
Advanced Network Programming
Software Defined Networking

Lin Wang

Fall 2020, Period 1

Part of the content is adapted from Scott Shenker

Part 2: network infrastructure

Lecture 7: Network forwarding and routing

Lecture 8: Software defined networking

■ Complexity in network control and management

■ Centralized control, OpenFlow

■ Network virtualization, FlowVisor

Lecture 9: Programmable data plane

Lecture 10: Cloud networking

Lecture 11: Beyond networking

2

What is your impression about computer
networking so far?

A plethora of protocol acronyms

4

DSL

Infrared

ARP

ATM

L2TP

VLAN

PPTP

100BASE-T
WiFi

NAT ICMP

IP
IPX

TCP

UDP

DCCP

SCTP

HTTP

SMTP

POP3

FTP

IRC

DNS

DASH

A heap of header formats

5

A bunch of boxes

6

Access Point Router

Switch Middlebox (Firewall, Load

Balancer, IDS)

A ton of tools

7

traceroute

ping

iperf

nslookup

wget

wireshark

nmap

syslog

tcpdump

whois

dig

rancid

ntop

Why are there so many artifacts?

Complexity in networking

We need different functionalities, also new ones

■ Different physical layers and applications,

traffic engineering, congestion control, security

Networks run in a distributed, autonomous way

■ Scalability is important

All these add to complexity, innovations are active in

academia, but suffer from poor adoption of

deployment

■ Example: IPv6

■ Deadlock between innovation and adoption

9

https://www.google.com/intl/en/ipv6/

statistics.html#tab=ipv6-adoption

RFC 2460 (1998)

Once upon a time

AT&T updates their internal network infrastructure

(routers and switches) every 18 months to keep up

with the current demands for network

One upgrade requires billion of USD

■ A Cisco top of line switch costs $27K USD

■ Significant manpower is needed to upgrade the

network

10

Complexity in network planes

11

Switching fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

Data plane Control plane

Complexity in the control plane

Control plane needs to achieve goals such as connectivity, inter-domain policy, isolation, access control...

Currently, these goals are achieved by many mechanisms/protocols:

■ Globally distributed: routing algorithms

■ Manual/scripted configuration: Access Control Lists, VLANs

■ Centralized computation: traffic engineering (indirect control)

Even worse, these mechanisms/protocols interact with each other

■ Routing, addressing, access control, QoS

12

Network control plane is a complicated mess!

Example: access control configuration

13

Amsterdam (ams)

Frankfurt (fra)

R1 R2

R3 R4

R5

How can we block cross-region traffic?

Data center Client

Example: access control configuration

14

Amsterdam (ams)

Frankfurt (fra)

R1 R2

R3 R4

R5

Data center Client

R3-ACL

Drop ams-Client → *

Permit *

R1-ACL

Drop fra-Client → *

Permit *

Example: access control configuration

15

Amsterdam (ams)

Frankfurt (fra)

R1 R2

R3 R4

R5

Data center Client

A new inter-DC link

What would be the problem?

Example: access control configuration

16

Amsterdam (ams)

Frankfurt (fra)

R1 R2

R3 R4

R5

Data center Client

Network traffic can bypass the ACLs now.

→ Routing and access control are dependent!

How have we managed to survive?

Network administrators miraculously master this complexity

■ Understand all aspects of networks

■ Must keep myriad details in mind

The ability to master complexity is both a blessing and a curse!

The ability to master complexity is valuable but not the same as the

ability to extract simplicity

17

The Gordian Knot

Actually, networks work better during the weekends

18

How to extract simplicity? Any examples?

Example: programming

Machine languages: no abstractions

■ Hard to deal with low-level details

■ Mastering complexity is crucial

High-level languages: operating systems and other abstractions

■ File systems, virtual memory, abstract data types...

Modern languages: even more abstractions

■ Object oriented, garbage collection...

19

"Modularity based on

abstractions is the way

things get done!"

Barbara Liskov

(MIT, ACM Turing Award 2008,

pioneer in programming

languages, operating systems,

distributed computing)

What abstractions do we have in networking?

Abstractions for data plane

Applications, built on...

Reliable (or unreliable) transport, built on...

Best-effort global packet delivery, built on...

Best-effort local packet delivery, built on...

Physical transfer of bits

20

What about the control plane? Any abstractions?

Control plane is full of mechanisms

Variety of goals, no modularity

■ Routing: distributed routing algorithms

■ Isolation: ACLs, VLANs, Firewalls,

■ Traffic engineering: adjusting weights, MPLS,...

Control plane: mechanism without abstraction

You probably feel that computer networking is all about artifacts (e.g., artifacts, tools), and seems not a real

discipline... (at least not like computer architecture, operating systems)

21

Source: banking hub

We need abstractions and ultimately, we should be able to

program the network as we do for computers.

Questions?

The evolution: active networking (1990s)

First attempt making networks programmable: demultiplexing packets to software programs

23

IP Code Payload

Router

Packet

In-band approach: The packet encapsulates a small

piece of code that can be executed on the router, based

on which the router decides what to do with the packet

Out-band approach: User injects the code to be

executed beforehand → the programmable network

approach which received a lot of attention recently.

We will discuss it in our next lecture!

The evolution: control/data plane separation (2003-2007)

24

4D (ACM SIGCOMM CCR 2004)

■ Data, discovery, dissemination, decision

■ Clean-slate: network-wide view, direct control, network-global

objectives

RCP (USENIX NSDI 2005)

■ Routing Control Platform for centralized inter-AS routing,

replacing iBGP

Ethane (ACM SIGCOMM 2007)

■ Flow-based switching with centralized control for enterprise

■ Precursor of SDN

Software defined network

A network in which

■ The control plane is physically separate from the data plane

■ A single (logically centralized) control plane controls several

forwarding devices

25

Control plane

Data plane

Router

Traditional network

Controller

Programmable

switch

Software define network

SDN architecture overview

26

Control Program Control Program Control Program

Global network view

Network OS

Forwarding

Forwarding

Forwarding

Forwarding

Forwarding

A major trend in networking

27

Startup from Stanford and Berkeley in 2007, acquired by

VMware in 2012 for $1.26 billion.

How SDN changes the network

28

Custom hardware

OS

Feature Feature Custom hardware

OS

Feature Feature

Custom hardware

OS

Feature Feature

How SDN changes the network

29

Custom hardware

Feature Feature Feature Feature

Custom hardware

Custom hardware

Network OS

OS

Feature Feature

OS

Feature Feature

OS

Feature Feature

Abstractions in SDN

30

Control Program Control Program Control Program

Network OS

Forwarding

Forwarding

Forwarding

Forwarding

Forwarding

1. Abstraction for general

forwarding model

2. Abstraction for

network state

3. Abstraction that

simplifies

configuration

Abstraction #1: forwarding abstraction

Express intent independent of implementation

OpenFlow is the current proposal for forwarding

■ Standardized interface to switch: non-proprietary COTS hardware and software

■ Configuration in terms of flow entries: <header, action>

■ No hardware modifications needed, simply a firmware update

Design details concern exact nature of match+action

Benefits

■ Much cheaper, no more $27K for a single switch

■ No vendor lock-in

31

OpenFlow

32

Control Program Control Program Control Program

Network OS

OpenFlow protocol

Flow tables:

match+action
OpenFlow switch

https://www.opennetworking.org/

wp-content/uploads/2014/10/

openflow-switch-v1.5.1.pdf

OpenFlow example

33

Control Program Control Program Control Program

Network OS

If header = "p", send to port 4

If header = "q", rewrite header to "r", add

header "s", and send to port 5 and 6

If header = "?", send to me

match: "p", action: forward to 4
match: "q", action: rewrite..., forward to 5&6

match: "?", action: forward to Network OS
OpenFlow switch

Flow table

Flow table(s) on OpenFlow switches

34

Rule (exact & wildcard) Action Statistics

Rule (exact & wildcard) Action

Rule (exact & wildcard) Action

Rule (exact & wildcard) Action

……

Flow 1

Flow 2

Flow 3

Flow N

Priority

Statistics Priority

Statistics Priority

Statistics Priority

Exploit the forwarding tables that are already in routers, switches, and chipsets

Match+action

Match arbitrary bits in headers

■ Match on any header, or new header

■ Allows any flow granularity

Action

■ Forward to port(s), drop, send to the controller

■ Overwrite header with mask, push or pop

■ Forward at specific bit-rate

■ Do not support payload-related network functions

like deep packet inspection

35

Header Data

Match: 1000X01XX0101001X

Abstraction #2: network state abstraction

Global network view

■ Annotated network graph provided through an API

Implementation: "Network Operating Systems"

■ Runs on servers in network (as "controllers")

■ Replicated for reliability

Information flows both ways

■ Information from routers/switches to form view

■ Configurations to routers/switches to control forwarding

36

Global network view

Major change in paradigm

Control program: Configuration =

Function(View)

Control mechanism now is a

program using Network OS APIs

Not a distributed protocol, just a

graph algorithm

37

Control Program Control Program Control Program

Complicated task-specific distributed algorithm

Network OS

Forwarding

Forwarding

Forwarding

Forwarding

Forwarding

Abstraction #3: specification abstraction

Control mechanism expresses desired behavior

■ Whether it be isolation, access control, or QoS

It should not be responsible for implementing that behavior on

physical network infrastructure

■ Requires configuring the forwarding tables in each switch

Proposed abstraction: abstract view of the network

■ Abstract view models only enough detail to specify goals

■ Will depend on task semantics

38

A

B

A → B drop

A B
A → B drop

A → B drop

Abstract network view

Global network view

SDN control plane layers

39

Control Program Control Program Control Program

Global network view

Network OS

Forwarding

Forwarding

Forwarding

Forwarding

Forwarding

Virtualization

Abstract network view

Questions?

Network virtualization

41

What techniques we have learned that can be used

for network virtualization?

Ability to run multiple virtual networks that

■ Each has a separate control and data plane

■ Co-exist together on top of one physical network

■ Can be managed by individual parties that potentially do not trust each other

VLAN

VLAN provides basic isolation for Ethernet LANs, but it has many problems for network virtualization

■ Cannot program packet forwarding: stuck with learning switch and spanning tree

■ No obvious opt-in mechanisms: who maps a packet to a VLAN?

■ Resource isolation is problematic

42

VLAN #1 VLAN #2

Trunk link

Network virtualization: use case

43

Imagine you come up with a novel network service, e.g., a new routing protocol,

network load-balancer, how would you convince people that this is useful?

Network virtualization: use case

44

Imagine you come up with a novel network service, e.g., a new routing protocol,

network load-balancer, how would you convince people that this is useful?

Hardware testbed

Expensive! Small-scale (fanout

is small due to limited port

number on NetFPGA)!

Software testbed

Large-scale (VINI/PlanetLab, Emulab)

Performance is slow (CPU-based), no

realistic topology, hard to maintain!

Wild test on the Internet

Convincing network operators to

try something new is very

difficult! (Outages are the worst)

Problem

Realistically evaluating new network services is hard

■ Services that require changes to switches and

routers

■ For example: routing protocols, traffic

monitoring services, IP mobility

Results

■ Many good ideas do not get deployed

■ Many deployed services still have bugs

45

Real networks

Test environments

Solution: network slicing

Divide the production network into logical slices

■ Each slice/service controls its own packet forwarding

■ Users pick which slice controls their traffic: opt-in

■ Existing production services run in their own slice:

spanning tree, OSPF/BGP

Enforce strong isolation between slices

■ Actions in one slice do not affect others

Allow the (logical) testbed to mirror the production network

■ Real hardware, performance, topologies, scale, users

46

USENIX OSDI 2010

Traditional network

47

Forwarding

Control

Data B

B

Forwarding

Control

Forwarding

Control

Forwarding

Control

Slicing a traditional network

48

Data B

B

Forwarding

Slicing

Control

Forwarding

Slicing

Control

Forwarding

Slicing

Control

Forwarding

Slicing

Control

Needs support/modification on

the existing network devices

Current network devices

49

Control Plane

Computes forwarding rules

Pushes rules down to data plane

Data Plane

Enforce forwarding rules

Exceptions pushed back to control plane

Switch/Router

R
u

les

E
xc

ep
ts

Slicing layer

50

Slice 1 Control

Plane

Data Plane

Enforce forwarding rules

Exceptions pushed back to control plane

R
u

les

E
xc

ep
ts

Slice 2 Control

Plane

Slice 3 Control

Plane

Slicing layer
Slice

policies

Switch/Router

Network slicing architecture

A network slice is a collection of sliced switches/routers

■ Data plane is unmodified

■ Packets forward with no performance penalty

■ Slicing with existing ASIC

Transparent slicing layer

■ Each slice believes it owns the data path

■ Enforces isolation between slides: rewrites, drops

rules to adhere to slice policy

■ Forwards exceptions to correct slice(s)

51

Slice 1 Control

Plane

Data Plane

Enforce forwarding rules

Exceptions pushed back to control plane

R
u

les

E
xc

ep
ts

Slice 2 Control

Plane

Slice 3 Control

Plane

Slicing layer
Slice

policies

Slicing policies

The slicing policy specifies the resource limit for each slice:

■ Link bandwidth

■ Maximum number of forwarding rules (on switches)

■ Topology

■ Fraction of switch/router CPU

FlowSpace: which packet does the slice control?

■ Maps packets to slices according to their "classes"

defined by the packet header fields

52

Real user traffic: opt-in

Allow users to opt-in to services in real time

■ Users can delegate control of individual flows to slices

■ Add new FlowSpace to each slice's policy

Examples

■ "Slice 1 will handle my HTTP traffic"

■ "Slice 2 will handle my VoIP traffic"

■ "Slice 3 will handle everything else"

Creates incentives for building high-quality services!

53

Source: gacovinolack.com

Slice definition

Bob's experimental slice: all HTTP traffic to/from users who opted in

■ Allow: tcp_port=80 and ip=user_ip

Alice's production slice: complementary to Bob's slice

■ Deny: tcp_port=80 and ip=user_ip

■ Allow: all

Alice's monitoring slice: all traffic in all slices

■ Read-only: all

54

Bob-exp

Alice-pro

Alice-mon

Slicing with OpenFlow

Recall OpenFlow:

■ API for controlling packet forwarding

■ Abstraction of control/data plane

protocols

■ Works on commodity hardware (via

firmware upgrade)

55

OpenFlow

controller

OpenFlow

firmware

Data pathData plane

Control plane stub

Custom control plane

OpenFlow

protocol
Network

Switch/router

How should we slice an OpenFlow-based

software defined network?

FlowVisor

56

OpenFlow

controller

Data pathData plane

Control plane stub

Custom control plane

OpenFlow protocol

Network

Switch/router

OpenFlow

firmware

OpenFlow

controller

OpenFlow

controller

FlowVisor

OpenFlow protocol

Interposing OpenFlow control

messages to enforce network slicing

https://github.com/opennetworkinglab/flowvisor

FlowVisor packet handling

57

Alice

controller

Data path

OpenFlow

Switch/router

OpenFlow

firmware

Bob controller
Cathy

controller

FlowVisor

OpenFlow

Exception

Policy check: who

controls this packet?

Rule

Policy check: is this

rule allowed?

Full line-rate forwarding

Recursive slicing

FlowVisor can trivially recursively slice an already sliced network, creating hierarchies of FlowVisors

58

Questions?

Summary

Lecture 8: Software defined networking

■ Complexities in network control

■ Software defined networking idea

■ Abstractions in SDN

■ Network virtualization, FlowVisor

■ Mininet for experimentation

60

Next week: programmable data plane

Limitations of OpenFlow

■ Bounded to existing protocols

■ New protocols/packet formats not supported

How to support arbitrary packet format and enable a fully programmable network?

61

