
1

Storage Systems (StoSys)
XM_0092

Lecture 10: Distributed / Storage Systems - II

Animesh Trivedi
Autumn 2020, Period 2

Syllabus outline
1. Welcome and introduction to NVM (today)
2. Host interfacing and software implications
3. Flash Translation Layer (FTL) and Garbage Collection (GC)
4. NVM Block Storage File systems
5. NVM Block Storage Key-Value Stores
6. Emerging Byte-addressable Storage
7. Networked NVM Storage
8. Trends: Specialization and Programmability
9. Distributed Storage / Systems - I

10. Distributed Storage / Systems - II

2

What is the problem / observation
Distributed systems are large

Failures are common

How do we handle failures? Ideas?

3

https://www.confluent.io/learn/distributed-systems/

What is the problem / observation
Distributed systems are large

Failures are common

How do we handle failures? Ideas?

Make multiple copies

● Replication on multiple machines
● Checkpoint and recovery
● Consensus, ordering, and State Machine Replication (SMR)
● Log-based logging and recovery
● …

4

https://www.confluent.io/learn/distributed-systems/

A Quick Distributed Storage Sketch

5

Metadata
Server

Data Server

Client

Capacity manager
Scheduler
Coordinator
Namespace
FS indexes/tree
Access control …

Data access

MData access

Updates

Replication for FT

Data storage
Distributed
Scalable

Model for: Crail, HDFS, Yarn, Spark, …

What happens when Metadata Server fails?

Often in the Literature
No clear answer, it is challenging to make Centralized Metadata service
reliable and fault tolerant. Typically …

● Write your specific custom fault tolerant service
○ Not recommended unless you know what you are doing!

● Use consensus based SMR like Paxos or Raft in your service
○ Needs service to be structured in a specific manner

● Use an external reliable service like Zookeeper
○ Need to organize its own metadata to fit in ZooKeepers’ data type (tree node)
○ But what if you want a link list, hash map, array, or set?

6

Further Complexity
Concurrent, Distributed Data Structures are hard to get right. Now image a
system in which you are building a Fault-tolerant metadata server with …

● Transactional access to metadata
○ Transaction Protocols like 2PC or 3PC
○ Concurrency control, locking

● Sharding of metadata to do load balancing
○ A single server cannot scale indefinitely with support a workload from a whole cluster

● Perhaps caching, and replication
○ How to keep multiple copies of metadata consistent

How do all these protocols interact with each other? Are they safe?

7

Corfu and Tango

8

Corfu and Tango (in Computer Science)

9

Log: A very powerful data structure
A sequential appending data structure

● Write only at the end (tail)
● Read from anywhere

Many unique properties

● No in-place updates, once written, the data becomes immutable
● Serialized writing, one point of writing, the tail - either the write succeeds or not (atomicity)
● Logging events (used in DBs, file systems) for failure recovery
● Ordering of events (writes, transactions, or whatever)

For NAND flash

● Converts a random write to a sequential one
● Parallel reading

10

write

reads

Log usage example : Recovery

11

M1

Q1 Q2 Q3 Q4

2. Execute Q4 and update DB

1. Log the query in a log

Last checkpoint

Log usage example : Recovery

12

M1

Q1 Q2 Q3 Q4

2. Execute Q4 and update DB

1. Log the query in a log

3. While updating …

Last checkpoint

M2

4. A new machine, or when M1 recovers

Q1 Q2 Q3 Q4

5. Replay the log from the last
checkpoint

Log usage example : State Machine Replication

13

M1 “I”

Given a common starting state say “I”, if all machines apply the same deterministic
transformation to their data they will stay maintain a replicated copy of the data -
hence can handle failure of machines

Challenges: in an unreliable distributed environment how to come up with ordering
of transformation?

M2 “I”
M3 “I”

get(k1), put(k2, v2), put (k2,v3)....

2x(put(k2, v2)) …

Ideas?

Consensus Algorithms
Paxos, Raft, Viewstamp Replication, Zookeeper Atomic Broadcast, …

Raft: a log can be used as a basis of building consensus

14

M1 “I”

M2 “I”

M3 “I”

get(k1), put(k2, v2), put (k2,v3)....

2x(put(k2, v4)) …

get(k1) put(k2, v4) put(k2, v2) put(k2, v3) put(k2, v4)

Append only log …

Corfu: A Shared Distributed Log over Flash
Seems like a perfect match to put Flash + Log together

A shared log abstraction over distributed flash

The log can be used as an ordering, arbiter

Using log one can build a strongly consistent
systems

● What is a strongly consistent system?
● Why do we need a strongly consistent system?

15

Why a Single Shared Log?
A single shared log allows multiple entities
in a distributed system to access the total
order

Easy reasoning about the order and
program semantics - Strong Consistency

A single Shared log has been used before
in DBs, shared file systems

What challenges you might think when
designing a shared log system on top of
disks? that a flash might help with?

16

…

All the client would see some total order of
operation - but always the SAME

{7, 11, 0, 5, 1}

Log on Disk vs. Flash

17

Sequential Write
Random Parallel Reads

Poor bandwidth with concurrent accesses, lots of
seeks, will destroy write performance too

How did LogFS solved this problem?
They made a case that reads will be mostly
served from large DRAM cache. Disk mostly need
to serve large sequential writes.

Parallel Concurrent reads
Absolutely not a problem :)

Sequential writes good :)

Why a Single Distributed Log?
Why cannot we store log in a single machine → Failure Handling

Design of a distributed log? All objects in a single log, or give objects their own
private log of updates and save these logs to individual flash devices?

18

● Cannot provide strong consistency across objects
○ Transactions with multiple objects (no order)

● Performance bottleneck by flash devices
● Hot objects - lots of updates

○ The flash log device will wear out

Corfu: A Shared Distributed Log over Flash
Seems like a perfect match to put Flash + Log together

A shared log abstraction over distributed flash

Key design choices:

● Why a single shared log?
○ Multiple machines should be able to observe order

● Why a single distributed log?
○ Storing log on a single flash drive would be bottleneck

by its performance
○ [Flash] If partitioned per-key or per-SDD, then hot key logs will wear off flash

19

Corfu Design and API
Build a shared distributed log abstraction over distributed SSDs

Keep the devices simple, hence, client-centric/driven design - SSD themselves
do no do much (passive storage)

A basic log API : append, and read

Two new calls: trim and fill
● Trim: like the trim command
● Fill : is to make an area filled with junk

20

What is needed to Design Corfu?
1. On which flash device and flash page, the log

offset “O” is stored?

2. Where is the current tail of the log? Or where
does a client write next

3. What happens when there is a failure of a
flash device(s)?

Any ideas?

21

How to find data location in Corfu
Uses simple deterministic extents projections that
can be calculated by clients, here:

● 0 to 40K is stored on F0 and F1
○ Between F0 and F1 it can be RR or one after another

● 40K-80K is stored on F2 and F3

When reading, client can calculate which flash page
stores which log address

Each extent (0-40K, 40K-80K) are associated with a
replica flash devices for failure handling

How does a client know which projection to use if there
was a failure?

22

Changing the Projection
In case of an extent completion, SSD failure, or node crashes or joining - we
need to change the projection

1. Give projection numbers
a. Every time project is changed, its version/epoch is changed
b. Any client can change the projection

2. Store projections separately
a. Disk volume (RAID)
b. Can use Paxos state to store reliably
c. Can use Corfu itself but ONLY with static projection

Is this enough for safely operate Corfu? How do clients know (apart from the one who
changed it) a projection has changed? How do SSDs know a projection has changed? 23

Projection Projection

Additional Support from SSDs
1. Only write-once semantics on a page

a. Can be content or “fill junk” (see next)

2. Read function for written pages
a. Page written = OK
b. Page not written = Not Written
c. Page trimmed (in case of GC) or Junk

3. Expose storage space as a logical
contiguous address space
a. Very much like what you did in milestone 3

4. Support for a command
a. Like a generation, all I/O from previous

generation are stopped and rejected 24

K Seal K 3

Fetch new projection

SSD

Projection Changing Protocol
1. Client decides to seal Pi and install Pi+1
2. Send seal command to all SSDs that have a page

mapped in Pi but not in the same position in Pi+1
3. Other clients know from the rejection that Pi is sealed
4. The client will know after receiving the ACK that Pi is

sealed
a. It also knows the highest written log offset in Pi

5. The client installs the new Pi+1 projection at the (i + 1)th
position in the projection log
a. If multiple clients start the reconfiguration at the

same time, only one will succeed at at the (i + 1)th
position

25

How does a client find the tail?
Design 1 : Client content for the tail only one will
succeed (write-once)

26

1 2 3 4 5

Design 2 : Build a network sequencer (optimizer, not needed for
correctness)

1 2 3 4 5 6

5 6

7
8

Here if a client fails with
an offset - another client
can mark the offset junk

What Kind of Properties can Corfu Provide?
1. A distributed total order
2. A log for transactional updates
3. Log for play forward/undo updates
4. A consensus service

a. State Machine Replication (SMR)

You can build

1. Key-Value Store
2. Databases
3. File Systems
4. Fault Tolerant Data Structures

27

The Unique Role Flash Plays Here
1. The ability to provide large random parallel read bandwidth from the

log
2. The ability to build the log abstraction which can provide single point of

writing at the tail
3. The ability to seal / trim log - matches nicely with what SSDs do

internally

You can potentially build Corfu with disks as well, but the performance will not
be good. In that case the application need to partition data to scale, thus
sacrificing “C” from the CAP theorem

28

https://en.wikipedia.org/wiki/CAP_theorem

Corfu Performance
(i) Server-attached SSDs; (ii) FPGA-attached

29

Corfu Applications

● Atomic, multi-get puts and gets for KV
● Scalable SMR implementation for replication

30

Tango: Distributed Data Structures over a Shared Log

Tango is any arbitrary object
which has

● In-memory view
● History of updates stored on

the shared corfu log

Corfu provides:

● Persistency
● Consistency
● Atomicity and fault tolerance

31

Tango Objects

32

Object ID

Attached Tango Runtime

Actual object state

Upcall function called from Tango
for state update

Write, that takes an opaque buffer and
“append” in Corfu via

Read, uses to “read”
new appends from the log. It can
“check” if the tail of the log has
moved and then replay it

Tango Objects

33

Corfu distributed shared log

0 5 1

Consistency: total order from the log → for single
object linearizability

Durability: if the machine crashes, reconstruct the
object on another machine

History: all versions of the objects are accessible from
the log

Multiple Objects and Transactions
How do we atomically update multiple objects at the same time: Transactions!

34

1. Mark the starting block for the
transaction -- speculative commit

2. Keep track of read/write sets

3. Check at the time of commit any
conflicts with the read/write set

When other machines see the speculative
commits for objects, they buffer it internally
and only make it visible (Atomicity) once
they encounter a commit block

Performance: Scalability

35

Corfu + Tango
Very powerful way of building fault tolerant data structures

Provides fault tolerance, scalability, ordering, transactions -- all in a single
system

Shared distributed log is very powerful

Shared distributed log can be build
efficiently using unique properties of
flash storage

36https://github.com/CorfuDB

https://github.com/CorfuDB

Storage Research Landscape
Many exciting projects ...wish we get to teach all of them

● Corfu/Tango (Microsoft Research)
● RAMCloud (Stanford)
● FaRM (Microsoft Research)
● FaWN (CMU)
● Replication, new disaggregated OS Design (UCSD)
● Distributed shared persistent memory (UCSD)
● New file systems, heaps, data structures (UCSD)
● And many many many more …

37

To Conclude
Storage Research is fundamentally
changing and reshaping what
kind of systems we can build
tomorrow

● Performance
● Abstractions
● Efficiency
● Programmability
● Cost
● Scalability

38

The (new) triangle of storage hierarchy

39

Tape

Hard disk drive (HDD)

DRAM Memory

CPU cache

CPU
register

Cost: $ / GB

capacity

~0.1ns

1-10ns

~10-100ns

~10-100ms

~100ms-10s

Access latencies

NAND Flash/Optane SSDs

Persistent Memory < 1 usec

~10-100 usec

- cache line granularity
- volatile storage
- load/store instructions

- cache line granularity
- non-volatile storage
- load/store instructions

- Block granularity
- non-volatile
- I/O commands

Further References
● Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael Wei, and John D. Davis. 2012.

CORFU: a shared log design for flash clusters. In Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation (NSDI'12). https://dl.acm.org/doi/10.5555/2228298.2228300

● Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael Wei, John D. Davis,
Sriram Rao, Tao Zou, and Aviad Zuck. 2013. Tango: distributed data structures over a shared log. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP '13). Association for
Computing Machinery, New York, NY, USA, 325–340. DOI:https://doi.org/10.1145/2517349.2522732

● Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro. 2014. FaRM: fast remote
memory. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation
(NSDI'14). USENIX Association, USA, 401–414.

● David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
2009. FAWN: a fast array of wimpy nodes. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP '09). Association for Computing Machinery, New York, NY, USA, 1–14.
DOI:https://doi.org/10.1145/1629575.1629577

● The RAMCloud Storage System, https://dl.acm.org/doi/10.1145/2806887
● Data Storage Research Vision 2025, https://par.nsf.gov/servlets/purl/10086429

40

https://dl.acm.org/doi/10.5555/2228298.2228300
https://doi.org/10.1145/2517349.2522732
https://doi.org/10.1145/1629575.1629577
https://dl.acm.org/doi/10.1145/2806887
https://par.nsf.gov/servlets/purl/10086429

