Storage Systems (StoSys)
XM_0092

Lecture 10: Distributed / Storage Systems - Il

Animesh Trivedi
Autumn 2020, Period 2

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

Syllabus outline

0 Bistril ' /s I
10. Distributed Storage / Systems - I <:

What is the problem / observation

Distributed systems are large
Failures are common

How do we handle failures? Ideas?

https://www.confluent.io/learn/distributed-systems/

https://www.confluent.io/learn/distributed-systems/

What is the problem / observation

Distributed systems are large

m
— "ﬁ
Failures are common = @ WQ@J 9,

/ I

How do we handle failures? Ideas?

Make multiple copies

Replication on multiple machines
Checkpoint and recovery
Consensus, ordering, and State Machine Replication (SMR)
Log-based logging and recovery

https://www.confluent.io/learn/distributed-systems/

https://www.confluent.io/learn/distributed-systems/

A Quick Distributed Storage Sketch

Client

MData access

Capacity manager
Scheduler
Coordinator
Namespace

FS indexes/tree
Access control ...

Metadata
Server

Model for: Crail, HDFS, Yarn, Spark, ...
Data access

Replication for FT

/\

Updates Data Server

T~

Data storage
Distributed

What happens when Metadata Server fails? Scalable

Often in the Literature

No clear answer, it is challenging to make Centralized Metadata service
reliable and fault tolerant. Typically ...

e Write your specific custom fault tolerant service
o Not recommended unless you know what you are doing!

e Use consensus based SMR like Paxos or Raft in your service
o Needs service to be structured in a specific manner

e Use an external reliable service like Zookeeper

o Need to organize its own metadata to fit in ZooKeepers' data type (tree node)
o Butwhatif you want a link list, hash map, array, or set?

Further Complexity

Concurrent, Distributed Data Structures are hard to get right. Now image a
system in which you are building a Fault-tolerant metadata server with ...

e Transactional access to metadata
o Transaction Protocols like 2PC or 3PC
o Concurrency control, locking

e Sharding of metadata to do load balancing
o Asingle server cannot scale indefinitely with support a workload from a whole cluster

e Perhaps caching, and replication
o How to keep multiple copies of metadata consistent

How do all these protocols interact with each other? Are they safe?

Corfu and Tango

Corfu and Tango (in

CORFU: A Shared Log Design for Flash Clusters

Mahesh Balakrishnan®, Dahlia Malkhi®, Vijayan Prabhakaran®
Ted Wobber", Michael Wei, John D. Davis®

% Microsoft Research Silicon Valley

Abstract

CORFU' organizes a cluster of flash devices as a single,
shared log that can be accessed concurrently by multiple
clients over the network. The CORFU shared log makes
it easy to build distributed applications that require
strong consistency at high speeds. such as databases.
ional key-value stores, replicated state hi
and metadata services. CORFU can be viewed as a dis-
tributed SSD. providing advantages over conventional
SSDs such as distributed wear-leveling. network lo-
cality, fault tolerance. incremental scalability and geo-
distribution. A single CORFU instance can support up to
200K appends/sec, while reads scale linearly with clus-
ter size. Importantly, CORFU is designed to work di-
rectly over network-attached flash devices, slashing cost,
power consumption and latency by eliminating storage
servers.

1 Introduction

Traditionally, system designers have been forced to
choose between performance and safety when building
large-scale storage systems. Flash storage has the poten-
tial to dramatically alter this trade-off, providing persis-
tence as well as high throughput and low latency. The
advent of commodity flash drives creates new opportu-
nities in the data center, enabling new designs that are
impractical on disk or RAM infrastructure.

University of California, San Diego

and geo-distribution [16]: and even a primary data store
that leverages fast appends on underlying media. Flash
is an ideal medium for implementing a scalable shared
log, supporting fast, contention-free random reads to the
body of the log and fast sequential writes to its tail.

One simple option for implementing a flash-based
shared log is to outfit a high-end server with an expensi
PCl-e SSD (e.g., Fusion-io [2]), replicating it to handle
failures and scale read throughput. However, the result-
ing log is limited in append throughput by the bandwidth
of a single server. In addition, interposing bulky, general-
purpose servers between the network and flash can cre-
ate per bottl ks, leaving bandwidth under-
utilized, and can also offset the power benefits of flash.
In contrast, clusters of small flash units have been shown
to be bal d. pe fficient and i lly scal-
able [5]. Required is a distributed implementation of a
shared log that can operate over such clusters.

Accordingly. we present CORFU. a shared log ab-
straction implemented over a cluster of flash units. In
CORFU, each position in the shared log is mapped to a
set of flash pages on different flash units. This map is

intained — i ly and ly — at the clients.
To read a particular position in the shared log. a client
uses its local copy of this map to determine a correspond-
ing physical flash page. and then directly issues a read
to the flash unit storing that page. To append data. a
client first determines the next available position in the
shared log — using a node as an izati
for idi ion_with other dino clients —

Comp

uter Science)

Tango: Distributed Data Structures over a Shared Log

Mahesh Balakrishnan®, Dahlia Malkhi*, Ted Wobber®, Ming Wut, Vijayan Prabhakaran®
Michael WeiS, John D. Davis®, Sriram Rao’, Tao Zou, Aviad Zuck/!

*Microsoft Research Silicon Valley #Microsoft Research Asia * Microsoft
§ University of California, San Diego ¥ Cornell University | Tel-Aviv University

Abstract

Distributed systems are easier to build than ever with the
emergence of new, data-centric abstractions for storing
and computing over massive datasets. However, similar
abstractions do not exist for storing and accessing meta-
data. To fill this gap. Tango provides developers with
the abstraction of a replicated. in-memory data struc-
ture (such as a map or a tree) backed by a shared log.
Tango objects are easy to build and use, replicating state
via simple append and read operations on the shared
log instead of complex distributed protocols: in the pro-
cess, they obtain properties such as linearizability, per-
sistence and high availability from the shared log. Tango
also leverages the shared log to enable fast transactions
across different objects, allowing applications to parti-
tion state across machines and scale to the limits of the
underlying log without sacrificing consistency.

1 Introduction

Cloud platforms have democratized the development of
scalable applications in recent years by providing sim-
ple. data-centric interfaces for partitioned storage (such
as Amazon S3 [1] or Azure Blob Store [8]) and par-
1lelizabl putation (such as MapRed [19] and
Dieyad 1281 T 1. th, 1 i Y

However, current cloud platforms provide applica-
tions with little support for storing and accessing meta-
data. Application metadata typically exists in the form
of data structures such as maps, trees, counters, queues,
or graphs; real-world examples include filesystem hier-
archies [5], resource allocation tables [7]. job assign-
ments [3]. network topologies [35], deduplication in-
dices [20] and provenance graphs [36]. Updates to meta-
data usually consist of multi-operation transactions that
span different data structures — or arbitrary subsets of
a single data structure — while requiring atomicity and
isolation; for example, moving a node from a free list
to an allocation table, or moving a file from one portion
of a namespace to another. At the same time, application
metadata is required to be highly available and persistent
in the face of faults.

Existing solutions for storing metadata do not provide
transactional access to arbitrary data structures with per-
sistence and high availability. Cloud storage services
(e.g., SimpleDB [2]) and coordination services (e.g.,
ZooKeeper [27] and Chubby [14]) provide persistence,
high availability, and strong consistency. However, each
system does so for a specific data structure, and with
limited or no support for transactions that span multi-
ple operations, items, or data structures. Conventional
databases support transactions, but with limited scala-
bility and not over arbitrary data structures.

N

Log: A very powerful data structure

A sequential appending data structure ﬂ write
e Writeonlyattheend(tail) [I 1 [[]

e Read from anywhere ﬂ ﬂ ﬂ ﬂ ﬂ

Many unique properties reads

No in-place updates, once written, the data becomes immutable

Serialized writing, one point of writing, the tail - either the write succeeds or not (atomicity)
Logging events (used in DBs, file systems) for failure recovery

Ordering of events (writes, transactions, or whatever)

For NAND flash

e Converts a random write to a sequential one

e Parallel reading o

Log usage example : Recovery

/\ 2. Execute Q4 and update DB
M1

1. Log the query in a log

| D

Last checkpoint

Log usage example : Recovery

4. A new machine, or when M1 recovers

/\ 2. Execute Q4 and update DB
M1 M2

8 x 3. While updating ...

1. Log the query in a log ////
11 Q2 || Q3 || Q4

Q
| >

5. Replay the log from the last
checkpoint

i

Last checkpoint

12

Log usage example : State Machine Replication

Given a common starting state say

“I",if all machines apply the same deterministic

transformation to their data they will stay maintain a replicated copy of the data -
hence can handle failure of machines

Challenges: in an unreliable distributed environment how to come up with ordering
of transformation?

M2

M1

get(k1), put(k2, v2), put (k2,v3)....

< '

2X(put(k2, v2)) ...

v] < |

Ideas?

13

Consensus Algorithms

Paxos, Raft, Viewstamp Replication, Zookeeper Atomic Broadcast, ...

Raft: a log can be used as a basis of building consensus

l] ‘ get(k1), put(k2, v2), put (k2,v3)....

e |
M2 get(k1) || put(k2, v4) | put(k2, v2) | put(k2, v3) | put(k2, v4) . <

> 2x(put(k2, v4)) ...

J Append only log ... <

o

M1

14

Corfu: A Shared Distributed Log over Flash

Seems like a perfect match to put Flash + Log together

. . . Application - Database
A shared log abstraction over distributed flash . e
Corfu Library

Metadata Service
Virtual Disk

L]

Clients access flash units

The log can be used as an ordering, arbiter directly over the network

via the Corfu library

Tt 1
O ¢2 (23 (4 (5 (6 ¢Z (8 - (== ¢ - ¢ ¢
Each log position is mapped
to flash pages in the cluster I
] ' 7 (AN AT l
e Whatis a strongly consistent sys?em. OO O OO O
e Why do we need a strongly consistent system? COOOOOOOO *

Cluster of Network-Attached Flash Units

Using log one can build a strongly consistent
systems

Why a Single Shared Log?

A single shared log allows multiple entities - (]

in a distributed system to access the total
order
/ {7,11,0,5, 1}

Easy reasoning about the order and
program semantics - Strong Consistency

|7||11||@||5||1|
' >

A single Shared log has been used before

in DBs, shared file systems All the client would see some total order of

. operation - but always the SAME
What challenges you might think when P 4

designing a shared log system on top of
disks? that a flash might help with?

16

Log on Disk vs. Flash

Sequential Write (7] (1] [e][s5][1]
Random Parallel Reads . \

17 | [1a] [e][s5][1]

5888

Poor bandwidth with concurrent accesses, lots of
seeks, will destroy write performance too Parallel Concurrent reads
Absolutely not a problem :)

How did LogFS solved this problem?

They made a case that reads will be mostly Sequential writes good)

served from large DRAM cache. Disk mostly need 17
to serve large sequential writes.

Why a Single Distributed Log?

Why cannot we store log in a single machine — Failure Handling

Design of a distributed log? All objects in a single log, or give objects their own
private log of updates and save these logs to individual flash devices?

o Transactions with multiple objects (no order)

/\ m I::::] e Cannot provide strong consistency across objects

e Performance bottleneck by flash devices
e Hot objects - lots of updates
o The flash log device will wear out

18

Corfu: A Shared Distributed Log over Flash

Seems like a perfect match to put Flash + Log together

A shared log abstraction over distributed flash

Key design choices:

e Why a single shared log?

o Multiple machines should be able to observe order

e Why a single distributed log?

o Storing log on a single flash drive would be bottleneck

by its performance

Application - (Database

(N | Key-Value Store
2 Replicated State Machine
Corfll leriry Metadata Service
Clients access flash units Virtual Disk
directly over the network
via the Corfu library

it '
0123445678 - (-(-

Each log position is mapped
to flash pages in the cluster

OO OO OCOS
&/\)\/v’va\/O N

Cluster of Network-Attached Flash Units

o [Flash] If partitioned per-key or per-SDD, then hot key logs will wear off flash

19

Corfu Design and API

Build a shared distributed log abstraction over distributed SSDs

Keep the devices simple, hence, client-centric/driven design - SSD themselves

do no do much (passive storage)

A basic log API : append, and read

Two new calls: trim and fill

append(b)

read(()
trim(/)

fill(¢)

Append an entry b and return
the log position ¢ it occupies
Return entry at log position ¢
Indicate that no valid data exists
at log position ¢

Fill log position ¢ with junk

e Trim: like the trim command
e Fill : is to make an area filled with junk

20

What is needed to Design Corfu?

1. On which flash device and flash page, the log
offset “O” is stored?

2. Where is the current tail of the log? Or where
does a client write next

3. What happens when there is a failure of a
flash device(s)?

Any ideas?

Application - Database

(N [| Key-Value Store
Replicated State Machine
Metadata Service

Virtual Disk

Corfu Library

Clients access flash units
directly over the network

via the Corfu library
Read H Append —
1Tt

020000000 C 00000

Each log position is mapped
to flash pages in the cluster
OO OO OO
COCOOCOOOCOO

Cluster of Network-Attached Flash Units

21

How to find data location in Corfu

Uses simple deterministic extents projections that *F, 0:20K
can be calculated by clients, here: Biample Prajeroon > o-4ox P

Range [0 — 40K) is

mapped to FO and F1. oFE. 0:20K
e 0to 40K is stored on FO and F1 Range [40K - 80K) is v -

mapped to F2 and F3. 40Kk-80k| oF, 0:20K

o Between FO and F1 it can be RR or one after another

e 40K-80K is stored on F2 and F3

: ®
When reading, client can calculate which flash page @

stores which log address “- Eﬂ
e

Each extent (0-40K, 40K-80K) are associated with a 2 3

replica flash devices for failure handling --

How does a client know which projection to use if there

was a failure?

Changing the Projection

In case of an extent completion, SSD failure, or node crashes or joining - we
need to change the projection

1. Give projection numbers Projection Projection
a. Everytime project is changed, its version/epoch is changed k k+1
b. Any client can change the projection | >

2. Store projections separately
a. Disk volume (RAID)
b. Can use Paxos state to store reliably
c. Canuse Corfu itself but ONLY with static projection

Is this enough for safely operate Corfu? How do clients know (apart from the one who
changed it) a projection has changed? How do SSDs know a projection has changed? 03

Additional Support from SSDs

1.

2.

Only write-once semantics on a page
a. Can be content or “fill junk” (see next)

Read function for written pages

a. Page written = OK
b. Page not written = Not Written
c. Page trimmed (in case of GC) or Junk

Expose storage space as a logical

contiguous address space
a. Very much like what you did in milestone 3

Support for a seal command
a. Like a generation, all I70 from previous
generation are stopped and rejected

Fetch new projection

C1

SSD

24

Projection Changing Protocol

1. Client decides to seal P, and install P,

2. Send seal command to all SSDs that have a page
mapped in P. but not in the same positionin P,

3. Other clients know from the rejection that P, is sealed

4. The client will know after receiving the ACK that P, is RO
sealed oF,/Fs 0:5K

i

®
=}
=

40K —

(€)

e

oF/F, 0:20K
oF,/F; 0:20K
oF,/Fs 0:20K

<K

o
]
8
=
L
M
)
=~
=
w
o
8
=

. . . a0k - 50k *F 0:5K a0k - 80| *F,/Fg 0:20K

a. Italso knows the highest written log offset in P. N TR K20k | N[y 020K

5. The clientinstalls the new P. . projection at the (i + 1)th \/ *Fiffs S5K20K] || o :n/m 0:20
(8) (D)

position in the projection log

a. If multiple clients start the reconfiguration at the
same time, only one will succeed at at the (i + 1)th
position

How does a client find the tail?

Design 1 : Client content for the tail only one will
succeed (write-once)

1

Design 2 : Build a network sequencer (optimizer, not needed for

correctness)

Counter

Here if a client fails with

C1

C1

an offset - another client

(o BN

can mark the offset junk

26

What Kind of Properties can Corfu Provide?

H W=

A distributed total order
A log for transactional updates

Log for play forward/undo updates

A consensus service
a. State Machine Replication (SMR)

You can build

H W=

Key-Value Store

Databases

File Systems

Fault Tolerant Data Structures

Appllcatlon Database

lmm Kev-yalue Store .
Corfu lera Replicated State Machine
P Metadata Service

Virtual Disk

=

Clients access flash units
directly over the network

via the Corfu library

000000 00 (0

Each log position is mapped
to flash pages in the cluster

OOOOOOOOOO
COOOOCOCOCOO *H

Cluster of Network-Attached Flash Units

27

The Unique Role Flash Plays Here

1. The ability to provide large random parallel read bandwidth from the
log

2. The ability to build the log abstraction which can provide single point of
writing at the tail

3. The ability to seal / trim log - matches nicely with what SSDs do
internally

You can potentially build Corfu with disks as well, but the performance will not

be good. In that case the application need to partition data to scale, thus
sacrificing “C" from the CAP theorem

https://en.wikipedia.org/wiki/CAP_theorem

28

https://en.wikipedia.org/wiki/CAP_theorem

Corfu Performance

(i) Server-attached SSDs; (ii) FPGA-attached

100 T T T T T T T T T 100 T T T T T T T T T
75 Server Reads mmmm | 75 L Server Appends mmmmm |
X 50 . X 50 + i
25 E 25 + R

0 1 1 1 1 1 | 1 1 0 L ll 1 | | 1 L 1
0123456728910 0123456728910

Latency (ms) Latency (ms)

100 T T T T T T T T T 100 T T T T T T T T T
75 FPGA Reads mmmm 75 FPGA Appends mmmmm -
X 50 E X 50 !
25 - 25 -

O | 1 1 | | 1 | | 0 | | | (| 1 | | |
0123456728910 0123456728910

Latency (ms) Latency (ms)

4KB Entries/Sec

500K

375K

250K

125K

0K

]App(l:nd 'll“hro'ughpl)ut —
Read Throughput

T

T

4 8 12 16 20 24 28 32

Number of Flash Units

GB/sec

29

Corfu Applications

90K
100 250
2 500 | ' "Multi-Get Tput mmm | 500 o " "Multi-Put Tput 1 0K | SMR Throughput :L i
A Log Read Tput - —+- - ¢ 2 Log Append Tput —— 3 T T
.mf og Read Tpu (},J’ @ 80 L og Append Tpu 1 200 (a{]: 70K | o + 1 _L_
T400 -t oo] 400 & = z - NRE HiE
Q ! » = 2 60K L = nEn i
T =]) 1
3 2 Z 60+ 1150 & 9 [
2300 | 1300 & E < BS0K 3 -
Ty o Comt b~ g
= - ° 40t {100 = 40K | i
4200 | 4200 g z 4 :
g 3 g g S 30K |+ i
@7 =} 7 =
2100 ¢ {100 & g0 150 2 20K | -
= = =
0 0 0 0 IOK ~ -
| 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 0K I_II T B ' T A A O B R Pl S T I I Y Y
of Keys in Multi-Get # of Keys in Multi-Put 12345678 91011121314

' Replicas

e Atomic, multi-get puts and gets for KV
e Scalable SMR implementation for replication

Tango: Distributed Data Structures over a Shared Log

Tango is any arbitrary object
which has

e In-memory view
e History of updates stored on
the shared corfu log

Corfu provides:

e Persistency
e (Consistency
e Atomicity and fault tolerance

Tango
Object Application Application
= X ‘ ~\\ see
view (|
in-memory ,
data structure (.. e (]
+ Tango Runtime Tango Runtime
history Shared Log -
ordered ﬁ g (CORFU) ﬁ {l}
updates in
shared log '
PO OO OO
uster

31

Tango Objects
Object ID

lass TangoRegist .
class TangoRegister { Attached Tango Runtime
int oid;

TangoRuntime =T ; 4 /

int state; < Actual object state
void apply(void *X) {
state = x(int *)X;
} Upcall function called from Tango
void writeRegister(int newstate){ for state update
T—>update_helper(&newstate ,
sizeof (int), oid);\
} Write, that takes an opaque buffer and
int readRegister () { “append” in Corfu via update_helper
T—>query_helper(oid);
return state \
} Read, uses query helper to “read”
} new appends from the log. It can

“check” if the tail of the log has

moved and then replay it
32

Tango Objects

Consistency: total order from the log — for single

class TangoRegister { object linearizability
int oid;
TangoRuntime *T: Durability: if the machine crashes, reconstruct the
int state; n y '

; , object on another machine
void apply(void *X) {

state = x(int *)X;

) History: all versions of the objects are accessible from
void writeRegister(int newstate){ the |Og
T—>update_helper(&newstate ,
s1ze0f(1nt) oid);
}
ot readRegister () {

T—>query_helper (oid); |11| | (%] || || 1 || 1 |
return state;

} | >

Corfu distributed shared log

33

Multiple Objects and Transactions

How do we atomically update multiple objects at the same time: Transactions!

T->BeginTX();

TASmrEpoy= #l curowner = owners->get(ledgerid);

if(curowner->equals(myname))
list->add(item);

speculative gtatus = T->EndTX();
update at #2

commit record:
reads: (owners#1)
updates by writes: (/ist#2)

other clients

111
oo

conflict window
'’ TX commits if read set has not

changed in conflict window

1. Mark the starting block for the
transaction -- speculative commit

2. Keep track of read/write sets

3. Check at the time of commit any
conflicts with the read/write set

When other machines see the speculative
commits for objects, they buffer it internally
and only make it visible (Atomicity) once
they encounter a commit block

34

Performance:

Request Latency (ms)

Scalability

|

W__rlite }'{atioI 1.0 |

| | | |

|

Milliseconds

Ks/sec

()

Single view

25 50 75 100 125150 175
Ks of Requests/Sec

[\

o0 e =
S Sh— i w
T

£
oS O

20

RleadI La'teml:y -

}'{eads —
Writes

Target Writes (Ks/sec)

Two views

Ks of Reads/Sec

200 +

150

100

W
S

1 SLSelrve'r LlogI Iil
2-Server Log mEEE

2 4 6 81012141618
N Readers, 10K Writes/Sec

Multiple views

35

Corfu + Tango

Very powerful way of building fault tolerant data structures

Provides fault tolerance, scalability, ordering, transactions -- all in a single
system

iy i CorfuDB

Shared distributed log is very powerful

Shared distributed log can be build
efficiently using unique properties of
flash storage

pppppp

https://github.com/CorfuDB

36

https://github.com/CorfuDB

Storage Research Landscape

Many exciting projects ...wish we get to teach all of them

Corfu/Tango (Microsoft Research)

RAMCloud (Stanford)

FaRM (Microsoft Research)

FaWN (CMU)

Replication, new disaggregated OS Design (UCSD)
Distributed shared persistent memory (UCSD)
New file systems, heaps, data structures (UCSD)
And many many many more ...

37

To Conclude

Storage Research is fundamentally
changing and reshaping what

kind of systems we can build
tomorrow

Performance
Abstractions
Efficiency
Programmability
Cost

Scalability

Data Storage Research Vision 2025

Report on NSF Visioning Workshop held May 30-June 1, 2018
George Amvrosiadis’, Ali R. Butt¥, Vasily Tarasov?, Erez Zadok*, Ming Zhao®
Irfan Ahmad, Remzi H. Arpaci-Dusseau, Feng Chen, Yiran Chen, Yong Chen, Yue Cheng,
Vijay Chidambaram, Dilma Da Silva, Angela Demke-Brown, Peter Desnoyers, Jason Flinn, Xubin He,
Song Jiang, Geoff Kuenning, Min Li, Carlos Maltzahn, Ethan L. Miller, Kathryn Mohror, Raju Rangaswami,
Narasimha Reddy, David Rosenthal, Ali Saman Tosun, Nisha Talagala, Peter Varman, Sudharshan Vazhkudai

Avani Waldani, Xiaodong Zhang, Yiying Zhang, and Mai Zheng.

fCarnegie Mellon University, ¥Virginia Tech, ‘IBM Research,
*Stony Brook University, “Arizona State University

February 2019

Executive Summary

With the emergence of new computing paradigms (e.g., cloud and edge computing, big data, Internet of Things (IoT),

deep learning, etc.) and new storage hardware (e.g., non-volatile memory (NVM), shingled-magnetic recording
(SMR) disks, and kinetic drives, etc.), a number of open challenges and research issues need to be addressed to
ensure sustained storage systems efficacy and performance. The wide variety of applications demand that the
fundamental design of storage systems should be revisited to support application-specific and application-defined
semantics. Existing standards and abstractions need to be reevaluated; new sustainable data representations need to
be designed to support emerging applications. To take advantage of hardware advancements, new storage software
designs are also necessary in order to maximize overall system efficiency and performance.

Therefore, there is a urgent need for a consolidated effort to identify and establish a vision for storage systems
research and comprehensive techniques that provide practical solutions to the storage issues facing the information
technology community. To address this need, the National Science Foundation’s (NSF) “Visioning Workshop on
Data Storage Research 2025 brought together a number of storage researchers from academia, industry, national
laboratories, and federal agencies to develop a collective vision for future storage rcsedrnh as well as to pnonulc

T, RS DL ODIL) PR NPy LD LSl Jal> [UBPC N LS ey et e aa

el L T A R e

38

The (new) triangle of storage hierarchy

Cost: $/GB

register Access latencies

DRAM Memory ~10-100ns
Persistent Memory <1 usec

NAND Flash/Optane SSDs ~10-100 usec
- Block lari . :
_ronaiatie Hard disk drive (HDD) ~10-100ms
- 1/0 commands Tape 100ms.10s

. _
- capacity %

- cache line granularity
- volatile storage
- load/store instructions

- cache line granularity
- non-volatile storage
- load/store instructionS/' e

Further References

e Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael Wei, and John D. Davis. 2012.
CORFU: a shared log design for flash clusters. In Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation (NSDI'12). https://dl.acm.org/doi/10.5555/2228298.2228300

e Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael Wei, John D. Davis,
Sriram Rao, Tao Zou, and Aviad Zuck. 2013. Tango: distributed data structures over a shared log. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP '13). Association for
Computing Machinery, New York, NY, USA, 325-340. DOl:https://doi.org/10.1145/2517349.2522732

e Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson, and Miguel Castro. 2014. FaRM: fast remote
memory. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation
(NSDI'14). USENIX Association, USA, 401-414.

e David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
2009. FAWN: a fast array of wimpy nodes. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP '09). Association for Computing Machinery, New York, NY, USA, 1-14,
DOI:https://doi.org/10.1145/1629575.1629577
The RAMCloud Storage System, https://dl.acm.org/doi/10.1145/2806887
Data Storage Research Vision 2025, https://par.nsf.gov/serviets/purl/10086429

40

https://dl.acm.org/doi/10.5555/2228298.2228300
https://doi.org/10.1145/2517349.2522732
https://doi.org/10.1145/1629575.1629577
https://dl.acm.org/doi/10.1145/2806887
https://par.nsf.gov/servlets/purl/10086429

