-IO flash, 273 bytes space 

48



How does it look?

49



Building a Simplified File System 

50

273 bytes space (264 x 29 bytes, 512 byte blocks)

Virtualized address space from flash FTL, 64 bits address identifying the 512 byte block 



Building a Simplified File System 

51

273 bytes space (264 x 29 bytes, 512 byte blocks)

2TB allocation chunks 

How many 2TB chunks there can be? 273/241 = 232 (hence, 32 bit chunk addressing is enough)

Files/directories are divided into large and small. Large gets full 2TB chunk, multiple smalls are packed 
together 



Building a Simplified File System 

52

273 bytes space (264 x 29 bytes, 512 byte blocks)

Large File 
(2 TB)

Superblock

Simple 
Array 
offsets

Occupied Small file

Small dirLarge 
Directory 

(2 TB)

Occupied 

inodes are 32 bits, each stored separately in 512 byte blocks (total space is 2TB - special first block)

Inode entries contain the inode storage block (2TB allocation chunks), 32 bits address  



File Offset Translation
Let's say I want to read a file at an offset (64 bits, but max size is 2TB, usable 37 bits)

53

Indexing in the inode array 

DFS file to inode mappings

32-bits offset

9-bits offset

Goes to the FTL



Does it help with performance?

54
Yes, DFS deliver superior performance in microbenchmarks and in real world workloads 

Device peak



In Summary: DFS (2010)

55

Very simple and intuitive implementation
Complexity is avoided in 
● inode management 
● Allocation and logging 

DFS has issues, the recovery logic needs 
support for atomic hardware logging 
● Expensive device 
● Consumes CPU cycles on the host 

But overall, it is a pretty cool work that shows how to revise old abstractions 
and re-think ideas in presence of new technologies like NAND flash 



Nameless Writes (2012) 

56



Key Challenge: Excessive Indirection
Redirection adds layer between two abstractions and an API 

Very powerful idea in computer science 

● Virtual Memory management (hides physical DRAM addresses) 
● Virtualization (hides systems resources CPU, memory, devices) 
● (here) FTL (hides low-level flash complexity) 
● (also) DFS’s flash virtualization is an example of indirection

However, they come at a performance or complexity cost. The question here is given 
that what we know about FTL and the device internals, what can we do? 

57

File systems

FTL

NAND physical add.



The Storage Device API and Indirection
How does a storage device API looks like? Where is the indirection? 

●
●
●

58

API

Virtual 

Physical 

indirection



The Storage Device API and Indirection
How does a storage device API looks like? Where is the indirection? 

●
●
●

59

The problem comes from the fact that a file system (or any other storage 
service) tells the device “where” to write “what” 

● The “name” or the identifier of the location is already given in the call 

These are “named” writes. What if we don’t tell the device where to write, 
only what to write, hence, the nameless writes?



Nameless Writes Idea

60

Flash device 

Device physical addresses are exposed to the 
application like file system 

Data is written directly directly on physical blocks 

Device is free to choose the best location where to 
write data and notify the application 

Maximum flexibility to the device 

Challenges (of course, why else we would do it)? think of running a Log-Structured File system on it...
● Looking up stuff : everytime FS writes something we get a new address? 
● Recursive update problem : inode map changes propagation ?
● GC, wear-leveling, copying -- what if a block is migrated inside the flash device? 
● Anything else? 



Segmented Address Space 
Split the address space into two areas: 

● Virtually addressed 
● Physically addressed 

Virtually addressed is “page-mapped” 
in the FTL for the best performance 
● Small area, hence, low memory 

requirements for the FTL 

This way virtually mapped areas are always addressable in a known location 
● Super block, NAT tables, inode maps can be placed here
● Recursive updates terminate here 

61



Nameless API so far 
Physical API 

● →
● →

Virtual API

● →
● →

So what happens if a physical block is moved, like during GC and wear-leveling? How 
does the file system know when a block is moved underneath it inside a device? 

62



Callbacks and Metadata 
To support free moving of data in physical blocks, Nameless API also 
introduced callback to file systems (or to any upper layer API) 

● →

However, now when a file system get an address “ ” is changed, 
how does it know which file/directory is this belong to?

● Sure, it has this information, but needs the full FS scan (not feasible) 
● Idea: put a metadata pointer with all read/writes

○ Embed any useful pointers in these metadata, e.g., inode + version 
○ Metadata stored in small OOB flash areas next to pages and written atomically 

63



Nameless Device and API
Physical API 

● →
● →
● →

● →
● →

Virtual API (not that interesting) 

● →
● →

64



Evaluation: Nameless 

65

Nameless device performance closely to a page-mapped FTL without 
requiring high memory to maintain GBs of FTL mapping tables 



1. Application-Managed Flash (USENIX FAST 2016) 
a. Completely expose flash chips to file systems and no in-place updates 
b. Breakdown recursive updated data structures into small blocks, and build an in-memory 

data structure at the time of mounting to capture updates 

2. Para File system (USENIX 2016) 
a. Also exposes a very simple FTL to the file system exposing all device geometry 
b. Considering page allocation and striping to extract maximum performance 
c. Coordinated I/O scheduling between on-host GC threads and user writes 

There is a large body of work out there regarding optimizing file systems for 
NAND flash storage devices 

Further ideas in the literature 

66



What we are not covering 
Popular file system designs for raw-flash chips in embedded systems (FTL+FS):

● JFFS  (The  Journalling  Flash  File  System), UBIFS  (Unsorted  Block  Image  File  System), Yaffs 
(Yet Another Flash File System), NAFS (NAND flash memory Array File System), CFFS (Core Flash 
File System), NAMU (NAnd flash Multimedia file system), MNFS (novel mobile multimedia file 
system), … 

Typically they are build on similar ideas and concepts, but they 

● Assume some sort of NOR byte-addressable location 
● Focus on wear-leveling for a single class of applications (not server-class diverse 

workloads) 
● Are not scalable to TBs of flash chips capacities

67



What you should know from this lecture 
1. How did SSD influence the design of file systems 
2. What is a Log-Structured File System and why it is the most popular-way 

to build flash-based file systems 
3. What are they key design challenges when building a flash-based file 

system, choices for 
a. Layouts, GC policies, segmentation management 
b. Ideas presented with Sprite FS, SSD FS, and F2FS 

4. New developments with the co-development of FTL and FS semantics 
a. DFS, and Nameless writes 

Next week: Flash-based Key-Value Stores 

68



References
● Mendel Rosenblum and John K. Ousterhout. 1991. The design and implementation of a log-structured file system. SIGOPS 

Oper. Syst. Rev. 25, 5 (Oct. 1991), 1–15. 
● Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom. 2012. SFS: random write considered 

harmful in solid state drives. In Proceedings of the 10th USENIX conference on File and Storage Technologies (FAST'12). 
USENIX Association, USA, 12. 

● Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun Cho. 2015. F2FS: a new file system for flash storage. In 
Proceedings of the 13th USENIX Conference on File and Storage Technologies (FAST'15). USENIX Association, USA, 
273–286. 

● William K. Josephson, Lars A. Bongo, David Flynn, and Kai Li. 2010. DFS: a file system for virtualized flash storage. In 
Proceedings of the 8th USENIX conference on File and storage technologies (FAST'10). USENIX Association, USA, 7.  

● Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2012. De-indirection for 
flash-based SSDs with nameless writes. In Proceedings of the 10th USENIX conference on File and Storage Technologies 
(FAST'12). USENIX Association, USA, 1.

● Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim, and Arvind Arvind. 2016. Application-managed flash. In 
Proceedings of the 14th Usenix Conference on File and Storage Technologies (FAST'16). USENIX Association, USA, 
339–353.

● Jiacheng Zhang, Jiwu Shu, and Youyou Lu. 2016. ParaFS: a log-structured file system to exploit the internal parallelism of 
flash devices. In Proceedings of the 2016 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '16). 
USENIX Association, USA, 87–100.

69


