
1

Storage Systems (StoSys)
XM_0092

Lecture 2: Host Interfacing and
Software implications

Animesh Trivedi
Autumn 2020, Period 2

Syllabus outline
1. Welcome and introduction to NVM (today)
2. Host interfacing and software implications
3. Flash Translation Layer (FTL) and Garbage Collection (GC)
4. NVM Block Storage File systems
5. NVM Block Storage Key-Value Stores
6. Emerging Byte-addressable Storage
7. Networked NVM Storage
8. Trends: Specialization and Programmability
9. Distributed Storage / Systems - I

10. Distributed Storage / Systems - II

2

Context for Further Lectures

3

1. We will use the term NVM to broadly refer to solid state technologies like
NAND Flash and/or Optane

2. NAND Flash is specifically used in the context of NAND Flash as a block
storage device
a. There were prototypes to make flash byte-addressable, and/or as memory but they

remain research prototypes

3. In the context of Optane we will make it clear from the context if we are
talking about as a “storage” device, or as a “memory” device
a. Lecture 6 is about Optane as memory (otherwise we mostly are talking about storage)

Ramifications of Fast Flash Storage
First flash storage devices in mainstream computing
showed up in mid-2000s (2005-2006-2007)
● Recall that flash NAND/NOR are already used extensively in

embedded systems, ROM/BIOS, etc.

Typically (and often) a new technology is packed
behind a known systems interface

First generation of flash devices were packaged
as a fast “HDD” running with compatible SAS/SATA
HDD protocols for data transfers

4

https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd.html

Classical HDD Setup: AHCI Setup

5

Processor Socket
Complex
(memory

controller, caches,
cores, etc.)

Advanced Host
Controller
Interface

AHCIPCIe

SATA

AHCI is implemented in motherboards

Single point to implement protocol translation between PCIe and SATA

Support multiple devices types (HDD, optical drives, floppy drives?)

AHCI Challenges

Single bottleneck for performance, SATA speeds (or SAS) were just not fast enough

6

Processor Socket
Complex
(memory

controller, caches,
cores, etc.)

Advanced Host
Controller
Interface

AHCIPCIe

SATA

 2003 2004 ~2009 2013

SATA 1.0
(1.5 Gbps, ~150 MB/s)
 SATA 2.0 SAS 2.0 SAS 3.0
 (3 Gbps, ~300 MB/s) (6Gbps) (12 Gbps)
 SATA 3.0
 (6 Gbps, ~600 MB/s)

Challenges with the Storage Protocols
Beyond just the hardware speeds

● SAS/SATA protocols were too slow to evolve, took multi years for one
standard to get the next
○ See the time between different version 4-5 years, it has improved later

● The AHCI centralized complex became (hardware) performance
bottleneck as request has an intermediary stop
○ Low latency
○ High IOPS
○ Complexity of implementation and revision with new generation of flash drives
○ Could take up to 6 microseconds on the wire

7

https://www.snia.org/sites/default/education/tutorials/2012/fall/solid/AnilVasudeva_NVMe_NextGen_SSD%20Interface-r1-nc1.pdf

Linux Storage Stack Components

8

Applications

VFS

ext4 XFS Brtfs

Block Layer

SCSI mid-layer

SCSCI low-level drivers

https://en.wikipedia.org/wiki/NVM_Express#/media/File:The_Linux_Storage_Stack_Diagram.svg
https://storageconference.us/2010/Papers/MSST/Seppanen.pdf

Very High Software Overheads

(2010) timeframe

● It takes ~20,000 instructions to issue and
complete a 4kB request in Linux

In a setup with an experimental device (Moneta)

● 13 μsec out of 23 usec is software overhead (62%)
○ 2μs for I/O no-op scheduling
○ VFS locking

● For RAID-HDD this is less than 1%

9

http://mesl.ucsd.edu/pubs/Caulfield_MICRO10.pdf

To Summarize
2008-2009-2010 timeframe

● Fast high-bandwidth flash SSDs were hitting the market

However, their performance was bottlenecked by the

● Hardware overheads: AHCI interfaces and SAS/SATA protocols
● Software overheads: So many design decisions made for slow storage

devices (i.e., HDDs) that needed revision

A radically new way of integration of new storage was needed….

10

Connect NVM Storage Directly to PCIe

11

Processor Socket
Complex
(memory

controller, caches,
cores, etc.)

Advanced Host
Controller
Interface

AHCIPCIe

SATA

Processor Socket
Complex
(memory

controller, caches,
cores, etc.)

PCIe

Attach them directly on the PCIe bus, why?
● No HBA, directly to CPU
● Scalable port width (1-16x lanes)
● High bandwidth/lane (~500MB/lane for

v2.0, today 4.0 has 2 GB/lane)
● Standard bus, supported by all
● Large configuration/data space
● Power efficient …

Multiple Competitive Standards and Proprietary Solutions

12

Image yourself in 2009
● you spent all your life optimizing to squeeze

out a bit of performance from storage
● A HDD does ~100s of random IOPS
● You can pack 30s of them in a single server

○ ~a few thousand IOPS
● Then comes Fusion IO …

ONE MILLION RAND IOPS (r/w mix)

https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf
https://www.businesswire.com/news/home/20090406005417/en/CORRECTING-REPLACING-Fusion-io-Breaks-Storage-Performance-Barriers

Emergence of NVM Express

13

NVM Express is a protocol specification regarding how
host software communicates with non-volatile memory
across a PCI Express (PCIe) bus

● A set of command and response
● Designed for high performance,

highly parallel PCIe NVM storage devices
● Has scope to define lots of control

commands for device management
○ FTL, firmware, temperate, errors, etc.

https://searchstorage.techtarget.com/feature/NVMe-performance-leap-depends-on-all-flash-array-architecture-used

Host

NVMe Ideas - Namespaces
Key challenge: how to exploit parallelism inside the device

14

Namespace A Namespace B Namespace C Namespace D

NVM Controller

I/O channels

Multiple independent partition of a device (block range start:end)
Independent I/O channels can be created in namespaces

NVMe Ideas - Command/Completion Queues

15

NVM Controller

Core0 Core “K”

A command queue and completion queue based structure
● Small commands - 64 Bytes (no legacy stuff). Initially, 10 admin commands, and 3 I/O commands (r/w/f)
● 64K queues
● 64K deep, outstanding requests
● A large number of interrupt mapping possible
● Any possible mapping of command:completion queue possible based on the architecture

CommandQ
CompletionQ

There are
separate special
Admin queues

https://www.slideshare.net/LarryCover/sz14-ssds002-100engf-nvme

In Comparison to AHCI vs. NVMe
1. Aggregation vs Point-to-Point Architecture

a. AHCI is a single point of aggregation vs NVMe are point-to-point PCIe lanes
b. Helps with high bandwidth, scalable performance

2. Opportunities to exploit device parallelism
a. HDDs are slow, and queuing up inside the device does not help much
b. NVM SSDs are fast, and have lots of parallel parts
c. Hence, 64K queue, 64K deep (vs AHCI 32 ports/queues, 32 deep)
d. Support for multiple interrupts (NVMe) vs single interrupt to AHCI

3. Lightweight device interaction and streamlined shared data structures
a. 9 device register read/write (AHCI) vs 2 device register (NVMe) read writes for a command

completion
b. Possibility to amortize command issuing over multiple commands in one go (max 64K)

4. Possibility to multipath and networking over PCIe
16

Early Prototyping (Chatham NVMe Prototype)

NVMe reduces latency overhead by more than 50%

● SCSI/SAS : 6.0 μs 19,500 cycles
● NVMe : 2.8 μs 9,100 cycles

17

PCIe removes the hardware/link overheads
NVMe removes the protocol overheads

https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf

NVM Express : Reduces Software Overheads

18

● From HDD to SATA SSD the relative overhead of software is increased from 0.5% to 28%
● NVMe reduces the relative software overhead to ~7%

https://dl.acm.org/doi/10.1145/2757667.2757684

NVM Express: Improves IOPS and Bandwidth

19

● 750K IOPS in a single NVMe device!
● 3 GB/sec bandwidth (bounded by the PCIe links)

Log y axis

https://dl.acm.org/doi/10.1145/2757667.2757684

NVM Express: I/O Latencies

20

1-3 orders of magnitude better read performance (in comparison to SATA SSD and HDD)
Similar random and sequential read/write latencies (we will see later, one is better than the other)

Lo
g y

 axis

https://dl.acm.org/doi/10.1145/2757667.2757684

NVM Express Latencies
PCIe removes the hardware/link overheads

NVMe removes the protocol overheads

21
https://itpeernetwork.intel.com/intel-ssd-p3700-series-nvme-efficiency/#gs.g5xkh6

https://itpeernetwork.intel.com/intel-ssd-p3700-series-nvme-efficiency/#gs.g5xkh6

Today: NVM Express
One of the most popular and de-facto standard for
high-performance NVM storage devices

A comprehensive set of control, data command set,
semantics, and response

Constantly being updated to include the demands from
the industries and input from academia

In the project, you talk to your NVM device using the
NVMe command set

22

The Linux Storage Stack - Software (simplified)

23

User space applications (databases, key-value store, browsers, file and email servers)

The virtual file system (VFS)

The page buffer
cache Network-fs

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs)

Block-FS
(ext4, f2fs, brtfs)

Linux Block Layer

Device drivers
(NVMe)

Kernel

Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems
(2013)

24

Key Challenge
In early 2010, lots of hardware/protocol level optimization were happening

Two trends were evident

1. Performance of NVM SSD (i.e., flash) was improving rapidly
2. Single CPU performance was stalled

a. Most gains came from multi-core / multi-socket systems

25

The Linux I/O Stack
The Linux Block Layer

● Unified interface to application and
device drivers

● Provides many common services like IO
scheduling, fairness, accounting, error
handling, etc.

An essential part of the storage I/O

● Can this scale on multi-core machines to
match the SSD performance?

26

Performance Evaluation of Block I/O

27Poor collapse of performance as the number of cores / socket increases

Key Reasons
1. Request queue locking

the single request queue becomes the single
point of contention in multi core machine

2. Hardware interrupts
driver/stack was not ready to distribute load
generated by interrupts on the cpu0

3. Remote Memory Access
Cross socket memory access to issue and
complete a request, poor performance

28

Key Proposals
A two stage split multi-queue interface

Software Staging Queues
● Local to each core/socket → reduces contention

and NUMA memory accesses
● Hook to provide OS/software services
● Software manipulation does not need syncing

between cores

Hardware Dispatch Queues
● Any number of queues supported by the device
● Use the queues close to the CPU core
● Helps to use and distribute interrupts

○ Interrupts/queue (simplified) 29

Significant Baseline Improvements

30

● General improvements across the spectrum (but still)
○ Raw is performance when the block layer is skipped

● Second socket leads to fall in performance for Single Queue (SQ)
○ Coherence and locking

● Multiqueue (MQ) follows the performance of raw closely

What else can we optimize here?

Application-Level I/O Submission
Optimizations in the application-level API and
implementation (libaio)

● A global context list lock
○ Replaced by lockless list with CAS instructions

● A completion ring based notification to the
user thread
○ Remove it

● Various shared variables throughout the
stack
○ Reimplement them with per-core variables and

CAS instructions

31

As a Result …

Managed to push IOPS close to 15 million IOPS

More importantly, made the Linux block layer scalable and ready for future NVM devices
32

When Poll is Better than Interrupt (2012)

33

Any guesses, why?

Faster yes, but better?

The Classic Way of Doing I/O
Asynchronous I/O (it is a loaded term)
● Software issues a request
● And then switches to something else
● (At some point in future) Request completes and there

is an interrupt for notification

34

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

The Classic Way of Doing I/O

35
For 4kB transfer, Ta = Ta’ + Ta” ~4.8 usec, Td = 4.1 usec, Tb (sched) = 1.4 usec, Tu = 2.7 usec

Asynchronous I/O (it is a loaded term)
● Software issues a request
● And then switches to something else
● (At some point in future) Request completes and there

is an interrupt for notification

Challenges with the Classical Way
● Device latencies are improving significantly

○ 10s of useconds, overheads shifting from hardware to software

● Scheduling and context switching have latencies comparable to device I/O
○ Does it make sense to context switch when the I/O will be completing in that time?

● Interrupt generation and processing take time
○ Interrupts destroy the current execution context
○ Poor cache profile, and instruction pipeline flushing
○ Interrupt storm / livelocks (high-performance networking problem in storage)

● Gap in the load, results in CPU entering the energy saving “C” states, thus,
introducing latencies of 1-2 useconds

Can we do better? 36

Synchronous Completion: Polling
Constantly poll to check if the command is completed
● In-place command completion (hence, synchronous in order)
● Better performance - why? (always or in specific conditions?)

37

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

Asynchronous vs. Synchronous Completion Timeline

38

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

Performance : Sync. vs. Async. Completion

39

For a single I/O latency
● C-State introduces latencies
● Sync is faster than the async

As interrupts are not taken, less context switches →
results in better utilization of the CPU cycles (even
perhaps both of them use 100% of CPU cycles)

Usability Spectrum

40

Like everything in systems, there is no all-good
optimizations. When to poll?
● When device service time is comparable to

software overheads
○ Cost of scheduling
○ Cost of taking interrupts
○ Device latencies

● Application overheads
○ Can kernel figure out always when to

poll? How can application tell kernel to
poll?

○ Buffer management

Short answer: Measure and decide :)

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

In Linux

Part of the mainstream kernel

● 1 is enabled with io_poll
● Delay

○ -1: classical spin looping
○ 0 : hybrid strategy, kernel will figure out the best way for you
○ [any_value]: nanosecond time to delay between checking

● It would be an interesting thesis/research project to evaluate impact of
these parameters on the “application” performance

41

Asynchronous I/O Stack: A Low-latency Kernel I/O Stack for Ultra-Low
Latency SSDs (2019)

42

What are the Challenges
A new class of ultra-low latency devices
● Optane SSDs, Samsung Z-SSD
● < 10 usec latencies, +3GB/s bandwidth

Pressure on the software stack to deliver
performance, do you get the raw device latencies when
doing I/O?
● Understand that software and optimizations for 100usec

will look very different than optimizations for 10usec

Polling helps to eliminate the context switch overheads
between the the time we issue an I/O request to the
device and we get a response - good ! -

But what is happening before that? 43

Quantify the Problem

44

Ultra-low SSDs like Z-SSDs and Optane SSDs have
● Much smaller device-time for reads
● Smaller device-time for writes

Optane SSDs have 50-50 split between hardware and software time, can we do better in software?

The Linux Storage Stack - Software (simplified)

45

User space applications (databases, key-value store, browsers, file and email servers)

The virtual file system (VFS)

The page buffer
cache Network-fs

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs)

Block-FS
(ext4, f2fs, brtfs)

Linux Block Layer

Device drivers
(NVMe)

Kernel

Deeper Dive on the Path

46

VFS + Page cache
● Missing page lookups
● Page allocation

File system
● LBA lookup
● Block I/O (bio) alloc
● Submit bio
● Page cache insertion (atomic)

Block layer
● Scheduling, merging

NVMe drive
● DMA mapping/unmapping

Ultra-low latency (ULL) devices

Layer % in kernel time

VFS

File system

Block layer

NVMe driver

Scheduling

Block Layer Overheads
A lots of steps inside the block layer

● Dynamic allocation of
○ Separate slab cache

● Transformation of a bio (kernel) to an
I/O request (device)

● Passing through software and
hardware queues (multiQ)

● IO descriptor object and preparing a
DMA request for transfer
○ Memory mapping/unmapping

Lots of step (are they all necessary?)
47

Dynamic objects in the shaded areas

Timeline Comparison - Vanilla vs. Proposed read Path

48

How to Make it Happen?
Lightweight block I/O layer (or LBIO)

● Simple, but very interesting idea
● Preallocate a bunch of object

○ Single lbio structure containing all information
○ Pre DMA-mapped page pool for I/O
○ Reduce locking and scheduling by mapping 1:1

pages to CPU cores and NVMe queues
■ Core x queue dimension

The idea is quite general and is used in many
other systems like high-performance
networking

49

Optimized Lightweight Block layer

50

● I/O submission latency in lbio
● shorter than the original block layer

Rest of the File read Path
1. How to do a fast file offset → LBA lookup? Not all

mappings might be in memory and file system needs
to do further I/O to look them up

a. Solution: when a file is open, preload the whole mapping in the
memory

b. Memory consumption? Can be done selectively

2. How to manage DMA-mapped page pool?
a. Solution: pick one, start using it, but asynchronously add

another page
b. Solution: once I/O is finished, only unmap lazily when the new

page is needed

3. Atomic page-cache insertion before I/O
a. Solution: well...there will be duplicate work, and we will discard it

51

open
Full file offset
to LBA mapping

asynchronously

Critical path

Performance: Microbenchmark and RocksDB

52

● AIOS results in scalable latency gains with higher bandwidth
● RocksDB random read performance is improved by 11-32%

Implications of Fast NVM on Data Center

53

https://doi.org/10.1145/2857274.2874238

Historically
CPU have been improving (Moore’s Law and Multi Core scalability)

DRAM speeds have been improving (latency not so much)

54Network performance over time (2-3 oom) Storage performance over time (4-6 oom)

Trends in the data center
1. The age-old assumption that I/O is slow and computation is fast is no longer true

a. this invalidates decades of design decisions that are deeply embedded in today's systems
b. Examples: use caching, prefetching, trade CPU for I/O (compression?)

2. The relative performance of layers in systems has changed by a factor of a thousand times over a
very short time (this has never happened in computing before!)

a. this requires rapid adaptation throughout the systems software stack
b. Examples: PCIe/NVMe storage that exposed overheads in the software stack

3. Piles of existing enterprise datacenter infrastructure—hardware and software—are about to become
useless (or, at least, very inefficient)

a. SCMs require rethinking the compute/storage balance and architecture from the ground up
b. Example: moving MySQL from SATA RAID to SSDs improves performance only by 5-7x, the raw

devices might offer 10-100-1000x times better performance

55

A balancing act: Balanced Systems

56

CPU

NVM

Network

CPUCPU
NVM NVM

Network Network

Are all resources utilized?
Waste of $ if idle

Can all resourced be
occupied? CPU enough?
DRAM enough?

CPUCPUDRAM

Is workload capable of
utilizing all resources?

Is this the right machine for the
placement of the workload

Is systems/cloud software
capable of utilizing and
scaling all resources

It is an open-research problem

What you should know from this lecture
1. What is NVM Express and why it was developed
2. What are the main feature of NVM Express

a. Multiple, deep queues
b. Memory mapped I/O submission and completion

3. What are the challenges with the scalability of the block layer on
multi-core systems

4. What is synchronous (poll) vs. asynchronous completion
a. Why would you poll on a storage stack

5. What is Asynchronous I/O stack - what did they propose and why it was
beneficial

6. Changing trends inside a data center

57

Lecture Reading List
● High Performance Solid State Storage Under Linux, https://storageconference.us/2010/Papers/MSST/Seppanen.pdf, MSST 2010

● Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015,

https://dl.acm.org/doi/10.1145/2757667.2757684.

● A Comparison of NVMe and AHCI, https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf

● Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. 2013. Linux block IO: introducing multi-queue SSD access on

multi-core systems. In Proceedings of the 6th International Systems and Storage Conference (SYSTOR '13). Association for Computing

Machinery, New York, NY, USA, Article 22, 1–10.

● Jisoo Yang, Dave B. Minturn, and Frank Hady. 2012. When poll is better than interrupt. In Proceedings of the 10th USENIX conference

on File and Storage Technologies (FAST'12). USENIX Association, USA, 3.

● Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee, and Jinkyu Jeong. 2019. Asynchronous I/O stack: a low-latency

kernel I/O stack for ultra-low latency SSDs. In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference

(USENIX ATC '19). USENIX Association, USA, 603–616.

● Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew Warfield. 2015. Non-volatile Storage: Implications of the Datacenter’s

Shifting Center. Queue 13, 9 (November-December 2015), 33–56. DOI:https://doi.org/10.1145/2857274.2874238

58

https://storageconference.us/2010/Papers/MSST/Seppanen.pdf
https://dl.acm.org/doi/10.1145/2757667.2757684
https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf
https://doi.org/10.1145/2857274.2874238

