Advanced Network Programming (ANP)
XB_0048

Userspace Networking Stacks

Animesh Trivedi
Autumn 2020, Period 1

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

Layout of upcoming lectures - Part 1

Sep 1st, 2020 (today):

Sep 3rd, 2020 (this Tuesday): Aetwerking-concepts{eontinted)

Multicore challenges

Sep 8th, 2020 : HrwnretworkiREtternals Interrupt load balancing

RSS and friends

Sep 10th 2020: #uticorescatabitity SMP and NUMA

MegaPipe

Sep 15th 2020: Userspace networking stacks -

Sep 17th 2020: /ntroduction to RDMA networking

Packet Processing Frameworks

What is packet processing? Lots of applications such as firewall, routers,
forwarding, traffic generators, and middlewares that process and work on raw
network packets - they are middleman

Why? use multi-core servers...

Modern
Multi-core CPU : : .
Machine e High-end SW|tches.are expensive
e Have you seen their OSes?
o Mostly a hard-to-use systems
= = = = o Cumulus OS ()
e Not flexible (ASIC)
e You have a new protocol, or aggregator, or
SN 5 :
10 Gbps = 14.8 Mpps application-level hook? Forget about it

100 Gbps = 148.8 Mpps Alternative: use Linux/servers - simple !

Packet Processing Frameworks

What is packet processing? Lots of applications such as firewall, routers,
forwarding, traffic generators, and middlewares that process and work on raw
network packets - they are middleman

Basic packet processing, and small, short-lived connections (as we saw in
Megapipe) have a lot in common :

e Less bandwidth-heavy, but more “volume"” driven
e Small payloads
e Stress on per-packet processing cost

How many packets can one process per second, and with what resources?
e Alternatively: if you cannot process packets fast, you cannot do TCP/IP processing faster

4

Netmap: A Novel Framework for fast packet 1/0

Abstract

Many applications {routers, traffic monitors, firewalls,
etc.) need to send and receive packets at line rate even on
very fast links. In this paper we present nermap. a novel
framework that enables commodity operating systems
to handle the millions of packets per scconds traversing
1..10 Gbit/s links, without requiring custom hardware or
changes to applications.

In building nemmap. we identified and successfully re-
duced or removed three main packet processing costs:
per-packet dynamic memory allocations. removed by
preallocating resources: system call overheads. amor-
tized over large batches: and memory copies, elimi-
nated by sharing buffers and metadata between kemnel
and userspace, while still protecting access to device reg-
isters and other kernel memory arcas. Separately. some
of these technigues have been used in the past. The nov-
clty in our proposal is not only that we exceed the perfor-
mance of most of previous work, but also that we provide
an architecture that is tightly integrated with existing op-
crating system primitives. oot tied 10 snecific bardware

netmap: a novel framework for fast packet /O

Luigi Rizzo Universita di Pisa, Ialy

high rate raw packet VO required by these applica-
tions is not the intended target of general purpose OSes.
Raw sockets, the Berkeley Packet Filter [14] (BPF). the
AF_SOCKET family, and cquivalent APIs have been
used to build all sorts of network monitors, traffic gen-
erators, and generic routing systems. Performance. how-
ever, is inadequate for the millions of packets per sec-
ond (pps) that can be present on 1..10 Gbit/s links. In
search of better performance. some systems (see Sec-
tion 3) either run completely in the kemel. or bypass the
device driver and the entire network stack by exposing
the NIC’s data structures to user space applications. Ef-
ficient as they may be. many of these approaches depend
on specific hardware features, give unprotected access to
hardware, or are poorly integrated with the existing OS
primitives.

The nermap framework presented in this paper com-
bines and extends some of the ideas presented in the
past trying to address their shortcomings. Besides giving
huge speed improvements, nemmap does not depend on
specific hardware!, has been fully integrated in FreeBSD

https://www.usenix.org/system/files/conference/atc12/atc12-final186.pdf (won the best paper award!)

https://www.usenix.org/system/files/conference/atc12/atc12-final186.pdf

The key problem - Getting Fast Access to Packets

packet processing application

Userspace

Kernel

@System call

Network packet
processing

Device driver

B
Y

Typical options:

1. Raw sockets (AF_PACKETS)
a. High overheads, packet copies, per
packet system call
2. Packet filter hooks (BPF)
a. Complex, in kernel, limited changes
3. Direct buffer access
a. Runinkernel
b. PF_RING : data copies and shared
metadata overheads

No high-performance, safe, flexible way of getting
access to raw packets

The root cause of high overheads - |

A single packet is defined by struct sk_buf inside Linux (or mbuf in BSD, MS
Windows | don't know)

These structures are

extremely general packet representation - for any protocol not just TCP/IP
contain pointers and functions for any thing possible on the packet
very very large (struct sk_buf is more than 200 lines of code)
has close to 100 variables to keep track of information
on my 4.15 kernel (a bit outdated), itis : 232 bytes!
o Calculate the overhead for a 64 byte packet (~80%)
o Previous research has shown that 63% of the CPU usage during the processing of a

64 byte large packet is skbuff-related [1]

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2014-08-1/NET-2014-08-1 15.pdf
Skbuff : https://elixir.bootlin.com/linux/latest/source/include/linux/skbuff.n#L610

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2014-08-1/NET-2014-08-1_15.pdf
https://elixir.bootlin.com/linux/latest/source/include/linux/skbuff.h#L610

The root cause of high overheads - Il

System calls are not cheap

They trap into the kernel
Disrupt ongoing processing
Processor ring switch
Security checks

All this needs to happen 14.8

million times per second (for 10
Gbps)

Syscall impact on user-mode IPC

Lost performance (cycles)

User-mode IPC
(higher is faster)
O @ B O bkl e
W 0N W = W,

Syscall exception

0 2000 4000 6000 8000 10000 12000 14000 16000
Time (in cycles)

FlexSC: Flexible System Call Scheduling with Exception-Less System Calls
https://www.usenix.org/legacy/events/osdi10/tech/full papers/Soares.pdf

(PS~ things look a bit differently now, see the syscall x86_64 instruction and
the shared page table structure,

https://www.kernel.org/doc/html/latest/process/adding-syscalls.html)

https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Soares.pdf
https://www.kernel.org/doc/html/latest/process/adding-syscalls.html

How does it look performance wise?

File Function/description time | delta
ns ns
user program sendto 8 96
system call
uipc_syscalls.c | sys_sendto 104
uipc_syscalls.c | sendit 111
uipc_syscalls.c | kern_sendit 118
uipc_socket.c sosend —
uipc_socket.c sosend_dgram 146 137
sockbuf locking, mbuf
allocation, copyin
udp.usrreq.c udp_send 273
udp_usrreq.c udp_output 273 57
ip_output.c ip_output 330 198
route lookup, ip header
setup
if_ethersubr.c ether_output 528 162
MAC header lookup and
copy. loopback
if_ethersubr.c ether_output_frame 690
ixgbe.c ixgbe mq_start 698
ixgbe.c ixgbe.mg.start._locked| 720
ixgbe.c ixgbe_xmit 730 220
mbuf mangling, device
programming
- on wire 950 {

L,Almost 1 microsecond (950 nanoseconds) per packet !

Let's do a basic calculation, what is the time budget per
packet

Ethernet payload is 64 bytes, with that total Ethernet
frame (20B ETH headers) is 84 bytes

10 Gbps = 10,000,000,000 bits /sec

84*8

= 14,880,952 packets per second

=>67.20 nanoseconds / per packet (on 10 Gbps)

We are clearly way off, and need to optimize it everywhere

What Optimizations does netmap proposes

1. Better packet buffer management

.)
a. Alluniform packets, a pool of them are Application
initialized at the boot time (preallocation)
b. Linear, no fragmentation/reassembly netmap API

2. Give direct and safe access to NICs RX

| r
\ host

and TX queues i] |
a. Zero copy data movement | esem— =
b. Very small shared state (a few pointers) = I N
[network adapter
A

3. Batched system call processing

a. Send/recv multiple packets in a single call

10

The packet presentation

f &

Application
pp netmap_if netmap rings) NIC ring
num_rings » ring_size _f_phy_addr
0] len
netmap API ring_ofsnf cur L&

avail pkt_buf [*]

flags

buf_ofs
flags | len | index]
— pkt_buf

network adapter Shared memory region

-
[curr
o Fixed packet size : 2 KB (no fragmentation)
e Memory allocated by the kernel (protected) and shared
Application ownership

between the NIC and application
e Multiples queues - per core mapping
o Each queue has its own file descriptor and memory

avail

The Zero-copy stack

e Raw packets are build and transmitted directly from
the user space

e System call only to notify the NIC there is work to (so
multiple packets can be queued)

e Processing of the ioctl/select/poll calls - like any
other file descriptor

Application

netmap API

Very easy to integrate with the familiar Linux/10 API

stack

| To achieve this, need support from the NIC
NIC rings | — driver and the NIC itself with certain capabilities
e Multiqueue interface (virtualization)
e High DMA (to DMA any memory, 64 bits)

.
network adapter

12

A quick glimpse at the code

Why does this code looks so strange? Where is a socket?

fds.fd = open("/dev/netmap", O_RDWR);
strcpy (nmr.nm_name, "ixO0");
ioctl(fds.fd, NIOCREG, &nmr);
p = mmap(0, nmr.memsize, fds.fd);
nifp = NETMAP_IF(p, nmr.offset);
fds.events = POLLOUT;
for (;:). 1
poll(fds, 1, -1);
for (r = 0; r < nmr.num_queues; r++) {
ring = NETMAP_TXRING(nifp, r);
while (ring->avail-- > 0) {
i = ring->cur;
buf = NETMAP_BUF (ring, ring->slot[i].buf_index);
. store the payload into buf ...
ring->slot[il.len = ... // set packet length
ring->cur = NETMAP_NEXT(ring, i);

src = &src_nifp->slot[i]; /* locate src and dst slots */
dst = &dst_nifp->slot[jl;

/* swap the buffers =/

tmp = dst->buf_index;

dst->buf_index = src->buf_index;

src->buf_index = tmp;

/* update length and flags */

dst->len = src->len;

/* tell kernel to update addresses in the NIC rings */
dst->flags = src->flags = BUF_CHANGED;

Example of a zero-copy data forwarding

13

What does all this buys you
16 —' , ' ' ' 16
14 E :5: o § ; : rsilsd) 14 I
o 12 e | 2 _
oy 10 i § hetmapon 4 cores e § s
g ’5 §Q\]etmap on 2 cores s E 10 i
) 8 B 55 §§ netmap on 1 core e ; 8 !
..(_ﬁ' 6 k ::5 §‘ Llnux/pktgen O v o i "‘E 6 |
= s § FreeBSD/netsend T
ﬁ 4 I [\\\\\\\‘ — i T }5 4 I
2 3 .'.‘utlm"\nlms*':.wunt‘.N’.\n"‘M“*"‘ 2 | :
0 , J . , J 0 ‘ netmnap with || Core
0 0.5 1 1.5 2 25 2 4 (t 8 |10 12 14 16
Clock speed (GHz) Batchsize {packets)
At 1GHz speed, netmap can saturate a 14.8 Mpps link (default Linux and BSD cannot,

1.

2.
a.

b.

Batching helps to achieve “line-rate”

One cannot achieve line rates without batching
But batching (typically) increases latency

with a single core). E.g., Linux has 4 Mpps/core — ~4 cores

14

What has nhetmap done?

Highly influential work

1. Brings attention to per-packet processing
2. Shows the benefit of

a. Pre-allocating number of buffers (we will come back to this idea later)
b. Doing system call batching
c. Flexible packet processing implementation in user space

The last point is very important: if we can do fast packet processing in userspace,
then can we build a fast networking stack in user space?

15

What has nhetmap done?

Highly influential work

1. Brings attention to per-packet processing
2. Shows the benefit of

a. Pre-allocating number of buffers (we will come back to this idea later)
b. Doing system call batching
c. Flexible packet processing implementation in user space

The last point is very important: if we can do fast packet processing in userspace,
then can we build a fast networking stack in user space?

PS~ you guys are building one, if not the “fast” one)
\May be, i am wrong!

16

What is unique about packet processing in user space

An operating system kernel is a sacred place

e A modern miracle. ...

e Very strictly regulated (arch. + philosophically)
o Remember: Tanenbaum-Torvalds debate :
o https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds debate

17

https://hackaday.com/2019/10/31/linuxs-marketing-problem/

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://hackaday.com/2019/10/31/linuxs-marketing-problem/

Linux kernel size - ~30 Million LOC and counting

Uines of code in the Linux kemel
using

z
£

-
- archicther
- chixs
- crypto, mm, sound
- areersiopu
- arersimedis
= areersivet
— arrversother
-
- et
- cther

wom

1504

1008

soM

oom =

%4

Do you want to
test your code
against 30M

Loc?

https://www.reddit.com/r/linux/comments/9uxwli/lines of code in the linux kernel/

18

https://www.reddit.com/r/linux/comments/9uxwli/lines_of_code_in_the_linux_kernel/

What is unique about packet processing in user space

An operating system kernel is a sacred place

e A modern miracle ...

e Very strictly regulated (arch. + philosophically)
o Remember: Tanenbaum-Torvalds debate :
o https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds debate

e Needs to run reliably from micro-controllers, cameras, sensors,
phones, desktop, servers, supercomputers.

e No security leaks, multiple users

e Any processor and memory architecture for the next 10, 20, 30 years!

Any special code/customization for one use case : A big no, no!

https://hackaday.com/2019/10/31/linuxs-marketing-problem/ 19

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://hackaday.com/2019/10/31/linuxs-marketing-problem/

But user space programs are not special

It is your application - do whatever you want

Linux (or any other framework like netmap) ensures proper packet delivery
and nothing more

Do value addition:;

Tunneling, VPN, tethering, encryption, TORing
Cloud computing with flexible networking
Content distribution networks (Geo-locality)
And much much more ...

You and | can hack for anything without needing additional kernel complexity

20

Netmap challenges

|
Netmap still is integrated in the Linux kernel I/0 subsys i, oycall Impact o user-mode PG
e ioctl calls, select/poll infrastructure T 13
system calls have its own associated overheads a3 e
Qo
k=] Y
. . o ® 09
e need support from every NIC “driver” (too many pieces) €% 07 i i
% -E, 0.5
£ Syscall exception
— 0-30 2000 4000 6000 8000 10000 12000 14000 16000
I : Code block we should take care of Fims.{In cycles)

FlexSC: Flexible System Call Scheduling with Exception-Less System Calls
https://www.usenix.org/legacy/events/osdi10/tech/full papers/Soares.pdf

(PS~ things look a bit differently now, see the syscall x86_64 instruction and
the shared page table structure,

https://www.kernel.org/doc/html/latest/process/adding-syscalls.html)

https://www.dpdk.org/wp-content/uploads/sites/35/2018/06/DPDK-China2017-Lin-Telco-Data-Plane-Status.pdf 21

https://www.dpdk.org/wp-content/uploads/sites/35/2018/06/DPDK-China2017-Lin-Telco-Data-Plane-Status.pdf
https://www.usenix.org/legacy/events/osdi10/tech/full_papers/Soares.pdf
https://www.kernel.org/doc/html/latest/process/adding-syscalls.html

DPDK Framework

Intel started it in 2010 - Data Plane Development Kit (DPDK)
e theywanted to sell CPUs
e they want to show how fast their CPU was for packet

Processing

Build the fastest possible packet processing framework - extreme!

: : : 01 THELINUX FOUNDATION
Highly influential and successful framework §

Qn academ|a + industry as We.II).-.S|r.1ce then it D P D K
is multi-vendor, open-source initiative ,

see www.dpdk.org

Used in production for software switches, routers, and cloud networking infrastructure

https://www.zerotob0times.com/formula-one-f1-0-60-times/ 22

https://www.zeroto60times.com/formula-one-f1-0-60-times/
http://www.dpdk.org

DPDK Framework

Intel started it in 2010 - Data Plane Development Kit (DPDK)

e Data path - code path where the actual work is done
o Try to make it straight forward, no blocking calls, everything is ready to go
e Control path - code where resources are managed

e Fast path - common case execution (typically few branches, very simple code)
o E.g. the next TCP packet is a data packet in EST. state in order, no crazy flags
e Slow path - more sanity checks (more branches, hence poor(er) performance)

23

https://www.zerotob0times.com/formula-one-f1-0-60-times/

https://www.zeroto60times.com/formula-one-f1-0-60-times/

DPDK Architecture

Linux Kernel without DPDK Linux Kernel with DPDK

Direct user space packet processing

Applications

Applications |||
: DPDK Libraries

Kernel Space

A list of standard set of infrastructure
libraries

No device driver modifications needed,
uses (out of the others) Linux's UIO

framework
e does userspace memory mapped I/0

No system call - ONLY polling based wesworconroter ||| IO eoworcconvoter |11

drivers on memory-mapped registers

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2014-08-1/NET-2014-08-1 15.pdf 24

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2014-08-1/NET-2014-08-1_15.pdf

Linux UIO

Read upside down

-

uio
Framework

internal
Kernelspace kernel functions
(non-stable API)

internal
Kernelspace kernel functions
(non-stable API)

AAAAAA

AAAAAA

Driver

Interface /dev/ xXyz Interface Sysfs /dev/uioX

T

| |
Gy d
Userspace Application f;?té:) Userspace [Application H Driver :;:gz;]

ioctl()

Not every device needs a sophisticated device driver, if all a device does is take commands on some

registers and generate interrupts, then use UIO
e Need that device can be managed completely by memory mapped I/0
e Interrupts are delivered as events on the file descriptor
e No need to recompile kernel
e E.g., uio_pcie_generic (<-- example driver, there are others)

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.osadl.org/fileadmin/dam/rtlws/12/Koch.pdf

25

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.osadl.org/fileadmin/dam/rtlws/12/Koch.pdf

Key ideas in DPDK

1. No system calls or interrupts - all polling

2. No kernel overheads in the data path
kernel involvement = ZERO

3. Multiple libraries supporting

a. Multicore affinity - core/thread pinning
b. Buffer management - packet buffers

c. Lockless queue management - using CAS

Q

Huge pages - reduces TLB pressure

Intel® DPDK Libraries

Customer
Buffer Management Application
Queue/Ring Functions Customer
— — i Application
Packet Flow Classification
Customer
Application

Environment Abstraction Layer

User Space

NIC Poll Mode Library

Kernel Space

-
Linux Kernel

e. Bulk/ burst throughput I/0 calls - amortize function call invocations (no syscalls here)

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2014-08-1/NET-2014-08-1 15.pdf

26

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2014-08-1/NET-2014-08-1_15.pdf

DPDK: High-level components

N
At this point, DPDK is a large framework which is
almost rebuilding the whole Linux networking
infrastructure in userspace for FAST packet
processing

Timer facility

NUMA-aware, flow-aware memory,

core-local allocators (memory

management)

3. Per-CPU ring management (notification
between CPUSs)

4, Debuggers

NA

X——Y

XusesY

Handle a pool of objects
using a ring to store
them. Allow bulk

Manipulation of packet
buffers carrying network
data.

ee——————"

rte_mbuf

Timer facilities. Based enqueue/dequeue and
on HPET interface that per-CPU cache.
is provided by EAL. _
() ;
rte_ring
rte_timer rte_mempool
Fixed-size lockless
FIFO for storing objects
() £ N in a table.
rte_malloc rte_eal + libc
- J . N
Allocation of named Environment abstraction

memory zones using
libc's malloc()

layer: RTE loading, memory

allocation, time reference,
PCI access, logging

Provides debug helpers

https://doc.dpdk.org/guides/prog_guide/overview.html

27

DPDK: Performance - setup

Figure 19: Test #10 Setup — Two Mellanox ConnectX-6 Dx 25GbE connected to IXIA

| S—
Hewlett Packard HPE ProLiant <A
& NVIDIA
_User ||Kerne)
w
| H
a b~
sl xia
gl |8 — T —
G ={Fon 1 o
\ Port 2
—he - :5-= Mellanox NIC’s Performance Report
! .
== with DPDK 20.05
EXN >
RAM acket Generator

Pretty cool document - gives you whole bunch of insights what is needed to get performance, guesses?

http://fast.dpdk.org/doc/perf/DPDK 20 05 Mellanox NIC performance report.pdf 28

http://fast.dpdk.org/doc/perf/DPDK_20_05_Mellanox_NIC_performance_report.pdf

Recap: netmap performance

§ $
12 tf - f
H § netmap on 2 cores s

netmap on 4 Cores

netmap on 1 core e
L|nUX/pktgen O

FreeBSD/netsend

T

2 2.5

0.5 1 1.5
Clock speed (GHz)

1 core (the blue line), hits 14 Mpps at ~1GHz
So, let's extrapolate, top of the line CPU frequency ~2-3 GHz = 14 x {2, 3} = {28, 42} Mpps

Right?

29

DPDK: Performance

DPDK 20.05 Single Core Performance
Frame-Rate by Frame Size

Tivo Mellanox ConnectX-6 Dx 100GbE Single Port
Insane performance 300

2 250) W Single Core

Q.

S 200 ~ ;

= «=(==100GbE Line Rate
e 80 Mpps/ core e .. B

©

-4 =Q=200GDbE Line Rate
e 33 cycles/ packet @ 100 79.02 ‘

2 50 W 23.9 18.78

= l . 58.07 [l S R

B —— o8
0 - S
64 128 256 512 1024 1280 1518
Frame Size [B]
Frame Size (Bytes) Frame Rate Line Rate Line Rate Throughput CPU Cycles per
(Mpps) [200G] (Mpps) [100G] (Mpps) (Gbps) packet
NOTE: Lower is Better

64 79.02 297.62 148.81 40.459 33
128 74.99 168.92 84.46 76.789 33
256 58.07 90.58 45.29 118.923 30
512 41.9 46.99 23.50 171.623 31
1024 23.94 23.95 11.97 196.131 33
1280 18.78 19.23 9.62 192.342 32 30
1518 15.78 16.25 8.13 191.638 34

Upcoming DAS-6 VU Supercomputer

ASCI Homepage

am B ASTRON
ti‘b m L 'fuoem(be

N7/ O

e DAS-6 has 100 Gbps Ethernet
e We arejust finalizing the configuration now
e It should be up and operational in a few months time

Want to experiment, and generate 148 Mpps?;) Come talk to us!

MTCP: Scalable User Space TCP Stack

mTCP: A Highly Scalable User-level TCP Stack for Multicore Systems

EunYoung Jeong. Shinae Woo. Muhammad Jamshed, Haewon Jeong
Sunghwan Thm*, Dongsu Han. and KyoungSoo Park

KAIST *Princeton University

Abstract

Scaling the performance of short TCP connections on
multicore systems is fundamentally challenging. Although
many proposals have attempted to address various short-
comings, inefficiency of the kemel implementation still
persists. For example. cven state-of-the-art designs spend
T0% to 80% of CPU cycles in handling TCP connections
in the kemel, leaving only small room for innovation in
the user-level program.

This work presents mTCP, a high-performance user-
level TCP stack for multicore systems. mTCP addresses
the inefficiencies from the ground up—from packet 'O
and TCP connection management to the application inter-
face. In addition to adopting well-known techniques, our
design (1) translates multiple expensive system calls into a
single shared memory reference, (2) allows efficient flow-

also critical for backend systems (e.g.. memcached clus-
ters [36]) and middleboxes (e.g.. SSL proxies [32] and
redundancy elimination [31]) that must process TCP con-
nections at high speed. Despite recent advances in soft-
ware packet processing [4,7.21, 27, 39]. supporting high
TCP transaction rates remains very challenging. For exam-
ple. Linux TCP transaction rates peak at about 0.3 million
transactions per second (shown in Section 5). whereas
packet 1/0 can scale up to tens of millions packets per
second [4.27.39].

Prior studies attribute the inefficiency to either the high
system call overhead of the operating system [28,40.43]
or inefficient implementations that cause resource con-
tention on multicore systems [37]. The former approach
drastically changes the I/O abstraction (e.g., socket API)
to amortize the cost of system calls. The practical lim-

Aroabs of caach oa 1 29 G abaas e

https://www.usenix.org/system/files/conference/nsdil4/nsdi14-paper-ieong.pdf

32

https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf

MTCP: Scalable User Space

Stack

mTCP: A Highly Scalable User-level TCP Stack for Multicore Systems

EunYoung Jeong. Shinae Woo. Muhammad Jamshed, Haewon Jeong
Sunghwan Thm*, Dongsu Han. and KyoungSoo Park

KAIST

Abstract

Scaling the performance of short TCP connections on
multicore systems is fundamentally challenging. Although
many proposals have attempted to address various short-
comings, inefficiency of the kemel implementation still
persists. For example. cven state-of-the-art designs spend
T0% to 80% of CPU cycles in handling TCP connections
in the kemel, leaving only small room for innovation in
the user-level program.

This work presents mTCP. a high-performance user-
level TCP stack for multicore systems. mTCP addresses
the inefficiencies from the ground up—from packet 'O
and TCP connection management to the application inter-
face. In addition to adopting well-known techniques, our
design (1) translates multiple expensive system calls into a
single shared memory reference, (2) allows efficient flow-

*Princeton University

also critical for backend systems (e.g.. memcached clus-
ters [36]) and middleboxes (e.g.. SSL proxies [32] and
redundancy elimination [31]) that must process TCP con-
nections at high speed. Despite recent advances in soft-
ware packet processing [4,7.21, 27, 39]. supporting high
TCP transaction rates remains very challenging. For exam-
ple. Linux TCP transaction rates peak at about 0.3 million
transactions per second (shown in Section 5). whereas
packet 1/0 can scale up to tens of millions packets per
second [4.27.39].

Prior studies attribute the inefficiency to either the high
system call overhead of the operating system [28,40.43]
or inefficient implementations that cause resource con-
tention on multicore systems [37]. The former approach
drastically changes the I/O abstraction (e.g., socket API)
to amortize the cost of system calls. The practical lim-

Aroabs of caach oa 1 29 G abaas e

https://www.usenix.org/system/files/conference/nsdil4/nsdi14-paper-ieong.pdf

A bit of
specialization

33

https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf

What is the problem that mTCP is solving?

Building on from MegaPipe, focus is on small, short-lived connections

1. Do multi core scalability (MegaPipe does it)
2. No new radical API (Limitations of MegaPipe)
3. No kernel modification(Limitations of MegaPipe)

Why in user space? We have seen some arguments for packet processing

Expensive syscall
Metadata/data copies
Kernel environment

Generality vs specialization argument

34

What is the problem that mTCP is solving?

(recap) Challenges with the kernel stack
1. Locality: SO_REUSE and split among cores
2. Shared fd space : decouple fd
3. Inefficient packet processing (netmap)
4, Syscall overheads (batching)

Previous works improve, but still not quite.

CPU Utilization

20%
/ | OKernel DPacketl/O BTCP/IP M Application |

Linux-2.6 Linux-3.10 MegaPipe mTCP

Between all the packet processing kernel, and
TCP/IP - there is very limited number of CPU
cycles are left for the application

Kernel consumes 80% of CPU cycles

35

What is the problem that mTCP is solving?

(recap) Challenges with the kernel stack
1. Locality: SO_REUSE and split
2. Shared fd space
3. Inefficient packet processing (netmap)
4. Syscall overheads

Previous works improve, but still not quite.

Research question: we have seen userspace packet
I/0 doing 10s million packets/sec in userspace?
Can we do the same with the TCP stack (with
sockets) implementation?

9]

—Relative Scale

o
i

w

—e—Transaction Rate /

i

[\

@37

Relative Scale

0——/

[a—

1.7

1.00 0.96,

o

Not all cycles are spent equally

Linux-2.6 Linux-3.10 MegaPipe mTCP

Transactions/sec (x 10°)

36

MTCP basic ideas

® TCP stack implementation in userspace

- Flexibility and easy of development and use
- Specialization of TCP - common options, fast path

® |Leverage packet processing frameworks
to deliver performance

- Uses packet shader (similar idea as netmap)
- 10s million packets/sec in user space

® Multi-core scalability

- Per-application thread design
- Transparent batching of events and packet I/0

Application process Application process
USer [Thread 0 |[Thread 1 || | /| [Threado [\ threaa 1][]
Space T . —
accept () epoll wait () mt"p—;‘“‘pt)thp_epoL'._wait()
[| | 1 t
L L | I mTCP sockgt mTCP epoll l
| BSD socket Linux epoll 7 3 7
¥ ' L1 mTCP || [mTCP
thread 0 thread 1
Kernel Kernel TCP stack

Usgr-level TCP stack

ixgbe driver

“level packet I/O library

Linux

mTCP’s approach

TCP
implementation

MTCP: Packet Processing Improvements

Key challenges (beyond what we discussed previously):

1. DPDK does polling - waste of CPU cycles
2. Netmaps allows select/epoll on file descriptors, but integrated with kernel

MTCP does its own implementation of select on TX/RX queues (not files)

e ps select(queues, timeout);

o Returns immediately with packets, if there are

o Otherwise, wait for events from the kernel

e Not integrated with the Linux file/event management system to avoid overheads

e mTCP's underlying PS engine also support packet batching

o Amortize for DMA, IOMMU costs (and other associated architectural costs)

38

MTCP: Userlevel TCP Stack

i App. buffer Application
e Canithave zero-thread TCP model? pplication__|[App.
. . , User-level socket ~ —— Thread 0
o Means - can there be no active threads in Event ol -
i ? [(e.g. write queue)
the mTCP Ilbrak:y. - Shared TQP buffers
o Answer: No, why? | mTCP
g | " mTCP — \/_I Thread 0

App. 1

e Thethread model:1:1 mTCP:app_thread

o Shared TCP buffer, access only via using the job and events queues
o Internal I/0 and event queues, supporting queueing and batching

e Application and mTCP threads

All data structures (file descriptors, TCP state information) partitioned between cores
Threads pinned together on one core, and RSS configured to deliver packet there
Lock-free data structures using single producer/single consumer queues

Each core has its own memory allocator and caching

O O O O

39

TCP walk through

1. Look up TCP control block (TCB) (see RFC 793)

2. Ifitisan ACK for SYN - then putitin the

accept queue

Process a bunch of TCP packets

Queue event and wake up process

5. App get multiple events in a single epoll
notification

6. Write multiple responses (no context switch)

Enqueue TCB in the write queue for processing

8. Packet transmission

W

~

Application

£6-
19

5
Socket API accept() epoll wait()

1

Pl
Accept Event (4
2) queue queue

W -

connect() write() close()

4
Connect Write Close
queue (7)] queuc queue
-
o (B

Packet Imnd’;ej
3)
(/4 - I I

) Interpal event queue]

Il

| TX manager
Controllist — [s [A | FA |
ACK list —{ | | |
Datalist | [W]

No global queues, all core local, no locking. mTCP offers the same BSD/TCP socket semantics

e socket — mtcp_socket
e send — mtcp send
e poll — mtcp poll

40

Cache Alignments Cache line (648) DRAM

struct tcp_state (-
{ I
e seq_num CPU struct
+ ack un Cache | N
e src_port struct
e dst port
e tep state P
}s

Recall:
e CPU caches have cache lines of certain size : 64 bytes (typically)
e That s the unit of data transfer between the CPU cache and DRAM

So you want to align your tcp_struct on the cache line size
e Group together frequently accessed items

For example ...

struct tcp_state { 9x0000
// 56 bytes of data

uint32 _t process id; // +4B => 60B

uint32 _t sequence _num; // +4B => 64B OXx0040
uint32_t ack _num;// +4 bytes => 68B

; 0Xx0080

Here in this case, due to the unfortunate ordering in which the struct fields are defined, seq
and ack number happen to lie on different cache lines

However, often they are processes together. Hence, it makes sense to pack them on the same
cache line by reordering their definition order

In the Linux kernel you see many such examples ...

For example ...

struct tcp_state { 0x0000 struct tcp_state {

// 56 bytes of data // 56 bytes of data

uint32_t process_id; // +4B => 60B uint32_t ack _num;// +4 bytes => 60B
uint32 t sequence _num; // +4B => 64B 0x0040 uint32 t sequence _num; // +4B => 64B
uint32_t ack _num;// +4 bytes => 68B uint32_t process_id; // +4B => 68B

; 0Xx0080 ;

Here in this case, due to the unfortunate ordering in which the struct fields are defined, seq
and ack number happen to lie on different cache lines

However, often they are processes together. Hence, it makes sense to pack them on the same
cache line by reordering their definition order

In the Linux kernel you see many such examples ...

43

Two TCP specific optimizations

1. 3types of the tx queues: control, ACK, and data
a. Small, short-lived TCP connection are control message heavy (SYN/ACK)

b. Priority to the “control” packets, when transmissing : (priority order)
Control (SYN/SYNACK)— ACK — data packets

2. TCP cache

a. Lot of new connection mean: lots of new socket descriptors, buffers, TCBs, queues,
pointers, structure allocation
b. Proposes a pre-allocated pool of structures per thread and reuse it constantly

44

What all of this buys you?

‘ --@- Linux —@® -REUSEPORT -#4- MegaPipe —0—mTCP|

30 - 15
N OLinux BREUSEPORT B Multiprocess MmTCP < ol
: 25 4]2 4
N’ : e
g 20 1 g
2 = 89
il :
2 10 | Rl g
] — -
= ® e || 2 saee
g 5 1 3 4 P S -2
@) !_I:J e BT e
at T T T T (J 4 - B 5 o -
1 2 4 6 8 6 1 2 4 8
Number of CPU Cores Number of CPU Cores

e Significant performance improvements over previous efforts
e Milestone work: proof of concept of an efficient TCP stack in userspace
o Implements all known optimizations

o End-to-end batching : packet, events, I/0 calls 45

Limitations / Considerations for mTCP

Limited memory protection between the shared mTCP library and application
e The idea of “fate-sharing”

Change in application semantics if they attach to specific “file descriptor”
semantics (not all Linux /0O are supported on the fd)

By passing all kernel services - packet scheduling, firewalling, routing

Limited number of TX/RX queues, and no unlimited multi-application support

46

Conceptually

Your ANP netstack is very close to what mTCP has build

e Exceptyou are not using a user space packet processing library but the
Linux TUN/TAP infrastructure

e Think about...
o How do you allocate a file descriptor for the socket call ?
o Areyou doing something to deliver better multi core scalability?
o Areyou doing something for better cache alighnments?
o What is your threading model?

Recap

Netmap
DPDK
Linux 2.16
Linux 3.19
MegaPipe

mTCP

Accept
queue

Shared

Per-core

Per-core

Per-core

Locality API Event | Packet /0
handling
X X Syscall Batched,
events
Yes X X Polling
None BSD Syscalls | Per-packet
sockets
None BSD Syscalls | Per-packet
sockets
Yes Iwsocket | Batched | Per-packet
Syscalls
Yes mTCP Batched Batched
sockets | Funcalls

Kernel
modification

App. changes

X Only the NIC
driver
X Support from
the NIC driver
No No
SO _REUSEPORT No
Yes, new API Yes
Minimum, mTCP No
sockets (multiqueue)

48

What you should know from this lecture

S T

What are packet processing frameworks

What are the key innovations in DPDK and Netmap

What is good or bad about the kernel space Linux networking stack
What is good or bad about user space networking stacks

What is difference between mTCP and Megapipe approaches

General concerns, tricks, and design choices for userspace networking

stacks - batching, locality and affinity, APls and internals

49

Further reading

1. Userspace Networking with DPDK, https://www.linuxjournal.com/content/userspace-networking-dpdk

2. Understanding DPDK, https://www.slideshare.net/garyachy/dpdk-44585840

3. Introduction to DPDK: Architecture and Principles,
https://blog.selectel.com/introduction-dpdk-architecture-principles/

4. DPDK: Multi Architecture High Performance Packet Processing,
https://www.slideshare.net/MichelleHolley1/dpdk-multi-architecture-high-performance-packet-processing-7291172

6

50

https://www.linuxjournal.com/content/userspace-networking-dpdk
https://www.slideshare.net/garyachy/dpdk-44585840
https://blog.selectel.com/introduction-dpdk-architecture-principles/
https://www.slideshare.net/MichelleHolley1/dpdk-multi-architecture-high-performance-packet-processing-72911726
https://www.slideshare.net/MichelleHolley1/dpdk-multi-architecture-high-performance-packet-processing-72911726

