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Syllabus outline 
1. Welcome and introduction to NVM (today) 
2. Host interfacing and software implications 
3. Flash Translation Layer (FTL) and Garbage Collection (GC) 
4. NVM Block Storage File systems 
5. NVM Block Storage Key-Value Stores 
6. Emerging Byte-addressable Storage
7. Networked NVM Storage 
8. Trends: Specialization and Programmability 
9. Distributed Storage / Systems - I 

10. Distributed Storage / Systems - II 
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Context for Further Lectures 
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1. We will use the term NVM to broadly refer to solid state technologies like 
NAND Flash and/or Optane

2. NAND Flash is specifically used in the context of NAND Flash as a block 
storage device
a. There were prototypes to make flash byte-addressable, and/or as memory but they 

remain research prototypes 

3. In the context of Optane we will make it clear from the context if we are 
talking about as a “storage” device, or as a “memory” device 
a. Lecture 6 is about Optane as memory (otherwise we mostly are talking about storage)



Ramifications of Fast Flash Storage 
First flash storage devices in mainstream computing 
showed up in mid-2000s (2005-2006-2007) 
● Recall that flash NAND/NOR are already used extensively in 

embedded systems, ROM/BIOS, etc. 

Typically (and often) a new technology is packed 
behind a known systems interface

First generation of flash devices were packaged 
as a fast “HDD” running with compatible SAS/SATA 
HDD protocols for data transfers 
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https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd.html


Classical HDD Setup: AHCI Setup

5

Processor Socket 
Complex
(memory 

controller, caches, 
cores, etc.)

Advanced Host 
Controller 
Interface 

AHCIPCIe

SATA

AHCI is implemented in motherboards 

Single point to implement protocol translation between PCIe and SATA 

Support multiple devices types (HDD, optical drives, floppy drives?) 



AHCI Challenges 

Single bottleneck for performance, SATA speeds (or SAS) were just not fast enough 
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SATA 1.0 
(1.5 Gbps, ~150 MB/s) 
                       SATA 2.0                                               SAS 2.0                                                               SAS 3.0 
                        (3 Gbps, ~300 MB/s)                          (6Gbps)                                                               (12 Gbps)
                                                                                            SATA 3.0
                                                                                            (6 Gbps, ~600 MB/s) 



Challenges with the Storage Protocols 
Beyond just the hardware speeds 

● SAS/SATA protocols were too slow to evolve, took multi years for one 
standard to get the next 
○ See the time between different version 4-5 years, it has improved later 

● The AHCI centralized complex became (hardware) performance 
bottleneck as request has an intermediary stop 
○ Low latency 
○ High IOPS 
○ Complexity of implementation and revision with new generation of flash drives 
○ Could take up to 6 microseconds on the wire 
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https://www.snia.org/sites/default/education/tutorials/2012/fall/solid/AnilVasudeva_NVMe_NextGen_SSD%20Interface-r1-nc1.pdf


Linux Storage Stack Components
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Applications

VFS

ext4 XFS Brtfs

Block Layer

SCSI mid-layer

SCSCI low-level drivers

https://en.wikipedia.org/wiki/NVM_Express#/media/File:The_Linux_Storage_Stack_Diagram.svg
https://storageconference.us/2010/Papers/MSST/Seppanen.pdf


Very High Software Overheads

(2010) timeframe 

● It takes ~20,000 instructions to issue and 
complete a 4kB request in Linux 

In a setup with an experimental device (Moneta) 

● 13 μsec out of 23 usec is software overhead (62%) 
○ 2μs for I/O no-op scheduling 
○ VFS locking 

● For RAID-HDD this is less than 1% 
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http://mesl.ucsd.edu/pubs/Caulfield_MICRO10.pdf


To Summarize
2008-2009-2010 timeframe 

● Fast high-bandwidth flash SSDs were hitting the market 

However, their performance was bottlenecked by the 

● Hardware overheads: AHCI interfaces and SAS/SATA protocols 
● Software overheads: So many design decisions made for slow storage 

devices (i.e., HDDs) that needed revision 

A radically new way of integration of new storage was needed…. 
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Connect NVM Storage Directly to PCIe
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Processor Socket 
Complex
(memory 

controller, caches, 
cores, etc.)

Advanced Host 
Controller 
Interface 

AHCIPCIe

SATA

Processor Socket 
Complex
(memory 

controller, caches, 
cores, etc.)

PCIe

Attach them directly on the PCIe bus, why? 
● No HBA, directly to CPU 
● Scalable port width (1-16x lanes) 
● High bandwidth/lane (~500MB/lane for 

v2.0, today 4.0 has 2 GB/lane) 
● Standard bus, supported by all 
● Large configuration/data space 
● Power efficient …  



Multiple Competitive Standards and Proprietary Solutions
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Image yourself in 2009
● you spent all your life optimizing to squeeze 

out a bit of performance from storage 
● A HDD does ~100s of random IOPS 
● You can pack 30s of them in a single server 

○ ~a few thousand IOPS 
● Then comes Fusion IO … 

ONE MILLION RAND IOPS (r/w mix) 

https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf
https://www.businesswire.com/news/home/20090406005417/en/CORRECTING-REPLACING-Fusion-io-Breaks-Storage-Performance-Barriers


Emergence of NVM Express 
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NVM Express is a protocol specification regarding how 
host software communicates with non-volatile memory 
across a PCI Express (PCIe) bus

● A set of command and response 
● Designed for high performance, 

highly parallel PCIe NVM storage devices 
● Has scope to define lots of control 

commands for device management 
○ FTL, firmware, temperate, errors, etc. 

https://searchstorage.techtarget.com/feature/NVMe-performance-leap-depends-on-all-flash-array-architecture-used


Host 

NVMe Ideas - Namespaces 
Key challenge: how to exploit parallelism inside the device 
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Namespace A Namespace B Namespace C Namespace D

NVM Controller 

I/O channels

Multiple independent partition of a device (block range start:end)
Independent I/O channels can be created in namespaces 



NVMe Ideas - Command/Completion Queues  
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NVM Controller 

Core0                                                                   Core “K”

A command queue and completion queue based structure 
● Small commands  - 64 Bytes (no legacy stuff). Initially, 10 admin commands, and 3 I/O commands (r/w/f) 
● 64K queues 
● 64K deep, outstanding requests 
● A large number of interrupt mapping possible 
● Any possible mapping of command:completion queue possible based on the architecture 

CommandQ
CompletionQ 

There are 
separate special 
Admin queues

https://www.slideshare.net/LarryCover/sz14-ssds002-100engf-nvme


In Comparison to AHCI vs. NVMe
1. Aggregation vs Point-to-Point Architecture 

a. AHCI is a single point of aggregation vs NVMe are point-to-point PCIe lanes 
b. Helps with high bandwidth, scalable performance 

2. Opportunities to exploit device parallelism 
a. HDDs are slow, and queuing up inside the device does not help much 
b. NVM SSDs are fast, and have lots of parallel parts 
c. Hence, 64K queue, 64K deep (vs AHCI 32 ports/queues, 32 deep) 
d. Support for multiple interrupts (NVMe) vs single interrupt to AHCI 

3. Lightweight device interaction and streamlined shared data structures 
a. 9 device register read/write (AHCI) vs 2 device register (NVMe) read writes for a command 

completion  
b. Possibility to amortize command issuing over multiple commands in one go (max 64K)

4. Possibility to multipath and networking over PCIe 
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Early Prototyping (Chatham NVMe Prototype) 

NVMe reduces latency overhead by more than 50%

● SCSI/SAS   : 6.0 μs   19,500 cycles
● NVMe        : 2.8 μs     9,100 cycles

17

PCIe removes the hardware/link overheads 
NVMe removes the protocol overheads 

https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf


NVM Express : Reduces Software Overheads
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● From HDD to SATA SSD the relative overhead of software is increased from 0.5% to 28% 
● NVMe reduces the relative software overhead to ~7%

https://dl.acm.org/doi/10.1145/2757667.2757684


NVM Express: Improves IOPS and Bandwidth
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● 750K IOPS in a single NVMe device! 
● 3 GB/sec bandwidth (bounded by the PCIe links) 

Log y axis

https://dl.acm.org/doi/10.1145/2757667.2757684


NVM Express: I/O Latencies
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1-3 orders of magnitude better read performance (in comparison to SATA SSD and HDD) 
Similar random and sequential read/write latencies (we will see later, one is better than the other)

Lo
g y

 axis

https://dl.acm.org/doi/10.1145/2757667.2757684


NVM Express Latencies 
PCIe removes the hardware/link overheads 

NVMe removes the protocol overheads 
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https://itpeernetwork.intel.com/intel-ssd-p3700-series-nvme-efficiency/#gs.g5xkh6 

https://itpeernetwork.intel.com/intel-ssd-p3700-series-nvme-efficiency/#gs.g5xkh6


Today: NVM Express 
One of the most popular and de-facto standard for 
high-performance NVM storage devices 

A comprehensive set of control, data command set, 
semantics, and response 

Constantly being updated to include the demands from 
the industries and input from academia 

In the project, you talk to your NVM device using the 
NVMe command set
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The Linux Storage Stack - Software (simplified) 
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User space applications (databases, key-value store, browsers, file and email servers) 

The virtual file system (VFS) 

The page buffer 
cache Network-fs 

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs) 

Block-FS
(ext4, f2fs, brtfs)

Linux Block Layer

Device drivers 
(NVMe)

Kernel



Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems 
(2013)
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Key Challenge 
In early 2010, lots of hardware/protocol level optimization were happening

Two trends were evident 

1. Performance of NVM SSD (i.e., flash) was improving rapidly 
2. Single CPU performance was stalled 

a. Most gains came from multi-core / multi-socket systems 

25



The Linux I/O Stack
The Linux Block Layer 

● Unified interface to application and 
device drivers 

● Provides many common services like IO 
scheduling, fairness, accounting, error 
handling, etc. 

An essential part of the storage I/O 

● Can this scale on multi-core machines to 
match the SSD performance?
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Performance Evaluation of Block I/O

27Poor collapse of performance as the number of cores / socket increases



Key Reasons 
1. Request queue locking 

the single request queue becomes the single 
point of contention in multi core machine 

2. Hardware interrupts 
driver/stack was not ready to distribute load 
generated by interrupts on the cpu0

3. Remote Memory Access 
Cross socket memory access to issue and 
complete a request, poor performance 
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Key Proposals 
A two stage split multi-queue interface 

Software Staging Queues
● Local to each core/socket → reduces contention 

and NUMA memory accesses 
● Hook to provide OS/software services 
● Software manipulation does not need syncing 

between cores

Hardware Dispatch Queues
● Any number of queues supported by the device 
● Use the queues close to the CPU core 
● Helps to use and distribute interrupts 

○ Interrupts/queue (simplified) 29



Significant Baseline Improvements 
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● General improvements across the spectrum (but still) 
○ Raw is performance when the block layer is skipped 

● Second socket leads to fall in performance for Single Queue (SQ) 
○ Coherence and locking 

● Multiqueue (MQ) follows the performance of raw closely 

What else can we optimize here?



Application-Level I/O Submission
Optimizations in the application-level API and 
implementation (libaio) 

● A global context list lock 
○ Replaced by lockless list with CAS instructions 

● A completion ring based notification to the 
user thread 
○ Remove it 

● Various shared variables throughout the 
stack 
○ Reimplement them with per-core variables and 

CAS instructions 
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As a Result … 

Managed to push IOPS close to 15 million IOPS

More importantly, made the Linux block layer scalable and ready for future NVM devices
32



When Poll is Better than Interrupt (2012) 
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Any guesses, why? 

Faster yes, but better?



The Classic Way of Doing I/O 
Asynchronous I/O (it is a loaded term)
● Software issues a request 
● And then switches to something else 
● (At some point in future) Request completes and there 

is an interrupt for notification 
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https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf


The Classic Way of Doing I/O 
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For 4kB transfer, Ta = Ta’ + Ta” ~4.8 usec, Td = 4.1 usec, Tb (sched) = 1.4 usec, Tu = 2.7 usec  

Asynchronous I/O (it is a loaded term)
● Software issues a request 
● And then switches to something else 
● (At some point in future) Request completes and there 

is an interrupt for notification 



Challenges with the Classical Way 
● Device latencies are improving significantly 

○ 10s of useconds, overheads shifting from hardware to software  

● Scheduling and context switching have latencies comparable to device I/O
○ Does it make sense to context switch when the I/O will be completing in that time?

● Interrupt generation and processing take time 
○ Interrupts destroy the current execution context 
○ Poor cache profile, and instruction pipeline flushing 
○ Interrupt storm / livelocks (high-performance networking problem in storage) 

● Gap in the load, results in CPU entering the energy saving “C” states, thus, 
introducing latencies of 1-2 useconds 

Can we do better? 36



Synchronous Completion: Polling
Constantly poll to check if the command is completed 
● In-place command completion (hence, synchronous in order) 
● Better performance - why? (always or in specific conditions?)
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https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf


Asynchronous vs. Synchronous Completion Timeline 
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https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf


Performance : Sync. vs. Async. Completion 
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For a single I/O latency
● C-State introduces latencies 
● Sync is faster than the async 

As interrupts are not taken, less context switches → 
results in better utilization of the CPU cycles (even 
perhaps both of them use 100% of CPU cycles)



Usability Spectrum 
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Like everything in systems, there is no all-good 
optimizations. When to poll? 
● When device service time is comparable to 

software overheads 
○ Cost of scheduling 
○ Cost of taking interrupts 
○ Device latencies 

● Application overheads 
○ Can kernel figure out always when to 

poll? How can application tell kernel to 
poll? 

○ Buffer management 

Short answer: Measure and decide :) 

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf


In Linux

Part of the mainstream kernel 

● 1 is enabled with io_poll 
● Delay

○ -1: classical spin looping 
○ 0 : hybrid strategy, kernel will figure out the best way for you 
○ [any_value]: nanosecond time to delay between checking 

● It would be an interesting thesis/research project to evaluate impact of 
these parameters on the “application” performance 
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Asynchronous I/O Stack: A Low-latency Kernel I/O Stack for Ultra-Low 
Latency SSDs (2019) 
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What are the Challenges 
A new class of ultra-low latency devices
● Optane SSDs, Samsung Z-SSD 
● < 10 usec latencies, +3GB/s bandwidth 

Pressure on the software stack to deliver 
performance, do you get the raw device latencies when 
doing I/O?
● Understand that software and optimizations for 100usec 

will look very different than optimizations for 10usec 

Polling helps to eliminate the context switch overheads 
between the the time we issue an I/O request to the 
device and we get a response - good ! - 

But what is happening before that? 43



Quantify the Problem
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Ultra-low SSDs like Z-SSDs and Optane SSDs have 
● Much smaller device-time for reads 
● Smaller device-time for writes 

Optane SSDs have 50-50 split between hardware and software time, can we do better in software? 



The Linux Storage Stack - Software (simplified) 
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User space applications (databases, key-value store, browsers, file and email servers) 

The virtual file system (VFS) 

The page buffer 
cache Network-fs 

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs) 

Block-FS
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Deeper Dive on the  Path 
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VFS + Page cache 
● Missing page lookups 
● Page allocation 

File system 
● LBA lookup 
● Block I/O (bio) alloc
● Submit bio 
● Page cache insertion (atomic) 

Block layer
● Scheduling, merging 

NVMe drive 
● DMA mapping/unmapping 

Ultra-low latency (ULL) devices

Layer % in kernel time

VFS 

File system 

Block layer 

NVMe driver 

Scheduling 



Block Layer Overheads
A lots of steps inside the block layer 

● Dynamic allocation of 
○ Separate slab cache 

● Transformation of a bio (kernel) to an 
I/O request (device) 

● Passing through software and 
hardware queues (multiQ) 

● IO descriptor object and preparing a 
DMA request for transfer 
○ Memory mapping/unmapping 

Lots of step (are they all necessary?)
47

Dynamic objects in the shaded areas



Timeline Comparison - Vanilla vs. Proposed read Path
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How to Make it Happen?
Lightweight block I/O layer (or LBIO)

● Simple, but very interesting idea 
● Preallocate a bunch of object 

○ Single lbio structure containing all information 
○ Pre DMA-mapped page pool for I/O 
○ Reduce locking and scheduling by mapping 1:1 

pages to CPU cores and NVMe queues 
■ Core x queue dimension 

The idea is quite general and is used in many 
other systems like high-performance 
networking

49



Optimized Lightweight Block layer 
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●  I/O submission latency in lbio 
●  shorter than the original block layer



Rest of the File read Path
1. How to do a fast file offset → LBA lookup? Not all 

mappings might be in memory and file system needs 
to do further I/O to look them up 

a. Solution: when a file is open, preload the whole mapping in the 
memory 

b. Memory consumption? Can be done selectively 

2. How to manage DMA-mapped page pool?
a. Solution: pick one, start using it, but asynchronously add 

another page 
b. Solution: once I/O is finished, only unmap lazily when the new 

page is needed 

3. Atomic page-cache insertion before I/O 
a. Solution: well...there will be duplicate work, and we will discard it 
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open
Full file offset 
to LBA mapping

asynchronously 

Critical path 



Performance: Microbenchmark and RocksDB
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● AIOS results in scalable latency gains with higher bandwidth
● RocksDB random read performance is improved by 11-32% 



Implications of Fast NVM on Data Center
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https://doi.org/10.1145/2857274.2874238


Historically 
CPU have been improving (Moore’s Law and Multi Core scalability) 

DRAM speeds have been improving (latency not so much) 

54Network performance over time (2-3 oom) Storage performance over time (4-6 oom) 



Trends in the data center 
1. The age-old assumption that I/O is slow and computation is fast is no longer true

a. this invalidates decades of design decisions that are deeply embedded in today's systems
b. Examples: use caching, prefetching, trade CPU for I/O (compression?) 

2. The relative performance of layers in systems has changed by a factor of a thousand times over a 
very short time (this has never happened in computing before!) 

a. this requires rapid adaptation throughout the systems software stack
b. Examples: PCIe/NVMe storage that exposed overheads in the software stack 

3. Piles of existing enterprise datacenter infrastructure—hardware and software—are about to become 
useless (or, at least, very inefficient)

a. SCMs require rethinking the compute/storage balance and architecture from the ground up
b. Example: moving MySQL from SATA RAID to SSDs improves performance only by 5-7x, the raw 

devices might offer 10-100-1000x times better performance
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A balancing act: Balanced Systems
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CPU

NVM 

Network 

CPUCPU
NVM NVM 

Network Network 

Are all resources utilized?
Waste of $ if idle

Can all resourced be 
occupied? CPU enough? 
DRAM enough?

CPUCPUDRAM

Is workload capable of 
utilizing all resources?

Is this the right machine for the 
placement of the workload

Is systems/cloud software 
capable of utilizing and 
scaling all resources 

It is an open-research problem



What you should know from this lecture 
1. What is NVM Express and why it was developed 
2. What are the main feature of NVM Express 

a. Multiple, deep queues 
b. Memory mapped I/O submission and completion 

3. What are the challenges with the scalability of the block layer on 
multi-core systems

4. What is synchronous (poll) vs. asynchronous completion 
a. Why would you poll on a storage stack 

5. What is Asynchronous I/O stack - what did they propose and why it was 
beneficial 

6. Changing trends inside a data center 

57



Lecture Reading List 
● High Performance Solid State Storage Under Linux, https://storageconference.us/2010/Papers/MSST/Seppanen.pdf, MSST 2010 

● Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015, 

https://dl.acm.org/doi/10.1145/2757667.2757684.  

● A Comparison of NVMe and AHCI, https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf 

● Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. 2013. Linux block IO: introducing multi-queue SSD access on 

multi-core systems. In Proceedings of the 6th International Systems and Storage Conference (SYSTOR '13). Association for Computing 

Machinery, New York, NY, USA, Article 22, 1–10. 

● Jisoo Yang, Dave B. Minturn, and Frank Hady. 2012. When poll is better than interrupt. In Proceedings of the 10th USENIX conference 

on File and Storage Technologies (FAST'12). USENIX Association, USA, 3.

● Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee, and Jinkyu Jeong. 2019. Asynchronous I/O stack: a low-latency 

kernel I/O stack for ultra-low latency SSDs. In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference 

(USENIX ATC '19). USENIX Association, USA, 603–616.

● Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew Warfield. 2015. Non-volatile Storage: Implications of the Datacenter’s 

Shifting Center. Queue 13, 9 (November-December 2015), 33–56. DOI:https://doi.org/10.1145/2857274.2874238  

58

https://storageconference.us/2010/Papers/MSST/Seppanen.pdf
https://dl.acm.org/doi/10.1145/2757667.2757684
https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf
https://doi.org/10.1145/2857274.2874238

