
Advanced Network Programming (ANP)
XB_0048

Userspace Networking Stacks
Animesh Trivedi

Autumn 2020, Period 1

1

Layout of upcoming lectures - Part 1
Sep 1st, 2020 (today): Introduction and networking concepts

Sep 3rd, 2020 (this Tuesday): Networking concepts (continued)

Sep 8th, 2020 : Linux networking internals

Sep 10th 2020: Multicore scalability

Sep 15th 2020: Userspace networking stacks

Sep 17th 2020: Introduction to RDMA networking

2

Multicore challenges
Interrupt load balancing
RSS and friends
SMP and NUMA
MegaPipe

What is packet processing? Lots of applications such as firewall, routers,
forwarding, traffic generators, and middlewares that process and work on raw
network packets - they are middleman

Packet Processing Frameworks

3

Modern
Multi-core CPU

Machine

10 Gbps = 14.8 Mpps
100 Gbps = 148.8 Mpps

Why? use multi-core servers…

● High-end switches are expensive
● Have you seen their OSes?

○ Mostly a hard-to-use systems
○ Cumulus OS (exception)

● Not flexible (ASIC)
● You have a new protocol, or aggregator, or

application-level hook? Forget about it

Alternative: use Linux/servers - simple !

What is packet processing? Lots of applications such as firewall, routers,
forwarding, traffic generators, and middlewares that process and work on raw
network packets - they are middleman

Basic packet processing, and small, short-lived connections (as we saw in
Megapipe) have a lot in common :

● Less bandwidth-heavy, but more “volume” driven
● Small payloads
● Stress on per-packet processing cost

How many packets can one process per second, and with what resources?
● Alternatively: if you cannot process packets fast, you cannot do TCP/IP processing faster

Packet Processing Frameworks

4

Netmap: A Novel Framework for fast packet I/O

5

https://www.usenix.org/system/files/conference/atc12/atc12-final186.pdf

The key problem - Getting Fast Access to Packets

6

packet processing application

Device driver

Userspace

Kernel

System call

Network packet
processing

Typical options:

1. Raw sockets (AF_PACKETS)
a. High overheads, packet copies, per

packet system call
2. Packet filter hooks (BPF)

a. Complex, in kernel, limited changes
3. Direct buffer access

a. Run in kernel
b. PF_RING : data copies and shared

metadata overheads

No high-performance, safe, flexible way of getting
access to raw packets

The root cause of high overheads - I
A single packet is defined by inside Linux (or in BSD, MS
Windows I don’t know)

These structures are

● extremely general packet representation - for any protocol not just TCP/IP
● contain pointers and functions for any thing possible on the packet
● very very large (struct sk_buf is more than 200 lines of code)
● has close to 100 variables to keep track of information
● on my 4.15 kernel (a bit outdated), it is : 232 bytes!

○ Calculate the overhead for a 64 byte packet (~80%)
○ Previous research has shown that 63% of the CPU usage during the processing of a

64 byte large packet is skbuff-related [1]
7

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2014-08-1/NET-2014-08-1_15.pdf
https://elixir.bootlin.com/linux/latest/source/include/linux/skbuff.h#L610

The root cause of high overheads - II
System calls are not cheap

● They trap into the kernel
● Disrupt ongoing processing
● Processor ring switch
● Security checks

All this needs to happen 14.8
million times per second (for 10
Gbps)

8

FlexSC: Flexible System Call Scheduling with Exception-Less System Calls
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Soares.pdf

PS

https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Soares.pdf
https://www.kernel.org/doc/html/latest/process/adding-syscalls.html

How does it look performance wise?

9

Almost 1 microsecond (950 nanoseconds) per packet !

Let’s do a basic calculation, what is the time budget per
packet

Ethernet payload is 64 bytes, with that total Ethernet
frame (20B ETH headers) is 84 bytes

10 Gbps = 10,000,000,000 bits /sec
--
84 * 8
= 14,880,952 packets per second

=> 67.20 nanoseconds / per packet (on 10 Gbps)

We are clearly way off, and need to optimize it everywhere

What Optimizations does netmap proposes
1. Better packet buffer management

a. All uniform packets, a pool of them are
initialized at the boot time (preallocation)

b. Linear, no fragmentation/reassembly

2. Give direct and safe access to NICs RX
and TX queues
a. Zero copy data movement
b. Very small shared state (a few pointers)

3. Batched system call processing
a. Send/recv multiple packets in a single call

10

The packet presentation

11

● Fixed packet size : 2 KB (no fragmentation)
● Memory allocated by the kernel (protected) and shared

between the NIC and application
● Multiples queues - per core mapping

○ Each queue has its own file descriptor and memory

Application ownershipNIC/kernel ownership

The Zero-copy stack

12

● Raw packets are build and transmitted directly from
the user space

● System call only to notify the NIC there is work to (so
multiple packets can be queued)

● Processing of the calls - like any
other file descriptor

Very easy to integrate with the familiar Linux/IO API

To achieve this, need support from the NIC
driver and the NIC itself with certain capabilities

● Multiqueue interface (virtualization)
● High DMA (to DMA any memory, 64 bits)

A quick glimpse at the code

13

Why does this code looks so strange? Where is a socket?

Example of a zero-copy data forwarding

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

What does all this buys you

14

1. At 1GHz speed, netmap can saturate a 14.8 Mpps link (default Linux and BSD cannot,
with a single core). E.g., Linux has 4 Mpps/core → ~4 cores

2. Batching helps to achieve “line-rate”
a. One cannot achieve line rates without batching
b. But batching (typically) increases latency

What has netmap done?
Highly influential work

1. Brings attention to per-packet processing
2. Shows the benefit of

a. Pre-allocating number of buffers (we will come back to this idea later)
b. Doing system call batching
c. Flexible packet processing implementation in user space

The last point is very important: if we can do fast packet processing in userspace,
then can we build a fast networking stack in user space?

PS~ you guys are building one, if not the “fast” one ;)

15
May be i am wrong!

What has netmap done?
Highly influential work

1. Brings attention to per-packet processing
2. Shows the benefit of

a. Pre-allocating number of buffers (we will come back to this idea later)
b. Doing system call batching
c. Flexible packet processing implementation in user space

The last point is very important: if we can do fast packet processing in userspace,
then can we build a fast networking stack in user space?

PS~ you guys are building one, if not the “fast” one ;)

16
May be, i am wrong!

What is unique about packet processing in user space

An operating system kernel is a sacred place

● A modern miracle …
● Very strictly regulated (arch. + philosophically)

○ Remember: Tanenbaum–Torvalds debate
○ https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate

17

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://hackaday.com/2019/10/31/linuxs-marketing-problem/

Linux kernel size - ~30 Million LOC and counting

18

Do you want to
test your code
against 30M
LOC?

https://www.reddit.com/r/linux/comments/9uxwli/lines_of_code_in_the_linux_kernel/

What is unique about packet processing in user space

An operating system kernel is a sacred place

● A modern miracle …
● Very strictly regulated (arch. + philosophically)

○ Remember: Tanenbaum–Torvalds debate
○ https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate

● Needs to run reliably from micro-controllers, cameras, sensors,
phones, desktop, servers, supercomputers.

● No security leaks, multiple users
● Any processor and memory architecture for the next 10, 20, 30 years!

Any special code/customization for one use case : A big no, no !
19

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://hackaday.com/2019/10/31/linuxs-marketing-problem/

But user space programs are not special
It is your application - do whatever you want

Linux (or any other framework like netmap) ensures proper packet delivery
and nothing more

Do value addition:

● Tunneling, VPN, tethering, encryption, TORing
● Cloud computing with flexible networking
● Content distribution networks (Geo-locality)
● And much much more …

20
You and I can hack for anything without needing additional kernel complexity

Netmap challenges

21

Netmap still is integrated in the Linux kernel I/O subsystem
● ioctl calls, select/poll infrastructure

system calls have its own associated overheads

● need support from every NIC “driver” (too many pieces)

FlexSC: Flexible System Call Scheduling with Exception-Less System Calls
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Soares.pdf

PS

https://www.dpdk.org/wp-content/uploads/sites/35/2018/06/DPDK-China2017-Lin-Telco-Data-Plane-Status.pdf
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Soares.pdf
https://www.kernel.org/doc/html/latest/process/adding-syscalls.html

DPDK Framework

22

Intel started it in 2010 - Data Plane Development Kit (DPDK)
● they wanted to sell CPUs
● they want to show how fast their CPU was for packet

Processing

Build the fastest possible packet processing framework - extreme!

Highly influential and successful framework
(in academia + industry as well) - since then it
is multi-vendor, open-source initiative
see www.dpdk.org

Used in production for software switches, routers, and cloud networking infrastructure

https://www.zeroto60times.com/formula-one-f1-0-60-times/
http://www.dpdk.org

Intel started it in 2010 - Data Plane Development Kit (DPDK)
● they wanted to sell CPUs
● they want to show how fast their CPU was for packet

processing

DPDK Framework

23

● Data path - code path where the actual work is done
○ Try to make it straight forward, no blocking calls, everything is ready to go

● Control path - code where resources are managed
○ Slow(er), resourced need to be allocated and managed, can block/sleep

● Fast path - common case execution (typically few branches, very simple code)
○ E.g., the next TCP packet is a data packet in EST. state in order, no crazy flags

● Slow path - more sanity checks (more branches, hence poor(er) performance)
○ A TCP packet with URG and PSH flag set in the flag

https://www.zeroto60times.com/formula-one-f1-0-60-times/

DPDK Architecture

24

Direct user space packet processing

A list of standard set of infrastructure
libraries

No device driver modifications needed,
uses (out of the others) Linux’s UIO
framework
● does userspace memory mapped I/O

No system call - ONLY polling based
drivers on memory-mapped registers

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2014-08-1/NET-2014-08-1_15.pdf

Linux UIO

Not every device needs a sophisticated device driver, if all a device does is take commands on some
registers and generate interrupts, then use UIO

● Need that device can be managed completely by memory mapped I/O
● Interrupts are delivered as events on the file descriptor
● No need to recompile kernel
● (<-- example driver, there are others)

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.osadl.org/fileadmin/dam/rtlws/12/Koch.pdf

25

Read upside down

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.osadl.org/fileadmin/dam/rtlws/12/Koch.pdf

Key ideas in DPDK

26

1. No system calls or interrupts - all polling

2. No kernel overheads in the data path

kernel involvement = ZERO

3. Multiple libraries supporting

a. Multicore affinity - core/thread pinning

b. Buffer management - packet buffers

c. Lockless queue management - using CAS

d. Huge pages - reduces TLB pressure

e. Bulk / burst throughput I/O calls - amortize function call invocations (no syscalls here)

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2014-08-1/NET-2014-08-1_15.pdf

DPDK: High-level components

27

At this point, DPDK is a large framework which is
almost rebuilding the whole Linux networking
infrastructure in userspace for FAST packet
processing

1. Timer facility
2. NUMA-aware, flow-aware memory,

core-local allocators (memory
management)

3. Per-CPU ring management (notification
between CPUs)

4. Debuggers

DPDK: Performance - setup

28

Pretty cool document - gives you whole bunch of insights what is needed to get performance, guesses?

http://fast.dpdk.org/doc/perf/DPDK_20_05_Mellanox_NIC_performance_report.pdf

Recap: netmap performance

29

1 core (the blue line), hits 14 Mpps at ~1GHz

So, let’s extrapolate, top of the line CPU frequency ~2-3 GHz ⇒ 14 x {2, 3} ⇒ {28, 42} Mpps

Right?

DPDK: Performance

30

Insane performance

● 80 Mpps / core
● 33 cycles / packet

Upcoming DAS-6 VU Supercomputer

● DAS-6 has 100 Gbps Ethernet
● We are just finalizing the configuration now
● It should be up and operational in a few months time

Want to experiment, and generate 148 Mpps? ;) Come talk to us!
31

mTCP: Scalable User Space TCP Stack

32

https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf

mTCP: Scalable User Space TCP Stack

33

A bit of
specialization

https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf

What is the problem that mTCP is solving?
Building on from MegaPipe, focus is on small, short-lived connections

1. Do multi core scalability (MegaPipe does it)
2. No new radical API (Limitations of MegaPipe)
3. No kernel modification(Limitations of MegaPipe)

Why in user space? We have seen some arguments for packet processing

● Expensive syscall
● Metadata/data copies
● Kernel environment
● Generality vs specialization argument

34

What is the problem that mTCP is solving?
(recap) Challenges with the kernel stack
1. Locality: SO_REUSE and split among cores
2. Shared fd space : decouple fd
3. Inefficient packet processing (netmap)
4. Syscall overheads (batching)

Previous works improve, but still not quite.

35

Between all the packet processing kernel, and
TCP/IP - there is very limited number of CPU
cycles are left for the application
Kernel consumes 80% of CPU cycles

What is the problem that mTCP is solving?
(recap) Challenges with the kernel stack
1. Locality: SO_REUSE and split
2. Shared fd space
3. Inefficient packet processing (netmap)
4. Syscall overheads

Previous works improve, but still not quite.

Research question: we have seen userspace packet
I/O doing 10s million packets/sec in userspace?
Can we do the same with the TCP stack (with
sockets) implementation?

36

Not all cycles are spent equally

mTCP basic ideas
● TCP stack implementation in userspace

- Flexibility and easy of development and use
- Specialization of TCP - common options, fast path

● Leverage packet processing frameworks
to deliver performance
- Uses packet shader (similar idea as netmap)
- 10s million packets/sec in user space

● Multi-core scalability
- Per-application thread design
- Transparent batching of events and packet I/O

37

TCP
implementation

mTCP: Packet Processing Improvements
Key challenges (beyond what we discussed previously):

1. DPDK does polling - waste of CPU cycles
2. Netmaps allows on file descriptors, but integrated with kernel

mTCP does its own implementation of select on TX/RX queues (not files)

●
○ Returns immediately with packets, if there are

○ Otherwise, wait for events from the kernel

● Not integrated with the Linux file/event management system to avoid overheads

● mTCP’s underlying PS engine also support packet batching
○ Amortize for DMA, IOMMU costs (and other associated architectural costs)

38

mTCP: Userlevel TCP Stack
● Can it have zero-thread TCP model?

○ Means - can there be no active threads in
the mTCP library?

○ Answer: No, why?

● The thread model:
○ Shared TCP buffer , access only via using the job and events queues
○ Internal I/O and event queues, supporting queueing and batching

● Application and mTCP threads
○ All data structures (file descriptors, TCP state information) partitioned between cores
○ Threads pinned together on one core, and RSS configured to deliver packet there
○ Lock-free data structures using single producer/single consumer queues
○ Each core has its own memory allocator and caching 39

TCP walk through

1. Look up TCP control block (TCB) (see RFC 793)
2. If it is an ACK for SYN - then put it in the

accept queue
3. Process a bunch of TCP packets
4. Queue event and wake up process
5. App get multiple events in a single epoll

notification
6. Write multiple responses (no context switch)
7. Enqueue TCB in the write queue for processing
8. Packet transmission

No global queues, all core local, no locking. mTCP offers the same BSD/TCP socket semantics

● →
● →
● →

40

Cache Alignments

41

●
●
●
●
●

…

struct

DRAM

CPU
Cache

Cache line (64B)

struct

Recall:
● CPU caches have cache lines of certain size : 64 bytes (typically)
● That is the unit of data transfer between the CPU cache and DRAM

So you want to align your tcp_struct on the cache line size
● Group together frequently accessed items

…

}

For example …

42

Here in this case, due to the unfortunate ordering in which the struct fields are defined, seq
and ack number happen to lie on different cache lines

However, often they are processes together. Hence, it makes sense to pack them on the same
cache line by reordering their definition order

In the Linux kernel you see many such examples …

For example …

…

}

43

Here in this case, due to the unfortunate ordering in which the struct fields are defined, seq
and ack number happen to lie on different cache lines

However, often they are processes together. Hence, it makes sense to pack them on the same
cache line by reordering their definition order

In the Linux kernel you see many such examples …

…

}

Two TCP specific optimizations
1. 3 types of the tx queues: control, ACK, and data

a. Small, short-lived TCP connection are control message heavy (SYN/ACK)

b. Priority to the “control” packets, when transmissing : (priority order)

Control (SYN/SYNACK)→ ACK → data packets

2. TCP cache
a. Lot of new connection mean: lots of new socket descriptors, buffers, TCBs, queues,

pointers, structure allocation
b. Proposes a pre-allocated pool of structures per thread and reuse it constantly

44

What all of this buys you?

45

● Significant performance improvements over previous efforts
● Milestone work: proof of concept of an efficient TCP stack in userspace

○ Implements all known optimizations
○ End-to-end batching : packet, events, I/O calls

Limitations / Considerations for mTCP
Limited memory protection between the shared mTCP library and application

● The idea of “fate-sharing”

Change in application semantics if they attach to specific “file descriptor”
semantics (not all Linux I/O are supported on the fd)

By passing all kernel services - packet scheduling, firewalling, routing

Limited number of TX/RX queues, and no unlimited multi-application support

46

Conceptually
Your ANP netstack is very close to what mTCP has build

● Except you are not using a user space packet processing library but the
Linux TUN/TAP infrastructure

● Think about …
○ How do you allocate a file descriptor for the socket call ?
○ Are you doing something to deliver better multi core scalability?
○ Are you doing something for better cache alignments?
○ What is your threading model?

47

Recap

48

Accept
queue

Locality API Event
handling

Packet I/O App. changes Kernel
modification

Netmap x x x Syscall Batched,
events

x Only the NIC
driver

DPDK x Yes x x Polling x Support from
the NIC driver

Linux 2.16 Shared None BSD
sockets

Syscalls Per-packet No No

Linux 3.19 Per-core None BSD
sockets

Syscalls Per-packet SO_REUSEPORT No

MegaPipe Per-core Yes lwsocket Batched
Syscalls

Per-packet Yes, new API Yes

mTCP Per-core Yes mTCP
sockets

Batched
Funcalls

Batched Minimum, mTCP
sockets

No
(multiqueue)

What you should know from this lecture

1. What are packet processing frameworks

2. What are the key innovations in DPDK and Netmap

3. What is good or bad about the kernel space Linux networking stack

4. What is good or bad about user space networking stacks

5. What is difference between mTCP and Megapipe approaches

6. General concerns, tricks, and design choices for userspace networking

stacks - batching, locality and affinity, APIs and internals

49

Further reading

50

https://www.linuxjournal.com/content/userspace-networking-dpdk
https://www.slideshare.net/garyachy/dpdk-44585840
https://blog.selectel.com/introduction-dpdk-architecture-principles/
https://www.slideshare.net/MichelleHolley1/dpdk-multi-architecture-high-performance-packet-processing-72911726
https://www.slideshare.net/MichelleHolley1/dpdk-multi-architecture-high-performance-packet-processing-72911726

