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Syllabus outline 
1. Welcome and introduction to NVM (today) 
2. Host interfacing and software implications 
3. Flash Translation Layer (FTL) and Garbage Collection (GC) 
4. NVM Block Storage File systems 
5. NVM Block Storage Key-Value Stores 
6. Emerging Byte-addressable Storage
7. Networked NVM Storage 
8. Trends: Specialization and Programmability 
9. Distributed Storage / Systems - I 

10. Distributed Storage / Systems - II 
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What is the problem / observation 
Distributed systems are large 

Failures are common 

How do we handle failures? Ideas? 
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What is the problem / observation 
Distributed systems are large 

Failures are common 

How do we handle failures? Ideas? 

Make multiple copies 

● Replication on multiple machines 
● Checkpoint and recovery 
● Consensus, ordering, and State Machine Replication (SMR) 
● Log-based logging and recovery 
● … 
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A Quick Distributed Storage Sketch
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Metadata
Server 

Data Server

Client

Capacity manager
Scheduler 
Coordinator 
Namespace 
FS indexes/tree 
Access control … 

Data access

MData access

Updates 

Replication for FT

Data storage 
Distributed 
Scalable 

Model for: Crail, HDFS, Yarn, Spark, … 

What happens when Metadata Server fails?



Often in the Literature 
No clear answer, it is challenging to make Centralized Metadata service 
reliable and fault tolerant. Typically …  

● Write your specific custom fault tolerant service 
○ Not recommended unless you know what you are doing! 

● Use consensus based SMR like Paxos or Raft in your service 
○ Needs service to be structured in a specific manner 

● Use an external reliable service like Zookeeper 
○ Need to organize its own metadata to fit in ZooKeepers’ data type (tree node) 
○ But what if you want a link list, hash map, array, or set? 
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Further Complexity 
Concurrent, Distributed Data Structures are hard to get right. Now image a 
system in which you are building a Fault-tolerant metadata server with … 

● Transactional access to metadata 
○ Transaction Protocols like 2PC or 3PC 
○ Concurrency control, locking

● Sharding of metadata to do load balancing 
○ A single server cannot scale indefinitely with support a workload from a whole cluster 

● Perhaps caching, and replication 
○ How to keep multiple copies of metadata consistent 

How do all these protocols interact with each other? Are they safe? 
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Corfu and Tango
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Corfu and Tango (in Computer Science)
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Log: A very powerful data structure 
A sequential appending data structure 

● Write only at the end (tail) 
● Read from anywhere 

Many unique properties 

● No in-place updates, once written, the data becomes immutable 
● Serialized writing, one point of writing, the tail - either the write succeeds or not (atomicity) 
● Logging events (used in DBs, file systems) for failure recovery 
● Ordering of events (writes, transactions, or whatever) 

For NAND flash 

● Converts a random write to a sequential one 
● Parallel reading  
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Log usage example : Recovery 
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M1

Q1 Q2 Q3 Q4

2. Execute Q4 and update DB

1. Log the query in a log 

Last checkpoint



Log usage example : Recovery 
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M1

Q1 Q2 Q3 Q4

2. Execute Q4 and update DB

1. Log the query in a log 

3. While updating … 

Last checkpoint

M2

4. A new machine, or when M1 recovers 

Q1 Q2 Q3 Q4

5. Replay the log from the last 
checkpoint 



Log usage example : State Machine Replication  
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M1 “I”

Given a common starting state say “I”, if all machines apply the same deterministic 
transformation to their data they will stay maintain a replicated copy of the data - 
hence can handle failure of machines 

Challenges: in an unreliable distributed environment how to come up with ordering 
of transformation?  

M2 “I”
M3 “I”

get(k1), put(k2, v2), put (k2,v3)....

2x(put(k2, v2)) …  

Ideas? 



Consensus Algorithms 
Paxos, Raft, Viewstamp Replication, Zookeeper Atomic Broadcast, … 

Raft: a log can be used as a basis of building consensus 
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M1 “I”

M2 “I”

M3 “I”

get(k1), put(k2, v2), put (k2,v3)....

2x(put(k2, v4)) …  

get(k1) put(k2, v4) put(k2, v2) put(k2, v3) put(k2, v4)

Append only log … 



Corfu: A Shared Distributed Log over Flash 
Seems like a perfect match to put Flash + Log together 

A shared log abstraction over distributed flash

The log can be used as an ordering, arbiter 

Using log one can build a strongly consistent 
systems 

● What is a strongly consistent system?
● Why do we need a strongly consistent system?
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Why a Single Shared Log?
A single shared log allows multiple entities 
in a distributed system to access the total 
order 

Easy reasoning about the order and 
program semantics - Strong Consistency 

A single Shared log has been used before 
in DBs, shared file systems 

What challenges you might think when 
designing a shared log system on top of 
disks? that a flash might help with?
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…

All the client would see some total order of 
operation - but always the SAME 

{7, 11, 0, 5, 1}



Log on Disk vs. Flash
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Sequential Write 
Random Parallel Reads 

Poor bandwidth with concurrent accesses, lots of 
seeks, will destroy write performance too  

How did LogFS solved this problem? 
They made a case that reads will be mostly 
served from large DRAM cache. Disk mostly need 
to serve large sequential writes. 

Parallel Concurrent reads  
Absolutely not a problem :) 

Sequential writes good :) 



Why a Single Distributed Log? 
Why cannot we store log in a single machine → Failure Handling 

Design of a distributed log? All objects in a single log, or give objects their own 
private log of updates and save these logs to individual flash devices? 
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● Cannot provide strong consistency across objects 
○ Transactions with multiple objects (no order) 

● Performance bottleneck by flash devices 
● Hot objects - lots of updates 

○ The flash log device will wear out 



Corfu: A Shared Distributed Log over Flash 
Seems like a perfect match to put Flash + Log together 

A shared log abstraction over distributed flash

Key design choices: 

● Why a single shared log? 
○ Multiple machines should be able to observe order 

● Why a single distributed log? 
○ Storing log on a single flash drive would be bottleneck 

by its performance 
○ [Flash] If partitioned per-key or per-SDD, then hot key logs will wear off flash 
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Corfu Design and API 
Build a shared distributed log abstraction over distributed SSDs 

Keep the devices simple, hence, client-centric/driven design - SSD themselves 
do no do much (passive storage) 

A basic log API : append, and read 

Two new calls: trim and fill 
● Trim: like the trim command 
● Fill : is to make an area filled with junk
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What is needed to Design Corfu?
1. On which flash device and flash page, the log 

offset “O” is stored?

2. Where is the current tail of the log? Or where 
does a client write next 

3. What happens when there is a failure of a 
flash device(s)? 

Any ideas? 
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How to find data location in Corfu
Uses simple deterministic extents projections that 
can be calculated by clients, here: 

● 0 to 40K is stored on F0 and F1 
○ Between F0 and F1 it can be RR or one after another 

● 40K-80K is stored on F2 and F3 

When reading, client can calculate which flash page 
stores which log address 

Each extent (0-40K, 40K-80K) are associated with a 
replica flash devices for failure handling 

How does a client know which projection to use if there 
was a failure? 
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Changing the Projection 
In case of an extent completion, SSD failure, or node crashes or joining - we 
need to change the projection

1. Give projection numbers 
a. Every time project is changed, its version/epoch is changed 
b. Any client can change the projection 

2. Store projections separately 
a. Disk volume (RAID) 
b. Can use Paxos state to store reliably 
c. Can use Corfu itself but ONLY with static projection 

Is this enough for safely operate Corfu? How do clients know (apart from the one who 
changed it) a projection has changed? How do SSDs know a projection has changed?   23

Projection Projection 



Additional Support from SSDs 
1. Only write-once semantics on a page 

a. Can be content or “fill junk” (see next) 

2. Read function for written pages 
a. Page written = OK 
b. Page not written = Not Written 
c. Page trimmed (in case of GC) or Junk 

3. Expose storage space as a logical 
contiguous address space 
a. Very much like what you did in milestone 3 

4. Support for a  command 
a. Like a generation, all I/O from previous 

generation are stopped and rejected 24

K Seal K 3

Fetch new projection

SSD



Projection Changing Protocol 
1. Client decides to seal Pi and install Pi+1 
2. Send seal command to all SSDs that have a page 

mapped in Pi but not in the same position in Pi+1 
3. Other clients know from the rejection that Pi is sealed 
4. The client will know after receiving the ACK that Pi is 

sealed 
a. It also knows the highest written log offset in Pi 

5. The client installs the new Pi+1 projection at the (i + 1)th 
position in the projection log 
a. If multiple clients start the reconfiguration at the 

same time, only one will succeed at at the (i + 1)th 
position 
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How does a client find the tail? 
Design 1 : Client content for the tail only one will 
succeed (write-once) 
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1 2 3 4 5

Design 2 : Build a network sequencer (optimizer, not needed for 
correctness) 

1 2 3 4 5 6

5          6

7
8

Here if a client fails with 
an offset - another client 
can mark the offset junk 



What Kind of Properties can Corfu Provide? 
1. A distributed total order 
2. A log for transactional updates 
3. Log for play forward/undo updates 
4. A consensus service 

a. State Machine Replication (SMR) 

You can build 

1. Key-Value Store 
2. Databases 
3. File Systems 
4. Fault Tolerant Data Structures 
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The Unique Role Flash Plays Here 
1. The ability to provide large random parallel read bandwidth from the 

log 
2. The ability to build the log abstraction which can provide single point of 

writing at the tail 
3. The ability to seal / trim log - matches nicely with what SSDs do 

internally 

You can potentially build Corfu with disks as well, but the performance will not 
be good. In that case the application need to partition data to scale, thus 
sacrificing “C” from the CAP theorem 
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https://en.wikipedia.org/wiki/CAP_theorem


Corfu Performance 
(i) Server-attached SSDs; (ii) FPGA-attached 
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Corfu Applications 

● Atomic, multi-get puts and gets for KV 
● Scalable SMR implementation for replication
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Tango: Distributed Data Structures over a Shared Log

Tango is any arbitrary object 
which has 

● In-memory view 
● History of updates stored on 

the shared corfu log 

Corfu provides: 

● Persistency 
● Consistency 
● Atomicity and fault tolerance 
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Tango Objects
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Object ID

Attached Tango Runtime

Actual object state

Upcall function called from Tango 
for state update

Write, that takes an opaque buffer and 
“append” in Corfu via 

Read, uses  to “read” 
new appends from the log. It can 
“check” if the tail of the log has 
moved and then replay it  



Tango Objects
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Corfu distributed shared log 

0 5 1

Consistency: total order from the log → for single 
object linearizability 

Durability: if the machine crashes, reconstruct the 
object on another machine 

History: all versions of the objects are accessible from 
the log 



Multiple Objects and Transactions 
How do we atomically update multiple objects at the same time: Transactions!
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1. Mark the starting block for the 
transaction -- speculative commit 

2. Keep track of read/write sets 

3. Check at the time of commit any 
conflicts with the read/write set 

When other machines see the speculative 
commits for objects, they buffer it internally 
and only make it visible (Atomicity) once 
they encounter a commit block 



Performance: Scalability 
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Corfu + Tango 
Very powerful way of building fault tolerant data structures 

Provides fault tolerance, scalability, ordering, transactions -- all in a single 
system

Shared distributed log is very powerful 

Shared distributed log can be build 
efficiently using unique properties of 
flash storage 

36https://github.com/CorfuDB 

https://github.com/CorfuDB


Storage Research Landscape 
Many exciting projects ...wish we get to teach all of them 

● Corfu/Tango (Microsoft Research) 
● RAMCloud (Stanford) 
● FaRM (Microsoft Research)
● FaWN (CMU) 
● Replication, new disaggregated OS Design (UCSD) 
● Distributed shared persistent memory (UCSD) 
● New file systems, heaps, data structures (UCSD) 
● And many many many more … 
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To Conclude 
Storage Research is fundamentally 
changing and reshaping what 
kind of systems we can build 
tomorrow 

● Performance 
● Abstractions 
● Efficiency 
● Programmability 
● Cost 
● Scalability 
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The (new) triangle of storage hierarchy
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Tape 

Hard disk drive (HDD) 

DRAM Memory

CPU cache

CPU 
register

Cost: $ / GB 

capacity

~0.1ns

1-10ns

~10-100ns

~10-100ms

~100ms-10s

Access latencies

NAND Flash/Optane SSDs

Persistent Memory < 1 usec

~10-100 usec

- cache line granularity 
- volatile storage  
- load/store instructions

- cache line granularity 
- non-volatile storage 
- load/store instructions

- Block granularity 
- non-volatile 
- I/O commands 
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