Advanced Network Programming (ANP)
XB_0048

RDMA Networking

Animesh Trivedi
Autumn 2020, Period 1

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

Layout of upcoming lectures - Part 1

Sep 1st, 2020 (today):

Sep 3rd, 2020 (this Tuesday): Aetwerking-concepts{eontinted)

. L o Packet processing
Sep 8th, 2020 : HrwnretworkiREtternals e
' o mTCP
Sep 10th 2020: #uticorescatabitity Userspace networking

Sep 15th 2020: Yserspacenetworkinsstacks /
Sep 17th 2020: /ntroduction to RDMA networking -

What is the setup?

. Eve rythi ng rU nS On the CPU End of the Line = 2X/20 years (3%/yr)

Amdahl’s Law = 2X/6 years (12%/year)
End of Dennard Scaling => Multicore 2X/3.5 years (23%/year)

o Applications, threads, processes e syears [R S years

(22%/year) (52%/year)
100,000

o the operating system kernel

10,000

e But the CPU is not getting any faster

1,000

100

o CPU was getting faster due to Moore's Law

10

Performance vs. VAX11-780

e But the network speeds are...

1980 1985 1990 1985 2000 2005 2010 2015

o 1to 10, and now 100 Gbps
o 200 and 400 Gbps are now available

o Be careful - we are focussing on a closely installed datacenter setup

Hennessy and Patterson, A New Golden Age for Computer Architecture (Turing Award Lecture),
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

In the previous lectures

We have seen how to

e Increase bandwidth of a single connection
o TSO, LRO, GRO, Jumbo packets

e Utilize multicore systems - packets / sec
o RSS, interrupt load balancing, connection state partitioning

e Drive short, short-lived connections - packets / sec
o Userspace networking, integrated processing, directly mapped queues, polling

How about latencies? How low can we go for accessing 1 byte, 4 bytes, 8 bytes?

Shifting performance bottlenecks

transmission in network reception

time

Shifting performance bottlenecks

Slowing down of Moore's law

100 Gbps

- 40 Gbps
L]

1,000 Gbps

time
Not to scale

Shifting performance bottlenecks

transmission in network reception

Slowing down of Moore's law

-

> Relative time/overheads

time

Trends in interconnect latencies

ConnectX-4 Connect-IB ConnectX-3 Pro

EDR 100G* FDR 56G FDR 56G
InfiniBand Throughput 100 Gb/s 54.24 Gb/s 51.1 Gb/s
InfiniBand Bi-Directional Throughput 195 Gb/s 107.64 Gb/s 98.4 Gb/s
InfiniBand Latency 0.61 us 0.63 us 0.64 us
InfiniBand Message Rate 149.5 Million/sec 105 Million/sec 35.9 Million/sec
MPI Bi-Directional Throughput 193.1 Gb/s 112.7 Gb/s 102.1 Gb/s

Historically, Ethernet has lagged a bit behind InfiniBand (1-2 generation) but usually catches up

Trends in interconnect latencies: Switches

SOLUTION BRIEF

l\glellanoxs

CHNOLOGIE

Q© CUMULUS

Ethernet switches has typically a bit
higher but still 100s of nanoseconds

Breaking the Low Latency Trading Barrier with
Next-Gen Intelligent Interconnect

Mellanox SN2000 series Ethernet switches with Cumulus Linux

LOWEST LATENCY OVER 10GBE AND FASTER HIGHLIGHTS 300 nanoseconds
With the the advent of algorithmic trading, the need for low latency trading platform

becomes very crucial. In these market data exchange environments, where, for example, Lowest latency. 300ns

when executing arbitrage strategies, every millisecond lost may result in ~-$100M lost O i L

opportunity. Hence, speed becomes the key differentiator, making it critical to establish

https://www.mellanox.com/related-docs/solutions/fsi/SB-breaking-the-low-latency-trading-barrier-with-next-gen-intelligent-interconnect.pdf

https://www.mellanox.com/related-docs/solutions/fsi/SB-breaking-the-low-latency-trading-barrier-with-next-gen-intelligent-interconnect.pdf

The year is 2011

It’s Time for Low Latency

Stephen M. Rumble, Diego Ongaro, Ryan Stutsman,
Mendel Rosenblum, and John K. Ousterhout
Stanford University

Abstract

The operating systems community has ignored network
latency for too long. In the past, speed-of-light delays
in wide area networks and unoptimized network hard-
ware have made sub-100s round-trip times impossible.
However, in the next few years datacenters will be de-
ployed with low-latency Ethernet. Without the burden
of propagation delays in the datacenter campus and net-
work delays in the Ethernet devices, it will be up to us
to finish the job and see this benefit through to applica-
tions. We argue that OS researchers must lead the charge
in rearchitecting systems to push the boundaries of low-
latency datacenter communication. 5-10ps remote pro-
cedure calls are possible in the short term — two orders
of magnitude better than today. In the long term, moving
the network interface on to the CPU core will make 1ps
times feasible.

1 Introduction

Network latency has been an increasing source of frustra-
tion and disappointment over the last thirty years. While
nearly every other metric of computer performance has
improved drastically, the latency of network communica-
tion has not. System designers have consistently chosen

to sacrifice latency in favor of other goals such as band-
Sdith d 4. 1 hayvo £ dthair offort

1983 2011 Improved
CPU Speed Ix10Mhz | 4x3GHz | > 1.000x
Memory Size < 2MB 8GB > 4.000x
Disk Capacity || < 30MB | 2TB > 60.000x
Net Bwidth 3Mbps 10Gbps | > 3.000x
RTT 2.54ms 80ps 32x

Table 1: Network latency has improved far more slowly over
the last three decades than other performance metrics for com-
modity computers. The V Distributed System [5] achieved
round-trip RPC times of 2.54ms. Today. a pair of modern Linux
servers require 80us for 16-byte RPCs over TCP with 10Gb
Ethernet.

ments will also be required to reach this goal. the oper-
ating system community is in the best position to coordi-
nate all of these changes and create the right end-to-end
architecture. Over the longer-term, and with more radi-
cal hardware changes (such as moving the NIC onto the
CPU chip). we think 1ps datacenter round-trips can be
achieved.

There will be many benefits for datacenter computing
if we succeed. Lower latency will simplify application
development. increase web application scalability, and
enable new kinds of data-intensive applications that are
not possible today.

Really fun read!

Back then general commodity
Ethernet was at 10 Gbps, and
around 100s microseconds for
latencies (inside a data center)

Single CPU speed were stalled
Big data was booming

They came up with an ambitious
goal of what would it take to

deliver:

One microsecond of Req-Resp
network operation (RPC)

Fun things to consider with latencies

Speed of light
e Copper vs optical cable - reflection, refraction, conversion to electrical signals
e 5 nanosecond/meter, so a RTT of 1 useconds ~ 200 meter of installation distance
e ~14 meters x 14 meters of area (diagonal distance of 200 meter)

Density of computation, power delivery, cooling
e How many servers, switches, GPUs, CPUs, etc. can you pack here
e Electricity delivery, cooling, wiring

Computation diameter
e Depending upon the number of machines, distance, there is only a certain numbers of

machines you can contact in 1 microsecond

Amount of data you can access

e Bandwidths, machines, packet rates determines the data you can process
1"

Is Latency an important factor?

e The fan-in and fan-out effect

o Many web-scale, inside data center workloads touch
hundreds of machines for processing a request
o Facebook ~130 requests, Amazon 100-200 request
m How many servers would you contact within 1 sec?
o Latency critical processing at each step

e Latency sensitive workloads
o Big data processing, graph processing, streaming
o Hundreds/Thousands of servers needs to coordinate and work in unison to solve a
problem

e Scientific workloads
o High performance computing: Weather simulation, genomics, personalized medicine,

comPUtatlonaI ChemIStry The Case for RAMClouds: Scalable High-Performance Storage Entirely in

o Small calculations + data access DRAM , https://web stanford.edu/~ouster/cgi-bin/papers/ramcloud.pdf 12

https://web.stanford.edu/~ouster/cgi-bin/papers/ramcloud.pdf

How bad it might be?

1980s mid-2010s Today
Bandwidth 1 Mbps 10 Gbps 100/200 Gbps
Latency ~2.5ms ~50 - 100usec 1 -2usec
CPU 10 MHz (2-4)x 3GHz nx 3 GHz

Trend 1: Network hardware is getting faster
Trend 2: CPUs are not (but network parallelization is hard)

“Network latencies are increasingly a software/CPU factor”

It's Time for Low Latency, http://www.scs.stanford.edu/~rumble/papers/latency hotos11.pdf 13

http://www.scs.stanford.edu/~rumble/papers/latency_hotos11.pdf

Breakdown of a single server cost

Layer Comyonent Time fjs] Setup a simple ping-pong (request-reply) setup
Driver RX 0.60
Ethernet & IPv4 RX 0.19 ,

Kernel TC;‘E‘; en e 3.75 for server crossing
T — 0.06 o Thisis actually quite good already
epoll_wait () syscall 0.15 . e

Aolicatioy Te2dO) syscall 0.33 e Typically scheduler will inject another 2-3

PP Generate “OK" reply 0.48 useconds of latencies

write() syscall 0.22 o Why scheduler is necessary?
TCP TX 0.70

Kernel IPv4 & Ethernet TX 0.06 We could be seeing something between 3-6
Driver TX 043 useconds for a server crossing (in-out).

Total 3.75

StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs, https://www.usenix.org/system/files/conference/atc16/atcl16-paper yasukata.pdf

https://www.usenix.org/system/files/conference/atc16/atc16-paper_yasukata.pdf

How Bad Does it Look?

Component Delay
Switch ~1 psec switeh
NIC ~1 psec A
OS processing | 3.4-6.2 psec serverT server2
Speed of light | 5 nsec/meter

Delay calculation (one way):
(Tpsec x 1 switch) + (Tpsec x 2 NICs) + (2 OSes x 4.8 uysec) + (2 meters * 5 nsecs) = 12.61 psec

(out of which 76.1% is OS/software cost)

Peter et al.,, Arrakis: The Operating System is the Control Plane (USENIX OSDI 2016)
Rumble et al., It's Time for Low Latency, (USENIX HotOS 2011)

What does socket contribute in it

e Socketis an application-level interface
o It does not say anything about lower layer protocols
e However, its simplistic design restricts many optimization opportunities to reduce the amount of

work done for a network operation:
o Tied to the OS “process” abstraction with the file address space
m Everything (i.e. the socket file) belongs to a process - multiplexing, security, isolation
o When to do copy, when to do DMA - OS must decide on behalf of processes
o Isthe “file byte-stream” the right interface than “messages”
o No control over when network I/0 happens, ordering, and notification
e Hard API for the integration of any hardware help for applications

o Sending/receiver buffers are told at the very last minute by the software

o There can not be any active network traffic without an application calling send/recv - application is involved

16

Remote Direct Memory Access (RDMA)

RDMA: What is it?

e Itis a networking “technology” to enable high-performance,
low-latency network operations

e Itis not socket - has its own programming APl and abstractions
o We have seen so far: there is a difference between the network protocol (e.g., TCP)
and the programming API (e.g., sockets, mTCP, MegaPipe)

e Very successful, has a long history with research in Supercomputers
o The goal: make network operations ~= local compute operations

e Since early ~2010, when a need for radical improvements in latency

were needed, mainstream computing picked it up
o Data centers were expanding, data was increasing, and we needed low latencies 18

Idea 1: User-space Networking

Application
user-space
Network
Stack
kernel |
Network
Controller

(hardware)

Idea 1: User-space Networking

Application
user-space
Network
Stack
kernel |
Network ‘
Controller
(hardware)

(1) User-space networking :

user-space

:: kernel

Network
Controller
(hardware)

Let the process manage its networking resources

Application

net_stack_sw

l--

I () I

i

net_stack_hw

»

multiplexing,
security,
isolation

Idea 2: Kernel Bypass

Application Application
user-space user-space net_stack_sw @
Network :_ B :|—F o -;
Stack @ I
kernel | kernel e
Network ‘ Network @
Controller Controller net_stack_hw
(hardware) (hardware)

@ User-space networking : Let the process manage its networking resources

(2) Kernel Bypass : Access hardware/NIC resources directly from the user-space o1

New Abstraction?

What is the right abstraction? Socket?

send (int sockfd, void *buf, size t len, int flags);
Application
1. transmit the data

user-space 2. allocate needed memory

3. manage buffers

4. schedule process (if necessary)

Network 5. and everything else ...
kernel Stack
|

Network
Controller

(hardware)

New Abstraction?

What is the right abstraction? Socket?

J J

Application

—_—

transmit the data Data opera’[ion
user—spa(f net_stack_sw 2. allocate needed memory
r =

manage buffers

————— 4.) schedule process (if necessary) Control operations

checks 1 ' 5./ and everything else ...
kernel o)
Network
Controller : .
net_stack_hw .
(hardware) |ldea: Make control and data operations explicit by

separating the data from the control abstractions.

" 23

needs new interfaces

Putting All Together - User-Space Networking

1. Allocate
memory buffers

@ (o]
user-space c |

Checks and
page table
translations

24

Putting All Together - User-Space Networking

1. Allocate 2. Allocate data
memory buffers and control queues

@ HE H

user-space

Checks and
memory-mapped
1/0

25

Putting All Together - User-Space Networking

1. Allocate 2. Allocate data 3. Recv a message
memory buffers and control queues

(&) (b]

recv buffer ‘c’

user-space

Memory-mapped
mm | writing of the recV’
request

1]
1]

11T
1I1]

g

26

Putting All Together - User-Space Networking

1. Allocate 2. Allocate data 3. Recv a message 4. Get completion
memory buffers and control queues notification

@ @ HEI 5 recvbuﬂ‘er'c' DONE
) |_| EH < 1. Network
processing,

user-space

2. DMAtothe
= buffer ‘c’,
kernel 3. Notification to
the application
NIC = H

27

Putting All Together - User-Space Networking

1. Allocate 2. Allocate data 3. Recv a message 4. Get completion 5. close
memory buffers and control queues notification

@ @ HEI |_| recv buffer 'c’ DONE disconnect

A S M

user-space

28

Putting All Together - User-Space Networking

Keep in mind - these are
memory buffers and control queues TX/RX queues as we saw previously

@ @ HEI |_| < PS~ We are rubbish with names;)

= <

user-space

29

Putting All Together - User-Space Networking

What new abstractions, objects, do you see here?

 _} —>
recv buﬁ‘er c DONE disconnect
user-space E H < |E|
-
kernel
NIC |E|

30

New RDMA Objects

1. Memory buffers: from where the data transmission/reception happens
2. Connection send/receive queues: represents a connection, also known as a queue

pair (QP)
3. Control queues (a few flavors)
a. Network control queue: new connection, disconnect, NIC up/down
b. 1/0 event queue: network I/0 finished, error

There are a few more as we will see later, but for now these are high level objects we can see

Network 1/0 happens by posting work requests (WRs) on the QP

e Contains - buffer, length (+more)

e Supports SGE, batching, linking independent requests, enforce ordering

e Key difference from socket is that you can only use pre-registered buffers for I/0, not any arbitrary
locations for send/recv (which you can for sockets)

31

Timeline of a send/recv exchange

client server
Request \ Request
Response Response
OS OS

x 1%/11 33333 x 11% 1111111
NIC — NIC —
y 1132 2324345 _/ 1132 2324345

We first have to do memory registration for any buffer on which we have to do 1/0
e The RDMA NIC remembers the address and length of such buffers, and returns an identifier
o This identifier can be used multiple times, no need to program NIC multiple times for DMA
e This is different from normal NIC/DMA where NIC does not remember the buffer 32

Timeline of a send/recv exchange

client server
1. RX(resp) l l 1. RX(req)
2. TX(req) l

time

5. RX(resp)

Req arrives

DMA the request
IRQ to schedule
Server processing
Data copies

DMA the resp. data
Send response

Remember: all this interaction is directly between application and the NIC hardware

33

Timeline of a send/recv exchange

time

client

1. RX(resp) l

2. TX(req) l

5. RX(resp)

Different from socket

server

Different from socket

l 1. RX(req)

Req arrives

DMA the request
IRQ to schedule
Server processing
Data copies

DMA the resp. data
Send response

Two-sided message exchange between processes

34

Timeline of a send/recv exchange

time

client server
1. RX(resp) l l 1. RX(req)
2. TX(req) l

 » 3. 1. Reqarrives

. () 2. DMAtherequest

: 3. IRQ to schedule

4. Server processing
5. Data copies

6. DMA theresp. data
)7 Send response

5. RX(resp)

Two-sided message exchange between processes
Can we eliminate server entirely?

35

The Idea of Remote Direct Memory Access

e Imagine, if all buffers are known up front to everyone in a cluster / data center
e Aclient/peer can initiate a network transfer by itself

o “One-sided” operations (instead of two-sided where 2 peers are involved)
e An RDMA WRITE specifies:

o Which local/client buffer data should be read from

o Which remote/server buffer data should be written to
e An RDMA READ specifies:

o Which remote/server buffer data should be read from

o Which local/client buffer data should be written into

36

RDMA READ Operation

time

client

1. Read(lbuf, rbuf) l

2.R

server

Example one-sided RDMA READ operation

$nad

1. Reqarrives
2—DMA-thereguest

2 1RO+~ oA~

J. MY O STOTTCOuUTC

L—\. IRAYat Zala¥a¥alfa¥e)

J. DUt \/UI\JI\/\)

6. DMA from rbuf

7. Send READ response

37

RDMA WRITE Operation

time

client

1. WRITE(Ibuf, rbuf) l

(e :
= |:

4. DONE |

Example one-sided RDMA WRITE opefation

2. Here is Ibuf cont
please WRITE it to

ent for rbuf,

server

1. Reqarrives
2—DMA-thereguest

2 1RO+~ oA~

J. MY O STOTTCOuUTC

L_\. IRAYat Zala¥a¥alfa¥e)

J. DUt \/uplp\)

6. DMAtorbuf

7. Send WRITE response

38

RDMA: Architectural View

Client

Server

DRAM

CPU

DRAM

CPU

NIC

NIC

39

RDMA: Architectural View

local buffer address “laddr”
(which you will pass in send/recv calls)

Client Server
DRAM CPU DRAM CPU
gy raddr P2
NIC NIC

remote buffer address (raddr)

40

RDMA: Architectural View

Client

Server

DRAM CPU

CPU

P

—————

buffer allocation and registration

with the network card

41

RDMA: Architectural View

Hey! Your content is stored in the

buffer at ‘raddr’

T

Client

Server

CPU

CPU

P

—————

42

1.

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client

DRAM
el L0101

CPU

DRAM

raddr =

NIC

NIC

43

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request

Client

DRAM
B odr

CPU

DRAM

raddr =

NIC

NIC

44

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request

Server: read local (raddr) - local
DMA operation

Server: TX data back to client NIC

Client

DRAM
B odr

CPU

DRAM

raddr

NIC

NIC

45

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request

Server: read local (raddr) - local
DMA operation

Server: TX data back to client NIC

Client: local DMA to (laddr) buffer
in DRAM

Client
DRAM CPU DRAM
B |5 ddr raddr =<
4
> NIC NG 3

46

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request

Server: read local (raddr) - local
DMA operation

Server: TX data back to client NIC

Client: local DMA to (laddr) buffer
in DRAM

Client: interrupt the local CPU/OS
to notify completion about the
client's READ operation

Client
DRAM CPU DRAM
B |5 ddr raddr =<1
4
> NIC NG 3

47

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request Client Server

Server: read local (raddr) - local
DMA operation DRAM CPU DRAM CPU

Server: TX data back to client NIC Fmmmmm e m : o

|
Client: local DMA to (laddr) buffer : NIC : I NIC
in DRAM :

Client: interrupt the local CPU/QOS
to notify completion about the
client's READ operation

RDMA capable network (RNIC) = network + endhost

48

So, this is RDMA

e Itisvery powerful idea - no remote application/OS/CPU involvement in data

transfer

e Once you have capability to access remote memory from network you can
imagine doing a lot of things without having to worry about if the remote
application is ready to send or receive

e Different types of operations: READ, WRITE, ATOMICS (update, CAS), even

transactions (!)

e Not limited just to system DRAM, think of DRAM in the GPU (hint: its possible)

We did not develop all of this in last 10 years *

A Brief History

e 1980s-1990s: a long history of high-performance networking research

o Building networked multi-processor systems - commodity, cheap vs. supercomputers
o Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

o The goal was to connect and integrate CPUs via network as efficiently as possible

DRAM

CPU

NIC

DRAM

CPU

NIC

DRAM

CPU

DRAM

CPU

NIC

NIC

50

A Brief History

e 1980s-1990s: a long history of high-performance networking research
o Building networked multi-processor systems - commodity, cheap vs. supercomputers
o Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

o The goal was to connect and integrate CPUs via network as efficiently as possible

| |
|

| DRAM || cpU Use as a Single machine E
i } NIC DRAM || CPU | |
i . — NIC |
| » y DRAM || CPU :
1 | DRAM || CPU / |
I - NIC :
! NIC :
|

51

A Brief History

, ORCA: A LANGUAGE FOR PARALLEL
e 1980s-1990s: a long history of

PROGRAMMING OF DISTRIBUTED SYSTEMS+
o Building networked mul

Henri E. Bal *
o Berkeley NOW, Stanforg M. Frans Kaashoek

Andrew S. Tanenbaum

o The goal was to connect
Dept. of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

ABSTRACT I

|: Orca is a lang for imp nting parallel ications on loosely coupled distri-

buted systems. Unlike most languages for distributed programming, it allows processes on C P U
different machines to share data. Such data are encapsulated in data-objects, which are
instances of user-defined abstract data types. The implementation of Orca takes care of the
physical distribution of objects among the local memories of the processors. In particular, an
implementation may replicate and/or migrate objects in order to decrease access times to

’
/\ objects and increase parallelism. | S

4 \ This paper gives a detailed description of the Orca language design and motivates the
D R AM C P U design choices. Orca is intended for applications programmers rather than systems program-
1

mers. This is reflected in its design goals to provide a simple. easy to use language that is
type-secure and provides clean semantics.

L The paper discusses three example parallel applications in Orca. one of which is
described in detail. It also describes one of the existing implementations, which is based on
reliable broadcasting. Performance measurements of this system are given for three parallel
applications. The measurements show that significant speedups can be obtained for all three
applications. Finally, the paper compares Orca with several related languages and systems.

NIC

— o e e e e e
-
L e e e e

A Brief History

e 1980s-1990s: a long history of high-performance networking research

o Building networked multi-processor systems - commodity, cheap vs. supercomputers
o Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

o The goal was to connect and integrate CPUs via network as efficiently as possible

e 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads

O

Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAIlink (see the SC Top500 list from 2000s)

- RESOURCES ~ ABOUT ~ MEDIAKIT

»TOP #1 Systems

TOP #1 SYSTEMS

In the last 20 years, the following systems made it to the top of the TOPS00 lists:

https://www.top500.0rg/

2012-2019 - different color, different network

53

https://www.top500.org/

A Brief History

1980s-1990s: a long history of high-performance networking research
o Building networked multi-processor systems - commodity, cheap vs. supercomputers
o Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

o The goal was to connect and integrate CPUs via network as efficiently as possible

1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads
o Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAIlink (see the SC Top500 list from 2000s)

Late-2000s: CPU performance falters and the focus is back on high-performance networking
o Ethernet improved significantly and caught up Infiniband performance
Today commodity: /nfiniBand, RoCE, iWARP, OminiPath support RDMA networking stacks
Today supercomputers: TOFU interconnect (Fujitsu), Sunway, CRAY Aries and Gemini, Bull BXI (Atos), IBM...

o https://www.top500.org/statistics/list/

54

https://www.top500.org/statistics/list/

In the Layer Model

2“ RDMA application/ULP
| |

E {RDMA API (verbs) |
(=]
w

1 RDMA software stack

A
- iWARP*
2 protocol
E
3
>
8 IB network layer
&

oo
Y

InfiniBand* RoCEv1* RoCEv2* iWARP

=

ev: T =056

Defines how run a message
protocol for RDMA operations on
top of TCP byte-stream

RFC 5040-5044

A Survey of End-System Optimizations for High-Speed Networks, ACM Computing Surveys (CSUR) Surveys Homepage
archive Volume 51 Issue 3, July 2018. https://dl.acm.org/citation.cfm?doid=3212709.3184899

Image reference: https://fakecineaste.blogspot.com/2018/02/

https://dl.acm.org/citation.cfm?doid=3212709.3184899
https://fakecineaste.blogspot.com/2018/02/

Key items to understand - Part 1

e RDMA can refer to many things - unfortunately there is no one definition

o Broadly speaking the idea represents capability to read remote memory w/o remote
OS/application involvement, hence, remote DMA
m Physical, or virtual addressing or referencing capability for remote/local memory

o With such capability, you can also do send/recv (but less exciting)

e Thereis no ONE RDMA API like socket

o As we saw previously, back in days with many supercomputer vendor they had different
link technology which had its own implementation of RDMA “semantics”
o Often wrapped under another high-level API like MPI (Standard, message passing)

o A(pseudo) standard stack is Open-Fabric Alliance (OFA) -

Key items to understand - part 2

e The RDMA idea is independent of the networking technology and the

programming interfaces given to the user:

o Today, there are Infiniband, iWARP, RoCE, OminiPath - all support RDMA operations on
top of different networking layers
o They all support the OFED RDMA Stack (which is part of the Linux main line)

e The idea of RDMA can be implemented in software also

o SoftiWARP, SoftRoCE - software kernel devices that run the RDMA protocol inside the kernel
o Full API - but limited performance gains. Remote OS cannot be skipped if the software device is

running in the kernel, but the remote application can

Trivedi et al., A case for RDMA in clouds: turning supercomputer networking into commodity, https://dl.acm.org/doi/10.1145/2103799.2103820 57

https://dl.acm.org/doi/10.1145/2103799.2103820

IWARP - RDMA over TCP/IP

" Application |

L

Application |

1 Application l

(TCPIP)

 HW Driver)

 iWARP

F'd
‘\
\

TCP/IP

. IWARP
(HW Driver]

~ NIC

.

(a) Classical

[,

)
)
HW Driver J
NIC

(b) Softiwarp

"~ TOE
TCP/IP |

/

(¢) Softiwarp/TOE

[Application /|

1 HW Driver |

RNIC

'TCP/IP |

=

&) RNIC

Mogul in his paper (TCP offload is a dumb idea) was talking about ToE with RDMA-type API (not socket)

58

RDMA Object Relationships and Workflow

WoRK posT _,- ©)]
RNIC | Medeave 0 Rew > e Y
/ W ol S -
@ e PQ(process ﬂppm cc;{aﬂghw Repoct].{aslced
as mang as o () @ evemts }
(rocess . - i N E‘ﬁz\m\fbo‘n
want r'rojﬁzc\'lon dﬁscwp)m o> T

Domom

U))

% Com ehnn
C)/\avme,[

i(om lehtm }
W event noﬁ-f\cochw Q\f
3 loment:
MeMoYy %;’m . 3S
veg; shriakiov semd YeeV N
qvwe

ar

«— Objects relationship

Workflow

59

What does NIC need to know

RDMA capable network cards or RNICs typically maintain “some state” on the
network card hardware:

e In case of IWARP: TCP offload engine, connection state (see here: ToE but without sockets)
e Memory buffers (virtual, physical addresses, length, permissions)
e Queue pairs (QPs) : for posting network I/0 requests

e Pending/in-progress network I/0 requests

o Send/Recv, READs, WRITEs, Atomics

o Their execution and notification orders

e Completion queues (CQs): to get completion status
e Some protection domain related context to identify resources belonging to one process from
another

e And more. ...

60

If you want to try RDMA and see its programs

Option 1: Build and run things on DAS at VU

e Currently has 56 Gbps InfiniBand
e DAS-6 will have 100 Gbps RoCE network
e Full power of the RDMA operations

Option 2: run a software kernel device (it's actually not that difficult)

e https://github.com/zrlio/softiwarp

e https://animeshtrivedi.github.io/blog/2019/06/26/siw.html

e RDMA server/client example, https://github.com/animeshtrivedi/rdma-example
o You see how large a server client example in the TCP/socket is ~50 lines
o This one is around ~1000 lines :)

61

https://github.com/zrlio/softiwarp
https://animeshtrivedi.github.io/blog/2019/06/26/siw.html
https://github.com/animeshtrivedi/rdma-example

Why go through so much pain

What does RDMA promise to deliver?

e On 100 Gbps RoCE network
e Dual-socket Sandy-Bridge Xeon CPUs
e DDR3 DRAM

Bandwidth and network operation latencies in a simple request-response

setup

- client sends a request for ‘X’ bytes of data

- Server sends back X’ bytes of data

62

Performance

TCP vs RDMA performance

100000 = TCP = RDMA

75000

& 50000
0
=
25000 /\/

100 1000 10000 100000 1000000

Request size

97.2 Gbps

33.2 Gbps

63

Performance

TCP vs RDMA performance

100000 = TCP = RDMA

75000

& 50000
0
=
25000 /\/

100 1000 10000 100000 1000000

Request size

97.2 Gbps

33.2 Gbps

0% CPU

utilization

64

Performance
TCP vs RDMA performance
100000 = TCP = RDMA 97 2 GbpS
75000
& 50000
=
25000 /\/

0
10 100 1000 10000 100000 1000000

33.2 Gbps

Reqﬁ.é"s't- size
An order of magnitude gap for small requests

|

1000
100

10

1
100 1000

65

Performance

TCP vs RDMA performance

100000 = TCP = RDMA
75000
& 50000
0
=
25000
0
1 10 100 1000 10000 100000 1000000

Request size

Time in microseconds

25

20

15

10

Round trip latencies

20.9

TCP/socket

4 6X

T10x

4.5

send/recv

2.1

READ

66

Where do the Performance Gains come from?

e C(loser application network integration
o When, how, where of network processing, closely integrated with application’s needs

o Full control over the network processing
e Better(?), high-performance code

o The API forces to pushing setup at the beginning, resource allocation
e Hardware offloading

o Hardware acceleration, less CPU/software involvement
e Bypassing the operating system

o Lot of boilerplate code skipped

o Processing close to the metal

e An active area of research - the RIGHT application/network integration framework ©’

Where can you use RDMA?

Data-Center Environment / Rack-scale computing

Over the Internet Inside a datacenter

Mbps to Gbps - 100s of Gbps
1-10s of msec of RTT - 1-10s of usec RTTs

68

Where can you use RDMA?

Data-Center Environment / Rack-scale computing

- Shared memory
- Key-Value stores
- Caches

- RPGCs

- Sync/locking

- File systems

- Services

<

Over the Internet Inside a datacenter
- Mbps to Gbps - 100s of Gbps
- 1-10s of msec of RTT - 1-10s of usec RTTs 69

RDMA Programming and Design Space

Operations

Transport

Optimizations

READ WRITE ATOMIC SEND RECV
Connected Datagram Reliable Unreliable
. Polling/ Doorbell WQE]
Inline Unsignaled batching scheduling Olen-recvs
Paper: Design Guidelines for High Performance RDMA Systems, Usenix 2016, 70

https://www.usenix.org/system/files/conference/atc16/atc16 paper-kalia.pdf

https://www.usenix.org/system/files/conference/atc16/atc16_paper-kalia.pdf

Example - Sequencer Throughput

= 150 -
Server =
/ :2—‘,12005002(00000000000000000097-.20000
/. \ é‘ %
Client Client %j 60
= 30
= 2.2

Atomics RPC(1C) +4 Queues, +6cores +Header-only
Dbell batching

The design space is large, and performance margins are 1-2 orders of magnitude

Paper: Design Guidelines for High Performance RDMA Systems, Usenix 2016

71

Workload-level Acceleration

Sorting 12.8 TB of data on 128 machines Network profile of vanilla Spark

£ 100
- 100 Gbps network § sof
- 4 x NVMe devices (source and sink) 20
- Apache Spark 2 2l
= 0
600 = 0 100 200 300 400 500
Elapsed time (seconds)
6Xx .
. Optimized Network profile of Spark
g 100 : ; ; : g
£ =
‘g’ 200 g_
= 0 \ | I \ { {
0 Spark Spark+Crail (6] 1000 2000 3000 4000 5000 6000

Task ID

72
http://crail.incubator.apache.org/blog/2017/01/sorting.html

http://crail.incubator.apache.org/blog/2017/01/sorting.html

Challenges with RDMA

Debugging
o Operation failed, connection down, what went wrong?
o Logging and introspection can be hard, e.g., log4j, printf -> string manipulation@10s of usec!

Performance
o Takes a while to get used to the new way of writing code - event driven, lots of resources
o Performance isolation (e.g., local PCle vs remote NIC traffic BUG)
o Quality of service, traffic management, firewall, filtering, compliance
Fragility
o Inthe cloud (performance vs. flexibility, e.g. VM migration)
o Correctness and verification (e.g., 32 bit ADD circuit on 64-bit addresses in one RNIC)
o Small eco-system and vendors
Scalability

o How many concurrent socket connections can you support in your server?
o How many memory buffers an RNIC can remember?

73

Comment on networking research

Between all the papers and topics we have discussed

e Networking research has a long history and many ideas are repeated, find their applications in
different deployment context (HPC, DC, Internet, Edge, etc.), with different applications

The grand question - what should be the work division between

[Generability, multi-tenancy,]
[Easy of APIs and abstractions,] 0S kernel hardware utilization

support, and expressiveness . .
Applications

Always changing, dictated by the current NIC

e application needs (latency, bandwidth, packets/sec)

[hardware complexity, cost, on-chip]
® hardware trends (power balance between devices and CPU)

resources, time for development

® interplay between OS and hardware 74

What you should know from this lecture

N —

© N LA W

The idea of RDMA

Why it becomes possible and what kind of support it expects from the
hardware

What is userspace networking and kernel bypassing

What is the relationship between socket programing and RDMA

What advantages does RDMA offer

What are its (potential) disadvantages

In what kind of setting it should be used

A bit of historical context and where today’'s RDMA network evolved from

75

Forwarding looking

These are very exciting times for systems research (OS, network, storage, devices,
architecture):

e Everything is changing - infinite amount of customization and optimization possible

e There are SmartNICs, programmable hardware, GPUs, FPGAs, TPUs

e Computation is becoming more heterogeneous and distributed - even inside a single machine

Pushing the boundaries of what is possible with computation:
e Fighting for the last nano-micro seconds
e Pushing to deliver millions/billions of packets per second

e Delivering Terabits/sec bandwidths Remember: nothing runs in isolation
storage, CPU, OS designs, application designs,

scheduling, memory management, process
management, architecture research
..virtualization ()

Also in storage

76

Time to think outside the box

What kind of questions researchers are tackling? z

How do you write software, cloud services for such infrastructure?

What is the right APl and abstraction? Files and sockets?

How do you debug at this speed? Failures?

Is C still a good choice? (Rust, Go?)

How do you write a portable software with so much hardware dependencies?

Is Linux a good operating system for such diverse, heterogeneous hardware setup?

How do we integrate network + storage + GPU computation in a single application?

How do we support multiple applications with different performance needs? Multi-tenancies?
How do we integrate such devices in the cloud, edge computing?

What applications can we run on this infrastructure - AI/ML, Bioinformatics, Astronomy, Banking, Precision
Agriculture, autonomous driving?

e Do we need all that generality if we are just running ML/Al on our cluster?

Speaking of ML/AI ...

http://www.keypersonofinfluence.com/how-can-we-think-outside-the-box-from-inside-the-box/

77

http://www.keypersonofinfluence.com/how-can-we-think-outside-the-box-from-inside-the-box/

BUSINESS B1.21.2828 B7:88 AM

Al Can Do Great Things—if It Doesn't Burn the Planet

The computing power required for Al landmarks, such as recognizing images and defeating humans at Go, increased 300,000-fold from 2012 to 2018.

LAST MONTH, RESEARCHERS at OpenAl in San Francisco revealed an algorithm capable of

learning, through trial and error, how to manipulate the pieces of a Rubik's Cube using a
robotic hand. It was a remarkable research feat, but it required more than 1,000 desktop
computers plus a dozen machines running specialized graphics chips crunching intensive

calculations for several months.

The effort may have consumed about 2.8 gigawatt-hours of electricity, estimates Evan

Sparks, CEO of Determined Al a startup that provides software to help companies manage

Al projects. That's roughly equal to the output of three nuclear power plants for an hour. A

This is not to say that AlI/ML is bad, but
to point out that we have an opportunity
to smartly design hardware/software
to deliver efficiency

o (ost

e fEnergy

e Sustainability
78

Recommended Reading

Animesh Trivedi, End-to-End Considerations in the Unification of
High-Performance I/0, PhD thesis, ETH Zurich, January, 2016.

https://doi.org/10.3929/ethz-3-010651949

Chapter 2, Evolution of High-Performance I/0

Chapter 3, Remote Direct Memory Access (example and details)

79

https://doi.org/10.3929/ethz-a-010651949

