Advanced Network Programming

Software Defined Networking

Lin Wang
Fall 2020, Period 1

VRIJE
UNIVERSITEIT
AMSTERDAM

VU%

Part of the content is adapted from Scott Shenker

Part 2: network infrastructure

Lecture 7: Network forwarding and routing

Lecture 8: Software defined networking
s Complexity in network control and management
s Centralized control, OpenFlow
s Network virtualization, FlowVisor

Lecture 9: Programmable data plane

Lecture 10: Cloud networking

Lecture 11: Beyond networking

What is your impression about computer
networking so far?

A plethora of protocol acronyms

DNS ARP -1P DLLP
Infrared
NAT ICMP
2TP
HTTP Op .
POP3 SCTP P
IRC
B ATM
W FI
100BASE-T VLAN
TCP

PP [P
DASH SMTP DSL

A heap of header formats

0 1 2 3
01 234567890123456789012345¢6789°01
IR e s S s s Tt TN L L S S S

CHOCIC € OO |Version| IHL |Type of Service| Total Length |
e s T s s s ST L S S S S
| Identification |Flags | Fragment Offset |
T ST S S S S
| Time to Live | Protocol | Header Checksum |
s S s e SN S N S S s =
| Source Address |
e S s s St S S
| Destination Address |
s s s SRR U N NS S s S
| Options Padding |
s e S SN L S S

0 1 2 3
0123456789 012345678901234561789° 01
s e ST TS S s
| Source Port | Destination Port |
e SO O e S e &
| Sequence Number |
s s S I e e

0 7 8 15 16 23 24 31 | Acknowledgment Number |

I e I e + S O O e I S S S

| Data | |U[A|P|R[S|F| |

source address | offset| Reserved |R|C|S|S|¥Y|I] Window |

L — R —— S T —— R —— - | | |G|K|H|T|N|N] |

. . S e ot ST LS O SO SO O S S

destination address | Checksum | Urgent Pointer |

L I —— | L ——— L S ——— | R ——— - T S S S S S St e S
Options Paddin

Zero | protocol | UDP length -!-—+—+—+—+—+—+—+—+—+—+—E—+—+—+—+—+—+—+—+—+—+—+—+—4|-—+—+—+—+—+§—I+—+—-|+

e ——— e ——— ftm——————— e ——— + | data |

M M S s S S ST S M S e et S

A bunch of boxes

Access Point

' 3 B 7 s W 1s
o B
T o i | o e i
DGS-1016D 2 4 5 5 10 12 i 16

Switch

Router

Middlebox (Firewall, Load
Balancer, IDS)

A ton of tools

hing tcpdump

traceroute iperf wget

rancid
nmap

dig nslookup

. nto
wireshark syslog P

whois

Why are there so many artifacts?

Complexity in networking

. L RFC 2460 (1998)
We need different functionalities, also new ones
IPv6 Adoption
We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

s Different physical layers and applications,

Native: 29.35% 6to4/Teredo: 0.00% | Sep 22, 2020

trafficengineering, congestion control, security ~ ***

30.00%

Networks run in a distributed, autonomous way 5. 00%
s Scalability isimportant 20.00%
15.00%

All these add to complexity, innovations are active in 1000

academia, but suffer from poor adoption of 5.00%
deployment O'OO%JanZOOQ Jan 2010 Jan 2011 Jan 2012 Jan 2013 Jan 2014 Jan2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019 Jan 2020
= Example: IPv6 https://www.google.com/intl/en/ipvé/

| | | statistics.html#tab=ipvé-adoption
» Deadlock between innovation and adoption

Once uponatime

AT&T updates their internal network infrastructure

(routers and switches) every 18 months to keep up THE WALL STREET JOURNAL.

English Edition ¥ | Print Edition | Video | Podcasts @ Latest Headlines

Wlth the Current d_emands for network Home World U.S. Politics Economy Business Tech Markets Opinion Life&Arts Real Estate WSJ.Magazine
AT&T Targets Flexibility, Cost Savings With New Network Design

Move Could Cut the Company’s Capital Costs by Billions of Dollars

u By Thomas Gryta
’ Updated Feb. 24,2014 12:25 pm ET

RECOMMENDED VIDEOS
@ PRINT AA e Biden Takes Aim at
Trump on Social
AT&T Inc. is planning to rebuild its sprawling network with less expensive, off-the-shelf Security
equipment controlled by software, a move that could cut its capital costs by billions of Gyms Brace for Fewer

dollars and put further pressure on telecom gear makers. Members as At-Home

One upgrade req Ulres billion Of USD Fitness Rises During

The shift will mean the second-largest U.S. carrier will buy less specialized equipment from Pandemic
vendors such as Ericsson, Alcatel-Lucent SA and Cisco Systems Inc., and instead purchase Some Covid-19
. Survivors Grapple
N A C | S C O tO p Of l | n e SW | tC h CO S t S $ 27 |< U S D more generic hardware from a wider variety of producers. That equipment will be tied With Large Medical
together with software, making it easier and cheaper to upgrade to new technologies, roll Bills
out new services or respond to changes in demand for connectivity. The Rise of TikTok:

» Significant manpower is needed to upgrade the

network

10

Complexity in network planes

Data plane

(

Processor

Control plane

<—/

<«———» |linecard

<+«——» Llinecard

<3 Linecard

Switching fabric

Linecard |e——F—»

Linecard |¢e——F—>

Linecard |<———F—»

11

Complexity in the control plane

Control plane needs to achieve goals such as connectivity, inter-domain policy, isolation, access control...

Currently, these goals are achieved by many mechanisms/protocols:
= Globally distributed: routing algorithms
= Manual/scripted configuration: Access Control Lists, VLANS

» Centralized computation: trafficengineering (indirect control)

Fven worse, these mechanisms/protocols interact with each other

= Routing, addressing, access control, QoS

Network control plane is a complicated mess!

12

Example: access control configuration

Data center

How can we block cross-region traffic?

Client

13

Example: access control configuration

Data center R1

==

&

R1-ACL
Drop fra-Client > *
Permit ™

Amsterdam (ams)

Frankfurt (fra)

R3

ll —

R3-ACL
Drop ams-Client > *
Permit *

Client

14

Example: access control configuration

Data center R1

S g

Amsterdam (ams)

Frankfurt (fra)

A new inter-DC link
R3

&

What would be the problem?

Client

15

Example: access control configuration

Data center R1 R2

——

/ 5

‘5‘7

Network traffic can bypass the ACLs now.
> Routing and access control are dependent!

[1

Client

16

How have we managed to survive?

Network administrators miraculously master this complexity
s Understand all aspects of networks

s Must keep myriad details in mind
The ability to master complexity is both a blessing and a curse!

The ability to master complexity is valuable but not the same as the
ability to extract simplicity

;7\’4.’\‘.
<A (:\J"\/Q

-

The Gordian Knot

17

Actually, networks work better during the weekends

& - News - Science

Fewer heart attack patients die when
top cardiologists are away at
conferences, study finds

@ @ @ Save 14

Specialists may do more harm than good, a study suggests CREDIT: LYNNE CAMERON PA

By Sarah Knapton, SCIENCE EDITOR
Follow w
9 MARCH 2018 - 2:56PM

FOLLOW THE TELEGRAPH M on d ay

f Follow on Facebook % Follow on Twitter
D . Follow on Instagram in Follow on LinkedIn Tu e S d ay
Wednesday
Thursday
Friday
Saturday

Sunday

How to extract simplicity? Any examples?

|

0

5 10 15

% of route leaks

20

18

Example: programming

Machine languages: no abstractions

= Hard to deal with low-level details "Modularity based on

abstractions is the way

= Mastering complexity is crucial . ,,
things get done!

High-level languages: operating systems and other abstractions

= File systems, virtual memory, abstract data types...

Barbara Liskov

T, ACM Turing Award 2008,
hloneer In programming
= Objectoriented, garbage collection... languages, operating systems,
distributed computing)

Modern languages: even more abstractions (M

What abstractions do we have in networking?

19

Abstractions for data plane

emaill WWW phone...

\SMTP HTTP RTP...)

TCP UDP...

IP

ethernet PPN
\

CSMA async sonet...

!

copper fibre radio...

Applications, builton...

Reliable (or unreliable) transport, built on...
Best-effort global packet delivery, built on...
Best-effort local packet delivery, built on...

Physical transfer of bits

What about the control plane? Any abstractions?

20

Control plane s full of mechanisms

Variety of goals, no modularity
= Routing: distributed routing algorithms

s |solation: ACLs, VLANSs, Firewalls,

» Trafficengineering: adjusting weights, MPLS, ...

Source: banking hub

Control plane: mechanism without abstraction

You probably feel that computer networking is all about artifacts (e.g., artifacts, tools), and seems not a real
discipline... (at least not like computer architecture, operating systems)

We need abstractions and ultimately, we should be able to
program the network as we do for computers.

2

Questions?

The evolution: active networking (1990s)

First attempt making networks programmable: demultiplexing packets to software programs

Packet

|P

Code

Payload

l@%'

Router

In-band approach: The packet encapsulates a small
piece of code that can be executed on the router, based

on which the router decides what to do with the packet

Out-band approach: User injects the code to be
executed beforehand - the programmable network
approach which received a lot of attention recently.

We will discuss it in our next lecture!

23

The evolution: control/data plane separation (2003-2007)

4D (ACM SIGCOMM CCR 2004
» Data, discovery, dissemination, decision

s Clean-slate: network-wide view, direct control, network-global

objectives

RCP (USENIX NSDI 2005

» Routing Control Platform for centralized inter-AS routing,

replacing iBGP

Fthane (ACM SIGCOMM 2007

» Flow-based switching with centralized control for enterprise

s Precursor of SDN

A Clean Slate 4D Approach to Network Control and
Management -

Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers,
Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, Hui Zhang
{dmaltz,acm,yh,jibin,hzhang}@cs.cmu.edu
gisli@ru.is jrex@cs.princeton.edu albert@research.att.com xie@nps.edu

ABSTRACT

Today’s data networks are surprisingly fragile and difficult to man-
age. We argue that the root of these problems lies in the complexity
of the control and management planes—the software and protocols
coordinating network elements—and particularly the way the de-
cision logic and the distributed-systems issues are inexorably in-
tertwined. We advocate a complete refactoring of the function-
ality and propose three key principles—network-level objectives,
network-wide views, and direct control —that we believe should
underlie a new architecture. Following these princinles. we identifv

1. INTRODUCTION

Although IP networking has been wildly successful, there are
serious problems lurking “under the hood.” IP networks exhibit a
defining characteristic of unstable complex systems —a small local
event (e.g., misconfiguration of a routing protocol on a single in-
terface) can have severe, global impact in the form of a cascading
meltdown. In addition, individual Autonomous Systems (ASes)
must devote significant resources to “working around” the con-
straints imposed by today’s protocols and mechanisms to achieve
their goals for traffic engineering, survivability, security, and pol-

Design and Implementation of a Routing Control Platform

Matthew Caesar Donald Caldwell

UC Berkeley AT&T Labs-Research

Aman Shaikh
AT&T Labs-Research

Abstract

The routers in an Autonomous System (AS) must dis-
tribute the information they learn about how to reach ex-
ternal destinations. Unfortunately, today’s internal Bor-
der Gateway Protocol (iBGP) architectures have serious
problems: a “full mesh” iBGP configuration does not
scale to large networks and “route reflection” can in-

Nick Feamster Jennifer Rexford
MIT Princeton University

Jacobus van der Merwe
AT&T Labs-Research

This paper describes the design and implementation of
an RCP prototype that is fast and reliable enough to co-
ordinate routing for a large backbone network.

1.1 Route Distribution Inside an AS

The routers in a single AS exchange routes to external

Ethane: Taking Control of the Enterprise

Martin Casado, Michael J. Freedman,
Justin Pettit, Jianying Luo,
and Nick McKeown
Stanford University

ABSTRACT

This paper presents Ethane, a new network architecture for the
enterprise. Ethane allows managers to define a single network-
wide fine-grain policy, and then enforces it directly. Ethane cou-
ples extremely simple flow-based Ethernet switches with a central-
ized controller that manages the admittance and routing of flows.
While radical, this design is backwards-compatible with existing
hosts and switches.

We have implemented Ethane in both hardware and software,
supporting both wired and wireless hosts. Our operational Ethane

Scott Shenker
U.C. Berkeley and ICSI

downtime in multi-vendor networks comes from human-error and
that 80% of IT budgets is spent on maintenance and operations [16].

There have been many attempts to make networks more manage-
able and more secure. One approach introduces proprietary middle-
boxes that can exert their control effectively only if placed at net-
work choke-points. If traffic accidentally flows (or is maliciously
diverted) around the middlebox, the network is no longer managed
nor secure [25]. Another approach is to add functionality to ex-
isting networks—to provide tools for diagnosis, to offer controls
for VLANS, access-control lists, and filters to isolate users, to in-

Software defined network

A network in which

= Thecontrol planeis physically separate from the data plane

» Asingle (logically centralized) control plane controls several

forwarding devices

The Road to SDN: An Intellectual History
of Programmable Networks

Nick Feamster Jennifer Rexford Ellen Zegura
Georgia Tech Princeton University Georgia Tech
feamster@cc.gatech.edu jrex@cs.princeton.edu ewz@cc.gatech.edu

ABSTRACT

Software Defined Networking (SDN) is an exciting technol-
ogy that enables innovation in how we design and manage
networks. Although this technology seems to have appeared
suddenly, SDN is part of a long history of efforts to make com-
puter networks more programmable. In this paper, we trace
the intellectual history of programmable networks, including
active networks, early efforts to separate the control and data
plane, and more recent work on OpenFlow and network op-
erating systems. We highlight key concepts, as well as the
technology pushes and application pulls that spurred each in-
novation. Along the way, we debunk common myths and mis-
conceptions about the technologies and clarify the relationship

Thaterrann CMNT anAd walatad tanhnalacinn cnnnh an rnateerawls crivkn

makes). Second, an SDN consolidates the control plane, so
that a single software control program controls multiple data-
plane elements. The SDN control plane exercises direct con-
trol over the state in the network’s data-plane elements (i.e.,
routers, switches, and other middleboxes) via a well-defined
Application Programming Interface (API). OpenFlow [51] is
a prominent example of such an API. An OpenFlow switch
has one or more tables of packet-handling rules. Each rule
matches a subset of traffic and performs certain actions on
the traffic that matches a rule; actions include dropping, for-
warding, or flooding. Depending on the rules installed by a
controller application, an OpenFlow switch can behave like a
router, switch, firewall, network address translator, or some-
thing in between.

Programmable
Control plane

Controller

<«— Dataplane

Router

Software define network

Traditional network

SDN architecture overview

(Control Program)[Control Program]C Control Program)

Global network view (Ké‘><)—@

C Network OS)

Forwarding

/ Forwarding
Forwarding /

\ / Forwarding
Forwarding

26

A major trend in networking

Google Microsoft e

OPEN NETWORKING
FOUNDATION . s VAEHOO!

N
| | | Startup from Stanford and Berkeley in 2007, acquired by
NICIra VMware in 2012 for $1.26 billion.

27

How SDN changes the network

[Feature] Geature]

a

OS

_J

_
-

&

Custom hardware

/L

/

[Featurej Geature]

q h
OS
_ _
a)
Custom hardware
_ w,

T

(Featurej Geature]

~

OS

~

o

Custom hardware

_J
™

_

28

How SDN changes the network

[Feature) [Feature) [Feature] [Feature)

Network OS

[Custom hardware]

/[Custom hardware]

T

[Custom hardware]

29

Abstractions in SDN

3. Abstraction that
simplifies
configuration

[Control Program][Control Program)[Control Program) 2. Abstraction for
network state

C Network OS

1. Abstraction for general
forwarding model

Forwarding

'?Open Flow | / Forwarding
Forwarding /

\ e
Forwarding

30

Abstraction #1: forwarding abstraction

Express intent independent of implementation

OpenFlow is the current proposal for forwarding
s Standardized interface to switch: non-proprietary COTS hardware and software
» Configuration in terms of flow entries: <header, action>

= No hardware modifications needed, simply a firmware update
Design details concern exact nature of match+action

Benefits
s Much cheaper, no more $27K for a single switch

m Novendor lock-in

OpenFlow

31

OpenFlow

C Control Program]C Control Program]C Control Program]

Scope of OpenFlow Switch Specification

K .

Network OS

OpenFlow

h Switch ‘

SW Secure
Channel

’ OpenFlow
: Controller
OpenFlow : :

Protocol :
llllllllll !]

OpenFlow protocol

Flow
Table

7~

— OpenFlow switch

Flow tables:
match+action

OPEN NETWORKING
FOUNDATION

OpenFlow Switch Specification
Version 1.5.1 (Protocol version 006)

March 26, 2015

ONF TS-025

https://www.opennetworking.org/

wp-content/uploads/2014/10/
openflow-switch-vi1.5.1.pdf

32

OpenFlow example

(Control Program)(Control Program)[Control Program)

:

Network OS

:

l@% '

penFlow switch

If header="p", send to port 4

. Ifheader="q", rewrite header to ", add

header s’ and send to port5and 6
If header="?" send to me

match: "p’ action: forward to 4
match: 'g" action: rewrite..., forward to 5&6

match: "?" action: forward to Network OS

Flow table

33

Flow table(s) on OpenFlow switches

Flow 1 C Rule (exact & wildcard Action

[
Flow 2 C Rule (exact & wildcard)]C Action
L

Flow 3 C Rule (exact & wildcard Action

Flow N C Rule (exact & wildcard)]C Action

Exploit the forwarding tables that are already in routers, switches, and chipsets

34

Match+action

Match arbitrary bits in headers

= Match on any header, or new header

. Allows any flow granularity

Action

s Forward to port(s), drop, send to the controller
s Overwrite header with mask, push or pop

s Forward at specific bit-rate

» Do notsupport payload-related network functions

ke deep packetinspection

In
Port

VLAN
ID

Ethernet

IP

TCP

SA

DA | Type

SA

DA

Proto

Src | Dst

Header

Match: 1000X01XX0101001X

Data

35

Abstraction #2: network state abstraction

Global network view

= Annotated network graph provided through an AP|

K\
o . .. | Global network view
Implementation: "Network Operating Systems L0 *’,‘G obal network vie
= Runsonserversin network (as "controllers”) '/' DY
= Replicated for reliability S Ly "
/ \,'\ */l: ‘\‘ /
Information flows both ways N '. \4
= |nformation from routers/switches to form view ' /
\ *

= Configurations to routers/switches to control forwarding

Major change in paradigm

Control program: Configuration =

Function(View)

Control mechanism now is a
program using Network OS APIs

Not a distributed protocol, just a

graph algorithm

Control Program Control Program

Complicated task-specific distributed algorithm

Network OS

Forwarding

Forwarding

\ / Forwarding
Forwarding

Control Program

NG
~ O _—

Forwarding

/

37

Abstraction #3: specification abstraction Abstract network view
A

A - Bdrop /

't should not be responsible forimplementing that behavior on / \
physical network infrastructure

B

Control mechanism expresses desired behavior

= Whetheritbeisolation, access control, or QoS

s Requires configuring the forwarding tables in each switch

Proposed abstraction: abstract view of the network Clobal network view

s Abstract view models only enough detail to specity goals ~_

/
= Will depend on task semantics A / A»Bdm

L N\

—

A - Bdrop

SDN control plane layers

C Control Program]C Control Program)C Control Program]

Abstract network view

)\
C Virtualization Q/CD\Q (ﬁ]
N

Global network view

/7
C Network OS O<><>O'O)
: s : : — :

Forwarding

/ Forwarding
Forwarding /

\ / Forwarding
Forwarding

39

Questions?

Network virtualization

Ability to run multiple virtual networks that
» Each hasaseparate control and data plane
s Co-exist together on top of one physical network

= Can be managed by individual parties that potentially do not trust each other

\% /

QEEE:EJES%%%

What technigues we have learned that can be used
for network virtualization?

41

VLAN

VLAN #1 H

H VLAN #2

Trunk link

VLAN provides basicisolation for Ethernet LANSs, but it has many problems for network virtualization
= Cannot program packet forwarding: stuck with learning switch and spanning tree
= Noobvious opt-in mechanisms: who maps a packet to a VLAN?

= Resourceisolation is problematic

42

Network virtualization: use case

Imagine you come up with a novel network service, e.g., a new routing protocol,
network load-balancer, how would you convince people that this is useful?

43

Network virtualization: use case

Imagine you come up with a novel network service, e.g., a new routing protocol,
network load-balancer, how would you convince people that this is useful?

Hardware testbed Software testbed Wild test on the Internet

Expensive! Small-scale (fanout Large-scale (VINI/PlanetlLab, Emulab) Convincing network operators to
Is small due to limited pOrt Performance is slow (CPU-Dased)) ale) try SOmEthing new Is Very
number on NetFPGCA)! realistic topology, hard to maintain! difficult! (Qutages are the worst)

44

Problem

ealistically evaluating new network services is hard

s Services that require changes to switches and
routers

s Forexample: routing protocols, traffic

monitoring services, IP mobility

esults

» Many good ideas do not get deployed

= Many deployed services still have bugs

eal networks

Test environments

45

Solution: network slicing

Divide the production network into logical slices
s Fachslice/service controls its own packet forwarding
s Users pick which slice controls their traffic: opt-in

s Existing production services run in their own slice:
spanning tree, OSPF/BGP

Enforce strong isolation between slices

s Actionsinoneslice do not affect others

Allow the (logical) testbed to mirror the production network

» Real hardware, performance, topologies, scale, users

Can the Production Network Be the Testbed?

Rob Sherwood*, Glen Gibb', Kok-Kiong Yap', Guido Appenzeller *,
Martin Casado®, Nick McKeown!, Guru Parulkar!
* Deutsche Telekom Inc. R&D Lab, Los Altos, CAT Stanford University, Palo Alto, CA

® Nicira Networks, Palo Alto, CA

Abstract

A persistent problem in computer network research is
validation. When deciding how to evaluate a new feature
or bug fix, a researcher or operator must trade-off real-
ism (in terms of scale, actual user traffic, real equipment)
and cost (larger scale costs more money, real user traf-
fic likely requires downtime, and real equipment requires
vendor adoption which can take years). Building a realis-
tic testbed is hard because “real” networking takes place
on closed, commercial switches and routers with spe-
cial purpose hardware. But if we build our testbed from
software switches, they run several orders of magnitude
slower. Even if we build a realistic network testbed, it

' Big Switch Networks, Palo Alto, CA

Today 9 9 9
Today
(_D_ no clear path to
3 — deployment ‘?
= 2 'c_=
9. - °
o This Deploy <
in Sllce
Paper
Whiteboard NS2 VINI Vend
Plan OPNet Emulab FlowVisor Aden t_or
C/C++/Java Custom VMs option
CONtrol - - rscrrere ettt e > Realism

Figure 1: Today’s evaluation process is a continuum
from controlled but synthetic to uncontrolled but realistic
testing, with no clear path to vendor adoption.

USENIX OSDI 2010

Traditional network

Control

Forwarding

Data

Control

Forwarding

N~

>
. Control
'¢' vs

Forwarding | *.

-
-
-
-
-
-
-”
-

Control

Forwarding

N~

47

Slicing a traditional network

T >

Control Needs support/modification on
»'W the existing network devices
I N

Forwarding |*.

Control ‘@
N
Slicing Control

_\/ sss
Forwarding Yo @

Slicing

* Control \/—
~ Forwarding
Data | B Slicing "

Forwarding

N~

Current network devices

Control Plane
Computes forwarding rules
Pushes rules down to data plane

Data Plane
Enforce forwarding rules
Exceptions pushed back to control plane

Switch/Router

49

Slicing layer

Switch/Router

Slice 1 Control Slice 2 Control | Slice 3 Control
Plane Plane Plane
o Slice
Slicing layer o
policies

Exce p>

<ana

Data Plane
Enforce forwarding rules
Exceptions pushed back to control plane

Network slicing architecture

A network slice is a collection of sliced switches/routers
s Dataplaneisunmodified
s Packets forward with no performance penalty

s Slicing with existing ASIC

Transparentslicing layer
» Eachslice believes it owns the data path

s Enforcesisolation between slides: rewrites, drops

rules to adhere to slice policy

s Forwards exceptions to correct slice(s)

Slice 1 Control
Plane

Slice 2 Control
Plane

Slice 3 Control
Plane

Slicing layer

Data Plane
Enforce forwarding rules

Exceptions pushed back to control plane

Slice
policies

Slicing policies

The slicing policy specifies the resource limit for each slice:
s Link bandwidth
s Maximum number of forwarding rules (on switches)
= Topology

s Fraction of switch/router CPU

FlowSpace: which packet does the slice control?

s Maps packets to slices according to their "classes’
defined by the packet header fields

TCP port#

Slice 2

IP address

52

Real user traffic: opt-in

Allow users to opt-in to services in real time
» Users can delegate control of individual flows to slices

s Add new FlowSpace to each slice's policy

Examples

s "Slice1will handle my HTTP traffic”
s "Slice 2 will handle my VolP traffic”

s "Slice 3will handle everything else'

Creates incentives for building high-quality services!

Source: gacovinolack.com

53

Slice definition

Bob's experimental slice: all HTTP traffic to/from users who opted in

= Allow: tcp_port=80 and ip=user_.ip

Alice's production slice: complementary to Bob's slice

= Deny: tcp_port=80 and ip=user_ip

= Allow: all

Alice's monitoring slice: all trafficin all slices

= Read-only: all

Bob-exp Alice-mon

Alice-pro

>4

Slicing with OpenFlow

Recall OpenFlow: OpenfFlow
Custom control plane
| | controller
s APl for controlling packet forwarding
. OpenFlow
s Abstraction of control/data plane Network oo
protoco
protocols
| | OpenFlow
» Works on commodity hardware (via Control plane stub o
firmware upgrade)
Data plane Data path

Switch/router

How should we slice an OpenFlow-based
software defined network?

55

FlowVisor

Custom control plane

OpenFlow OpenFlow OpenFlow
controller controller controller

— OpenFlow protocol

Network FlowVisor

Control plane stub

T OpenFlow protocol

OpenfFlow

firmware Interposing OpenFlow control
messages to enforce network slicing

Data plane Data path

https://github.com/opennetworkinglab/flowvisor

Switch/router

FlowVisor packet handling

Alice
Bob controller

Cathy | Rule

controller controller

opento~t_—""

Policy check: is this FlowVisor
rule allowed? TOpenFlovv

OpenFlow

fArmware

Full line-rate forwarding

n Data path Exception

Switch/router

Policy check: w

controls this pac

10

et?

57

Recursivesslicing

FlowVisor can trivially recursively slice an already sliced network, creating hierarchies of FlowVisors

os | (Cathys | 1<
Controller | | Controller | Cpe" W <>
- - Connection

Alice's . Eric's
Controller F|OWVISOI’ Controller
4
FlowVisor FlowVisor

‘ Switch | ‘ Switch | | Switch I l Switch | l Switch .

Questions?

Summary

Lecture 8: Software defined networking

Complexities in network control
Software defined networking idea
Abstractions in SDN

Network virtualization, FlowVisor

Mininet for experimentation

60

Next week: programmable data plane

Limitations of OpenFlow

= Bounded to existing protocols

= New protocols/packet formats not supported

How to support arbitrary packet format and enable a fully programmable network?

Parser

A

Checksum Verification /
Ingress Match-Action

A

[

\

f

\

LA A AAA

(UACACATAVAY

Traffic

Manager

Checksum Update /

Deparser

Egress Match-Action

A

\ I_L\

AL

vov

;
H
:

A A AVAVAY
:

67

