
Advanced Network Programming (ANP)
XB_0048

RDMA Networking
Animesh Trivedi

Autumn 2020, Period 1

1

Layout of upcoming lectures - Part 1
Sep 1st, 2020 (today): Introduction and networking concepts

Sep 3rd, 2020 (this Tuesday): Networking concepts (continued)

Sep 8th, 2020 : Linux networking internals

Sep 10th 2020: Multicore scalability

Sep 15th 2020: Userspace networking stacks

Sep 17th 2020: Introduction to RDMA networking

2

Packet processing
Netmap
mTCP
Userspace networking

What is the setup?
● Everything runs on the CPU

○ Applications, threads, processes

○ the operating system kernel

● But the CPU is not getting any faster

○ CPU was getting faster due to Moore’s Law

● But the network speeds are…

○ 1 to 10, and now 100 Gbps

○ 200 and 400 Gbps are now available

○ Be careful - we are focussing on a closely installed datacenter setup

3

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

In the previous lectures
We have seen how to

● Increase bandwidth of a single connection
○ TSO, LRO, GRO, Jumbo packets

● Utilize multicore systems - packets / sec
○ RSS, interrupt load balancing, connection state partitioning

● Drive short, short-lived connections - packets / sec
○ Userspace networking, integrated processing, directly mapped queues, polling

How about latencies? How low can we go for accessing 1 byte, 4 bytes, 8 bytes?

4

Shifting performance bottlenecks

5

transmission receptionin network

time

Shifting performance bottlenecks

6

transmission receptionin network

Slowing down of Moore’s law

time

100 Mbps

1 Gbps

10 Gbps

40 Gbps

100 Gbps

1,000 Gbps

Not to scale

Shifting performance bottlenecks

7

transmission receptionin network

Slowing down of Moore’s law

time

Relative time/overheads

Trends in interconnect latencies

8

Historically, Ethernet has lagged a bit behind InfiniBand (1-2 generation) but usually catches up

Trends in interconnect latencies: Switches

9

Ethernet switches has typically a bit
higher but still 100s of nanoseconds

300 nanoseconds

https://www.mellanox.com/related-docs/solutions/fsi/SB-breaking-the-low-latency-trading-barrier-with-next-gen-intelligent-interconnect.pdf

The year is 2011

10

Really fun read!

Back then general commodity
Ethernet was at 10 Gbps, and
around 100s microseconds for
latencies (inside a data center)

Single CPU speed were stalled

Big data was booming

They came up with an ambitious
goal of what would it take to
deliver:

One microsecond of Req-Resp
network operation (RPC)

Fun things to consider with latencies
Speed of light

● Copper vs optical cable - reflection, refraction, conversion to electrical signals
● 5 nanosecond/meter, so a RTT of 1 useconds ~ 200 meter of installation distance
● ~14 meters x 14 meters of area (diagonal distance of 200 meter)

Density of computation, power delivery, cooling
● How many servers, switches, GPUs, CPUs, etc. can you pack here
● Electricity delivery, cooling, wiring

Computation diameter
● Depending upon the number of machines, distance, there is only a certain numbers of

machines you can contact in 1 microsecond

Amount of data you can access
● Bandwidths, machines, packet rates determines the data you can process

11

Is Latency an important factor?
● The fan-in and fan-out effect

○ Many web-scale, inside data center workloads touch
hundreds of machines for processing a request

○ Facebook ~130 requests, Amazon 100-200 request
■ How many servers would you contact within 1 sec?

○ Latency critical processing at each step

● Latency sensitive workloads
○ Big data processing, graph processing, streaming
○ Hundreds/Thousands of servers needs to coordinate and work in unison to solve a

problem

● Scientific workloads
○ High performance computing: Weather simulation, genomics, personalized medicine,

computational chemistry
○ Small calculations + data access 12

https://web.stanford.edu/~ouster/cgi-bin/papers/ramcloud.pdf

How bad it might be?

Trend 1: Network hardware is getting faster

Trend 2: CPUs are not (but network parallelization is hard)

“Network latencies are increasingly a software/CPU factor”
13

 1980s mid-2010s Today

Bandwidth

Latency

CPU

http://www.scs.stanford.edu/~rumble/papers/latency_hotos11.pdf

Breakdown of a single server cost

14
StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs, https://www.usenix.org/system/files/conference/atc16/atc16-paper_yasukata.pdf

Setup a simple ping-pong (request-reply) setup

● 3.75 for server crossing
○ This is actually quite good already

● Typically scheduler will inject another 2-3
useconds of latencies
○ Why scheduler is necessary?

We could be seeing something between 3-6
useconds for a server crossing (in-out).

https://www.usenix.org/system/files/conference/atc16/atc16-paper_yasukata.pdf

How Bad Does it Look?

Delay calculation (one way):

(1μsec x 1 switch) + (1μsec x 2 NICs) + (2 OSes x 4.8 μsec) + (2 meters * 5 nsecs) = 12.61 μsec

(out of which 76.1% is OS/software cost)

15

Component Delay

Switch ~1 μsec

NIC ~1 μsec

OS processing 3.4 - 6.2 μsec

Speed of light 5 nsec/meter

What does socket contribute in it
● Socket is an application-level interface

○ It does not say anything about lower layer protocols

● However, its simplistic design restricts many optimization opportunities to reduce the amount of

work done for a network operation:

○ Tied to the OS “process” abstraction with the file address space

■ Everything (i.e. the socket file) belongs to a process - multiplexing, security, isolation

○ When to do copy, when to do DMA - OS must decide on behalf of processes

○ Is the “file byte-stream” the right interface than “messages”

○ No control over when network I/O happens, ordering, and notification

● Hard API for the integration of any hardware help for applications

○ Sending/receiver buffers are told at the very last minute by the software

○ There can not be any active network traffic without an application calling send/recv - application is involved
16

Remote Direct Memory Access (RDMA)

17

RDMA: What is it?
● It is a networking “technology” to enable high-performance,

low-latency network operations

● It is not socket - has its own programming API and abstractions
○ We have seen so far: there is a difference between the network protocol (e.g., TCP)

and the programming API (e.g., sockets, mTCP, MegaPipe)

● Very successful, has a long history with research in Supercomputers
○ The goal: make network operations ~= local compute operations

● Since early ~2010, when a need for radical improvements in latency
were needed, mainstream computing picked it up

○ Data centers were expanding, data was increasing, and we needed low latencies 18

Idea 1: User-space Networking

19

Idea 1: User-space Networking

20

User-space networking

Idea 2: Kernel Bypass

21

User-space networking

Kernel Bypass

New Abstraction?

22

1. transmit the data
2. allocate needed memory
3. manage buffers
4. schedule process (if necessary)
5. and everything else …

What is the right abstraction? Socket?

1. transmit the data
2. allocate needed memory
3. manage buffers
4. schedule process (if necessary)
5. and everything else …

New Abstraction?

23

Control operations

Data operation

Idea: control data
abstractions

What is the right abstraction? Socket?

Putting All Together - User-Space Networking

24

a
c

b

a
c

b c

Putting All Together - User-Space Networking

25

a
c

b

a
c

b c

Putting All Together - User-Space Networking

26

a
c

b

a
c

b c

Putting All Together - User-Space Networking

27

a
c

b

a
c

b c

Putting All Together - User-Space Networking

28

a
c

b

a
c

b c

Putting All Together - User-Space Networking

29

a
c

b

a
c

b c

Keep in mind - these are
“connection” queue - not raw packet
TX/RX queues as we saw previously

PS~ We are rubbish with names ;)

Putting All Together - User-Space Networking

30

a
c

b

What new abstractions, objects, do you see here?

a
c

b c

New RDMA Objects
1. Memory buffers: from where the data transmission/reception happens
2. Connection send/receive queues: represents a connection, also known as a queue

pair (QP)
3. Control queues (a few flavors)

a. Network control queue: new connection, disconnect, NIC up/down
b. I/O event queue: network I/O finished, error

There are a few more as we will see later, but for now these are high level objects we can see

Network I/O happens by posting work requests (WRs) on the QP
● Contains - buffer, length (+more)
● Supports SGE, batching, linking independent requests, enforce ordering
● Key difference from socket is that you can only use pre-registered buffers for I/O, not any arbitrary

locations for send/recv (which you can for sockets)
31

Timeline of a send/recv exchange

32

Request

Response

Request

Response

OS OS

NIC NIC

We first have to do memory registration for any buffer on which we have to do I/O
● The RDMA NIC remembers the address and length of such buffers, and returns an identifier

○ This identifier can be used multiple times, no need to program NIC multiple times for DMA
● This is different from normal NIC/DMA where NIC does not remember the buffer

x 112344 1131213

y 1132 2324345

x 112344 1131213

y 1132 2324345

Timeline of a send/recv exchange

33

1. 1.

2.

4.
5.

3.

Remember: all this interaction is directly between application and the NIC hardware

Timeline of a send/recv exchange

34

1. 1.

2.

4.
5.

Two-sided message exchange between processes

3.

Different from socket Different from socket

Timeline of a send/recv exchange

35

1. 1.

2.

4.
5.

Two-sided message exchange between processes
Can we eliminate server entirely?

3.

The Idea of Remote Direct Memory Access
● Imagine, if all buffers are known up front to everyone in a cluster / data center

● A client/peer can initiate a network transfer by itself

○ “One-sided” operations (instead of two-sided where 2 peers are involved)

● An RDMA WRITE specifies:

○ Which local/client buffer data should be read from

○ Which remote/server buffer data should be written to

● An RDMA READ specifies:

○ Which remote/server buffer data should be read from

○ Which local/client buffer data should be written into

36

RDMA READ Operation

37

1.

5.

Example one-sided RDMA READ operation

2.

4.

RDMA WRITE Operation

38

1.

4.

Example one-sided RDMA WRITE operation

lbuf rbuf

RDMA: Architectural View

39

RDMA: Architectural View

40

RDMA: Architectural View

41

RDMA: Architectural View

42

RDMA: Architectural View

43

1

RDMA: Architectural View

44

1

2

RDMA: Architectural View

45

1

2

3
4

RDMA: Architectural View

46

1

2

3
4

5

RDMA: Architectural View

47

1

2

3
4

5

6

RDMA: Architectural View

48

RDMA capable network (RNIC) = network + endhost

So, this is RDMA

49

● It is very powerful idea - no remote application/OS/CPU involvement in data

transfer

● Once you have capability to access remote memory from network you can
imagine doing a lot of things without having to worry about if the remote
application is ready to send or receive

● Different types of operations: READ, WRITE, ATOMICS (update, CAS), even

transactions (!)

● Not limited just to system DRAM, think of DRAM in the GPU (hint: its possible)

We did not develop all of this in last 10 years

A Brief History
● 1980s-1990s: a long history of high-performance networking research

○ Building networked multi-processor systems - commodity, cheap vs. supercomputers

○ Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

○ The goal was to connect and integrate CPUs via network as efficiently as possible

● 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads

○ Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAlink (see the Top500 list from 2000s)

● Late-2000s: CPU performance falters and the focus is back on high-performance networking

○ Ethernet (the most popular interconnect) improved to match the performance (and the price)

○ RDMA (the idea), DPDK, SPDK, user-space packet processing, user-space OSes, etc.

50

A Brief History
● 1980s-1990s: a long history of high-performance networking research

○ Building networked multi-processor systems - commodity, cheap vs. supercomputers

○ Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

○ The goal was to connect and integrate CPUs via network as efficiently as possible

● 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads

○ Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAlink (see the Top500 list from 2000s)

● Late-2000s: CPU performance falters and the focus is back on high-performance networking

○ Ethernet (the most popular interconnect) improved to match the performance (and the price)

○ RDMA (the idea), DPDK, SPDK, user-space packet processing, user-space OSes, etc.

51

A Brief History
● 1980s-1990s: a long history of high-performance networking research

○ Building networked multi-processor systems/supercomputers

○ Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

○ The goal was to connect and integrate CPUs via network as efficiently as possible

● 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads

○ Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAlink (see the Top500 list from 2000s)

● Late-2000s: CPU performance falters and the focus is back on high-performance networking

○ Ethernet (the most popular interconnect) improved to match the performance (and the price)

○ RDMA (the idea), DPDK, SPDK, user-space packet processing, user-space OSes, etc.

52

A Brief History
● 1980s-1990s: a long history of high-performance networking research

○ Building networked multi-processor systems - commodity, cheap vs. supercomputers

○ Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

○ The goal was to connect and integrate CPUs via network as efficiently as possible

● 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads

○ Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAlink (see the SC Top500 list from 2000s)

● Late-2000s: CPU performance falters and the focus is back on high-performance networking

○ Ethernet (the most popular interconnect) improved to match the performance (and the price)

○ RDMA (the idea), DPDK, SPDK, user-space packet processing, user-space OSes, etc.

53
2012-2019 - different color, different network

https://www.top500.org/

A Brief History
● 1980s-1990s: a long history of high-performance networking research

○ Building networked multi-processor systems - commodity, cheap vs. supercomputers

○ Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

○ The goal was to connect and integrate CPUs via network as efficiently as possible

● 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads

○ Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAlink (see the SC Top500 list from 2000s)

● Late-2000s: CPU performance falters and the focus is back on high-performance networking

○ Ethernet improved significantly and caught up Infiniband performance

● Today commodity: InfiniBand, RoCE, iWARP, OminiPath support RDMA networking stacks

● Today supercomputers: TOFU interconnect (Fujitsu), Sunway, CRAY Aries and Gemini, Bull BXI (Atos), IBM...

○ https://www.top500.org/statistics/list/

54

https://www.top500.org/statistics/list/

In the Layer Model

A Survey of End-System Optimizations for High-Speed Networks, ACM Computing Surveys (CSUR) Surveys Homepage
archive Volume 51 Issue 3, July 2018. https://dl.acm.org/citation.cfm?doid=3212709.3184899

Image reference: https://fakecineaste.blogspot.com/2018/02/ 55

Defines how run a message
protocol for RDMA operations on
top of TCP byte-stream
RFC 5040-5044

https://dl.acm.org/citation.cfm?doid=3212709.3184899
https://fakecineaste.blogspot.com/2018/02/

Key items to understand - Part 1
● RDMA can refer to many things - unfortunately there is no one definition

○ Broadly speaking the idea represents capability to read remote memory w/o remote

OS/application involvement, hence, remote DMA

■ Physical, or virtual addressing or referencing capability for remote/local memory

○ With such capability, you can also do send/recv (but less exciting)

● There is no ONE RDMA API like socket
○ As we saw previously, back in days with many supercomputer vendor they had different

link technology which had its own implementation of RDMA “semantics”

○ Often wrapped under another high-level API like MPI (Standard, message passing)

○ A (pseudo) standard stack is Open-Fabric Alliance (OFA)
56

Key items to understand - part 2
● The RDMA idea is independent of the networking technology and the

programming interfaces given to the user:
○ Today, there are Infiniband, iWARP, RoCE, OminiPath - all support RDMA operations on

top of different networking layers

○ They all support the OFED RDMA Stack (which is part of the Linux main line)

● The idea of RDMA can be implemented in software also
○ SoftiWARP, SoftRoCE - software kernel devices that run the RDMA protocol inside the kernel

○ Full API - but limited performance gains. Remote OS cannot be skipped if the software device is

running in the kernel, but the remote application can

57

https://dl.acm.org/doi/10.1145/2103799.2103820

iWARP - RDMA over TCP/IP

58

Mogul in his paper (TCP offload is a dumb idea) was talking about ToE with RDMA-type API (not socket)

RDMA Object Relationships and Workflow

59

Objects relationship Workflow

What does NIC need to know
RDMA capable network cards or RNICs typically maintain “some state” on the
network card hardware:

● In case of iWARP: TCP offload engine, connection state (see here: ToE but without sockets)

● Memory buffers (virtual, physical addresses, length, permissions)

● Queue pairs (QPs) : for posting network I/O requests

● Pending/in-progress network I/O requests
○ Send/Recv, READs, WRITEs, Atomics

○ Their execution and notification orders

● Completion queues (CQs): to get completion status

● Some protection domain related context to identify resources belonging to one process from

another

● And more … 60

If you want to try RDMA and see its programs
Option 1: Build and run things on DAS at VU

● Currently has 56 Gbps InfiniBand
● DAS-6 will have 100 Gbps RoCE network
● Full power of the RDMA operations

Option 2: run a software kernel device (it's actually not that difficult)

● https://github.com/zrlio/softiwarp
● https://animeshtrivedi.github.io/blog/2019/06/26/siw.html
● RDMA server/client example, https://github.com/animeshtrivedi/rdma-example

○ You see how large a server client example in the TCP/socket is ~50 lines
○ This one is around ~1000 lines :)

61

https://github.com/zrlio/softiwarp
https://animeshtrivedi.github.io/blog/2019/06/26/siw.html
https://github.com/animeshtrivedi/rdma-example

Why go through so much pain
What does RDMA promise to deliver?

● On 100 Gbps RoCE network

● Dual-socket Sandy-Bridge Xeon CPUs

● DDR3 DRAM

Bandwidth and network operation latencies in a simple request-response

setup

- client sends a request for ‘x’ bytes of data

- Server sends back ‘x’ bytes of data 62

Performance

63

Performance

64

0% CPU
utilization

Performance

65

Performance

66

Where do the Performance Gains come from?
● Closer application network integration

○ When, how, where of network processing, closely integrated with application’s needs

○ Full control over the network processing

● Better(?), high-performance code

○ The API forces to pushing setup at the beginning, resource allocation

● Hardware offloading

○ Hardware acceleration, less CPU/software involvement

● Bypassing the operating system

○ Lot of boilerplate code skipped

○ Processing close to the metal

● An active area of research - the RIGHT application/network integration framework 67

Where can you use RDMA?

Data-Center Environment / Rack-scale computing

68

Over the Internet
- Mbps to Gbps
- 1-10s of msec of RTT

Inside a datacenter
- 100s of Gbps
- 1-10s of usec RTTs

Where can you use RDMA?

Data-Center Environment / Rack-scale computing

69

Over the Internet
- Mbps to Gbps
- 1-10s of msec of RTT

Inside a datacenter
- 100s of Gbps
- 1-10s of usec RTTs

- Shared memory
- Key-Value stores
- Caches
- RPCs
- Sync/locking
- File systems
- Services
- …

RDMA Programming and Design Space

70

https://www.usenix.org/system/files/conference/atc16/atc16_paper-kalia.pdf

Example - Sequencer Throughput

71

The design space is large, and performance margins are 1-2 orders of magnitude

Workload-level Acceleration

72

Network profile of vanilla Spark

Optimized Network profile of Spark

http://crail.incubator.apache.org/blog/2017/01/sorting.html

http://crail.incubator.apache.org/blog/2017/01/sorting.html

Challenges with RDMA
● Debugging

○ Operation failed, connection down, what went wrong?
○ Logging and introspection can be hard, e.g., log4j, printf -> string manipulation@10s of usec!

● Performance
○ Takes a while to get used to the new way of writing code - event driven, lots of resources
○ Performance isolation (e.g., local PCIe vs remote NIC traffic BUG)
○ Quality of service, traffic management, firewall, filtering, compliance

● Fragility
○ In the cloud (performance vs. flexibility, e.g. VM migration)
○ Correctness and verification (e.g., 32 bit ADD circuit on 64-bit addresses in one RNIC)
○ Small eco-system and vendors

● Scalability
○ How many concurrent socket connections can you support in your server?
○ How many memory buffers an RNIC can remember? 73

Comment on networking research
Between all the papers and topics we have discussed

● Networking research has a long history and many ideas are repeated, find their applications in
different deployment context (HPC, DC, Internet, Edge, etc.), with different applications

The grand question - what should be the work division between

74

Applications
OS kernel

NICAlways changing, dictated by the current

● application needs (latency, bandwidth, packets/sec)
● hardware trends (power balance between devices and CPU)
● interplay between OS and hardware

Easy of APIs and abstractions,
support, and expressiveness

Generability, multi-tenancy,
hardware utilization

hardware complexity, cost, on-chip
resources, time for development

What you should know from this lecture
1. The idea of RDMA
2. Why it becomes possible and what kind of support it expects from the

hardware
3. What is userspace networking and kernel bypassing
4. What is the relationship between socket programing and RDMA
5. What advantages does RDMA offer
6. What are its (potential) disadvantages
7. In what kind of setting it should be used
8. A bit of historical context and where today’s RDMA network evolved from

75

Forwarding looking
These are very exciting times for systems research (OS, network, storage, devices,
architecture):

● Everything is changing - infinite amount of customization and optimization possible
● There are SmartNICs, programmable hardware, GPUs, FPGAs, TPUs
● Computation is becoming more heterogeneous and distributed - even inside a single machine

Pushing the boundaries of what is possible with computation:
● Fighting for the last nano-micro seconds
● Pushing to deliver millions/billions of packets per second
● Delivering Terabits/sec bandwidths

76

Also in storage

Remember:

Time to think outside the box
What kind of questions researchers are tackling?

● How do you write software, cloud services for such infrastructure?
● What is the right API and abstraction? Files and sockets?
● How do you debug at this speed? Failures?
● Is C still a good choice? (Rust, Go?)
● How do you write a portable software with so much hardware dependencies?
● Is Linux a good operating system for such diverse, heterogeneous hardware setup?
● How do we integrate network + storage + GPU computation in a single application?
● How do we support multiple applications with different performance needs? Multi-tenancies?
● How do we integrate such devices in the cloud, edge computing?
● What applications can we run on this infrastructure - AI/ML, Bioinformatics, Astronomy, Banking, Precision

Agriculture, autonomous driving?
● Do we need all that generality if we are just running ML/AI on our cluster?

Speaking of ML/AI …
77

http://www.keypersonofinfluence.com/how-can-we-think-outside-the-box-from-inside-the-box/

78

This is not to say that AI/ML is bad, but
to point out that we have an opportunity
to smartly design hardware/software
to deliver efficiency
● Cost
● Energy
● Sustainability

Recommended Reading

79

Animesh Trivedi, End-to-End Considerations in the Unification of
High-Performance I/O, PhD thesis, ETH Zurich, January, 2016.

https://doi.org/10.3929/ethz-a-010651949

Chapter 2, Evolution of High-Performance I/O

Chapter 3, Remote Direct Memory Access (example and details)

https://doi.org/10.3929/ethz-a-010651949

