Advanced Network Programming (ANP)
XB_0048

Multicore scalability

Animesh Trivedi
Autumn 2020, Period 1

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

Layout of upcoming lectures - Part 1

Sep 1st, 2020 (today):
Sep 3rd, 2020 (this Tuesday): Metworkins-corcepts{eontted)

. L P, NAPI
Sep 8th, 2020 : HrwnretworkiREtternals SoftIRQ (TH, BH)
Sep 10th 2020: Multicore scalability -

Locking order
SKB
Sep 15th 2020: Userspace networking stacks

Zero-copy stacks
Per-packet/byte overheads

Sep 17th 2020: /ntroduction to RDMA networking

The System Model

Interrupts

Processor

1
Cache

Memory-I/O Interconnect

||

||

Main Vo e} Vo
memory controller controller controller
(= ‘L B 159 oF ‘L 5 Y I [x /
m—— — Graphics Network
Disk Disk output

FIGURE 6.1 A typical collection of I/0 devices. The connections between the IO devices,
processor, and memory are historically called buses, although the term means shared paralled wires and most
/O connections today are closer to dedicated serial lines. Communication among the devices and the pro-
cessor uses both interrupts and protocols on the interconnect, as we will see in this chapter. Figure 6.9 shows
the organization for a desktop PC.

REEVALS'EDEPREINATHEN G

COMPUTER
ORGANIZATION
AND DESIGN

THE HARDWARE / SOFTW ARE INTERFACE

DAVID A. PATTERSON
JOHN L. HENNESSY

The processor is the primary workhorse of the system - executes a series of instructions per cycle
Have a number of cycles/second — roughly determined by the CPU frequency

The year is 2003 eknomnon ncts <0 e P

Processor Frequency Scaling Over Time

10000
3162
1000

316

g
£
.
E

100

32

https://mobile-review.com/print.php?filename=/articles/2003/smartphones-en.shtml

CPU DB: Recording Microprocessor History, https://queue.acm.org/detail.cfm?id=2181798 (really cool read!)
https://www.deviantart.com/darhymes/art/Back-to-the-Future-lcon-276270476

https://queue.acm.org/detail.cfm?id=2181798
https://www.deviantart.com/darhymes/art/Back-to-the-Future-Icon-276270476

Dennard’s Scaling (1972)

Power =(N xCx FxV?2)+ (Vx| (leakage))

N = transistors (following Moore’s Law)

C = Capacitance (decreases for small transistors)

F = Frequency (increased, small transistors — low delay)
V = Operational voltage

| = Leakage current (mostly constant)

For a given power budget, we continue to push for

more transistors within a given power budget
e frequency scaling
e more caches
e more instructions

b |,
= &4
IRCU '_gVCIElY NEWS

The Impact of Dennard's
Scaling Theory

The year is 2003 eknomnon ncts <0 e P

i
o
e
iy 4 Processor Frequency Scaling Over Time

10000
3162
1000

316

clock frequency (MHz)

100

32

But then something happened here, and all
our dreams of 10 GHz CPU were shattered ;)

CPU DB: Recording Microprocessor History, https://queue.acm.org/detail.cfm?id=2181798 (really cool read!)

https://www.deviantart.com/darhymes/art/Back-to-the-Future-lcon-276270476

https://queue.acm.org/detail.cfm?id=2181798
https://www.deviantart.com/darhymes/art/Back-to-the-Future-Icon-276270476

Dennard’s Scaling (1972)

Power =(N x Cx Fx V2) +/(V x I (leakage))

Slowing down the of Dennard’s scaling

L
o
)
(e}
o Processor Frequency Scaling Over Time

Around 2003-2004 years : 65 nanometer 1000

3162

e Leakage current become dominant
Cannot increase voltage (TDP)

1000

% 316 } .-,;A"
T . g Fasga
Power dissipation become : 1, 8
. . . S 100 At S :Lf;enl
challenging in a small chip o adEF
= =
fogE " l'd?! ﬁ i =" 2015

Hence, frequency scaling stalled, but the number of
transistors were still increasing ...

Welcome to the world of Multicore Processing

End of the Line = 2X/20 years (3%/yr)

Amdahl's Law = 2X/6 years (12%/year)
I End of Dennard Scaling = Multicore 2X/3.5 years (23%/year) ¢

CISC 2X/2.5 years RISC 2X/1.5 years
(22%/year) (52%/year)
100,000

§ 10,000

g

= 1,000

0

>

o

2 100

<

£

e

e

-} 10

o

1980

1985

1990 1995 2000 2005 2010 2015

CPU

https://drivescale.com/2020/01/mulitcore-crisis/

42 Years of Microprocessor Trend Data

T T T ry

7 L |
1o l 3 Transistors
6 o oa (thousands)
108 | % i
TS Yl ;
10° | 1;:4 { Single-Thread
N «- **® 7| performance 3
10t F ok ‘."}‘ | (SpecINT x 10%)
i | o :{::c;\ialz*“‘ e Frequency (MHz)
°
a oy . Typical Power
102 | Raae 2. = ;"- v o ";',v;;\w"f“f :.: - (Watts)
1 A - " v Yoy Y: i 0:;‘* Number of
100 u . ® v T LD i 7| Logical Cores
2 » v ¥ YoV v % *
100 - s * e B s W s menonn oo .
L 1 1 L
1970 1980 1990 2000 2010 2020
Year

Original data up o the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://drivescale.com/2020/01/mulitcore-crisis/

Networking speed are growing exponentially ...

ETHERNET SPEEDS

v 1.6TbE

=

T 200GDE | v 800GbE
4006 100GbE ‘200ch

Q 100G

& 406 10GbE 2‘5(;;;06[)5 i @ Ethernet Speed

- 10G | O 40GhE =)

) © s60e ! _J Possible Future Speed
-4 ik © 2500e

& 16

i 100Mb/s

c Ethernet .

5 10OM =obss I

Ethernet
10M +—Q
1980 1990 2000 2010 2020 2030 .

Standard Completed

https://ethernetalliance.org/wp-content/uploads/2018/02/Ethernet-Alliance-Roadmap-Panel-OFC-2018.pdf

https://ethernetalliance.org/wp-content/uploads/2018/02/Ethernet-Alliance-Roadmap-Panel-OFC-2018.pdf

Three Phases of Evolution

1. When Moore's Law was valid (pre 2005)
a. CPU was faster than the network
b. Can (mostly) cope up with the demands of commodity network processing (not HPC!)
c. CPU performance doubled every 18 months < important

2. When frequency scaling slowed down, manycore era (2005 - 2015)

a. Ethernet continued to improve (1 — 10 — 40 Gbps)

b. Innovation in the networking stack: Jumbo frames, interrupt management, stateless
offloading (— all beneficial for a single core, single connection processing!)

c. Many core scalability efforts

3. Now CPU performance is not increasing dramatically (2015 - now)
a. Performance delivery by specialization : hardware and software

10

Manycore Scalability

CPUO CPU1 CPU2 CPU3

What are the high-level problems here with multicores

e Synchronization: all of them can read and write the same data structure
concurrently
o Yes, you can take locks, mutexes, but then you stall the other core
e Cache pollution: A poorly designed data structure can lead to what is known as
(a) cache line ping-pong; (b) shared cache pollution
o Need a careful data layout and alignment

11

Manycore Scalability : Counter Example

CPUO CPU1 CPU2 CPU3

lock

[long total_interrupts; J

unlock

12

Manycore Scalability : Counter Example

CPUO CPU1 CPU2 CPU3

lock

A
[long total_interrupts; }

unlock

13

Manycore Scalability : Counter Example

struct intx { CPUO CPU1 CPU2 CPU3

1 0; . .
ong core ‘ ‘ ‘ ‘ They all write without

long corel; .
long core2; taking locks

ElE=s
J

sum = rlock(core® + corel + core2 + core3);

What else can possibly go wrong here? ;)

14

Manycore Scalability : Counter Example

struct

}s

long
long
long
long

intx { i CPUO

coreQ; !
corel; | ‘
core2; .

CPU1

|

CPU2

|

cores; . core@

corel

core2

CPU3

|

0x00 0x08 0x10

64 byte cache line size

coreo I corel I core2 I core3

core4

L1/L2 caches

Manycore Scalability : Counter Example

struct intx { CPUO CPU1 CPU2 CPU3

long coreo;
long corel; ‘ ‘ ‘ ‘
long core2; x///ﬁ\\\\\ ‘///~\\\\\ x///“\\\\\

Ts yal

Whichever core needs to access the counter (cache line ping-pong)
- L1 cache miss
- Fetch the ENTIRE cache line

coreo I corel I core2 I core3

64 byte cache line size

16

Manycore Scalability : Counter Example

struct intx { CPUO CPU1 CPU2 CPU3

long coreo;

uint8 t _pade[56];
long corel;
uint8_t _padl[56];

long core2; corel core2

uint8_t _pad2[56];

long core3;
s

core3

64 byte cache line size

Manycore Scalability

CPUO CPU1 CPU2 CPU3
Goal:

+ Minimize synchronization
+ Minimize cache pollution
+ Minimize shared data structures

How should NIC and CPUs coordinate network packet processing to deliver
e Highest bandwidth

e Lowest latency
e Millions of small packet processing per second
while not stepping on each others’ toe.

ideas?

18

Let's start from the beginning

What is the first thing NIC does when receiving or sending packets? Interrupts

? which CPU should get an interrupt?

PP R

O JCJC)C)]

Incoming network packets

19

Typically, the cpu0 is what gets all the interrupts

Why?

Because the basic assumption that it is the CPU core that is always on

Easy to configure
In booting cpu0 comes up first and bring other cores up
Generally, coreQ is a bit special

CPU1 CPU2 CPU3

11200026

CPUO handling majority of interrupts

1: 61281329

o & o e e a8 o e e a8 o e e
© © © © © © O ©o o o o o ©°o
(1= R — R — I

I0-APIC-

I0-APIC-

I0-APIC-

I0-APIC-

I0-APIC-

I0-APIC-

I0-APIC-

edge
edge
edge
edge
edge
I0-APIC-level
edge
edge
I0-APIC-level
I0-APIC-level
I0-APIC-level

I0-APIC-level

timer
18042
floppy
parport0
rtc
acpi
18042
ide0
iocoO
vmci
etho

ethl

20

atr@atr:-$ service irgbalance status
irgbalance.service - irgbalance daemon
Loaded: loaded (/lib/systemd/system/irgbalance.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2020-08-25 11:37:27 UTC; 13min ago

Main PID: 831 (irgbalance)
2 (limit: 4915)

° Tasks:
n e r r u a a n c I n CGroup: /system.slice/irgbalance.service
L-831 /usr/sbin/irgbalance --foreground

Aug 25 11:37:27 atr systemd[1l]: Started irgbalance daemon.

Linux has a framework (service) called : irgbalace
Tries to distributed interrupt load across CPU cores, you can configure it to

1. Balance interrupt once or periodically (static vs dynamic)

2. Tell which interrupts should go to which CPU (affinity)

3. Tell which CPUs should not handle which interrupts (!affinity)
4, Which interrupts should not be balanced (manual pinning)

How do you assign an interrupts to CPU cores?

How do I find out which NIC has which interrupt numbers?

21

Interrupt Investigation

:~$ ifconfig
: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.1.161 netmask 255.255.255.0 broadcast 192.168.1.255
inet6 fe80::a00:27ff:fe25:9e74 prefixlen 64 scopeid 0x20<link>
ether 08:00:27:25:9e:74 txqueuelen 1000 (Ethernet)
RX packets 395305 bytes 596420226 (596.4 MB)
RX errors © dropped © overruns 0 frame 0
TX packets 22559 bytes 1736302 (1.7 MB)
TX errors 0 dropped 0 overruns @ carrier 0 collisions 0

o: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0

inet6
loop

::1 prefixlen 128 scopeid 0x1O<host>
txqueuelen 1000 (Local loopback)

RX packets 26 bytes 2202 (2.2 KB)

RX errors © dropped © overruns 0 frame 0

TX packets 26 bytes 2202 (2.2 KB)

TX errors 0 dropped 0 overruns @ carrier-0 collisions ©

$ cat /sys/class/net/enp0s3/device/irq

atr@atr:

0
1
8
9
12
14:
158
18:
19
20
21
22

$ cat /proc/interrupts

CPU1
0

0

0

0
156
0
902
1

945
0

I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I10-APIC

2-edge
1-edge
8-edge
9-fasteoi
12-edge
14-edge
15-edge
18-fasteol
19-fasteoil
20-Tasteol
21-fasteoi
22-fasteoi

A single device can have multiple interrupts assigned to it for various purposes

timer

18042

rtco

acpi

18042

ata piix

ata piix
vboxvideo
enp0s3
vboxguest
ahci[0000:00:0d.0]
ohci hcd:usbl

22

Figure out details about interrupts

:~$ cat /proc/irq/
12/ 9/
13/ default _smp affinity
14/
15/

NIC interrupts at cpu

For every interrupt there is a file: /proc/irq/irq_number/smp_affinity that tells the shows the
CPU bitmask mask where interrupts can go
e Ina 8 core system if you have : OxFF (all CPUs can get interrupt)
o OxFO (only cpus 4-7 are allowed, not 0-3)
o 0x11 (only cpu 0 and 4 are allowed)

23

Lets try to change IRQ affinity

cat /proc/interrupts

CPU1
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC

root@atr:
1

root@atr:
2

root@atr:
root@atr:
0]

2-edge
1-edge
8-edge
9-fasteoi
12-edge
14-edge
15-edge
18- fasteoi
19-fasteoi

timer
18042
rtco

acpi
18042

ata piix
ata piix
vboxvideo
enp0Os3

cat /proc/irq/19/smp affinity

echo 1 > /proc/irq/19/smp affinity
cat /proc/irq/19/smp affinity list

cat /proc/interrupts

CPU1

I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC
I0-APIC

2-edge
1-edge
8-edge
9-fasteoi
12-edge
14-edge
15-edge
18-fasteol
19-fasteoi
20-fasteoi
21-fasteoi
22-fasteoi

timer
18042
rtco

acpi
18042

ata piix
ata piix
vboxvideo
enp0s3
vboxguest

ahci[0000:00:0d.0]
ohci _hcd:usbl

24

Step 2: What happens then?

Recall we talk about the rings (or queue) where the outgoing and incoming packets are
queued while they wait for processing from the NIC
e Let's say we have mapped that all interrupts should go to all CPUs

e Now we have incoming packets

After getting interrupts all of them try to run the interrupt handler, and then?

[

I D I SN G B D

Incoming network packets

Device Driver

interrupts

|
| TX/RX ring buffers
I

hardware

25

Step 2: What happens then?

CPUO CPU1 CPU2 CPU3
- \ b 4 -V

-
-

S~< * e -=" interrupts

C JC) C I
Incoming network packets @ .
TX/RX ring buffers

26

Step 2:

What happens then?

[

J L J I

Incoming network packets

PPH SRR o

The ring data structure needs to be protected by locks
All CPUs trying to access to the same data structure
Lots of lock contention — Loss in performance !

ideas?

27

Solution Multi-Queue NICs (and other devices)

CPUO | | CPUT | | CPU2 | CPU3 |

OREROG O

Multiple TX/RX rings

28

Solution Multi-Queue NICs (and other devices)

CPUO | | CPUT | | CPU2 | CPU3 &

AR

atrégemuss20: ™%

Multiple TX/RX rings

uwtr@atr-XPS-13:-$ 1ls /sys/class/net/wlp2s0/queues/

atr@atr-XpPs-13:-s |}

S S L Ll

This way no contention between CPU cores, no locking and stepping on each other toe’s 29

Solution Multi-Queue NICs (and other devices)

Caution: even though | am showing 4 queue pairs for 4 CPUs, in reality a NIC can have any
number of TX and RX queues - 2, 4, 8, 16, so

e Multiple CPUs can share TX and RX queue

e Each queue (TX and RX) could work independently with their interrupts

e Multiple TX queues might share RX queues (n:m) mapping

Here it is 1:3 mapping (RX:TX) where CPUZ2 does not have a TX or RX queue

00 © ©

30

Next Challenge: which packet go to which queue?

Lovvvvvebevrv v tbverrr e brvearald

I CPUO CPU1 CPU2 CPU3

OO0 OO OO OO

ideas???

Version | ML | Type of Service Total Length
Identification Flags | Fragment Offset

5 | Tmetalive | Protocol =6 Header Che cksum
g Source Address
: Destination Address

§3 Options | Padding ¢

Source Port [Destination Port
E Sequence Number
Acknowsledgment Number
> ERrTe Wadon
6|K[H|T|N|N
Checksum I Urgent Pointer
< TCP Options | Padding o

t_,*i
o Y s Y

Incoming network packets
31

Strategy 1: Random assignment

(] Connection 1

QO O @) @) Will it work? YES
a 4 3,6

15 ' ' + Simple and easy to implement
' + Load balanced at the packet-level

- What happens if packet 1,3,5 belong
to connection_1, and 2,4,6,7 to
connection_2?

Processing is distributed all over the place
locking, poor cache management

W B2

&7 e (5) 4 (3) @27 (1]

No connection based management

Incoming network packets

!

32

What is Poor Cache Locality Mean

1. Process incoming packet

2 DRAM

2. Cache miss, bring the
packet in the cache /

W
cpu cache
o/

3. SoftIRQ processing

4. |P processing

5. TCP processing

6. Process recv() processing

Done all in cache

cache

What is Poor Cache Locality Mean

1. Process incoming packet DRAM
2. Cache miss, bring the
packet in the cache

cache cache
5 J

3. SoftIRQ processing 4. |P processing
5. TCP processing 6. Process recv() processing

Lots of unnecessary cache misses, write backs (blue lines), and hence, poor cache performance

We want to avoid this and pick and stick with which core is going to do packet processing for which
packets, TCP connections, IP connections, etc. (flow-locality)

Strategy 2: Receive Side Scaling (RSS)

How do we identify a TCP flow?

4-Tuple {source_ip, destination_ip, source_port, destination_port}

Execute a “hash” function over 4 values

e Hash function: deterministically map
a set of values to another set, e.g.,
modulo (%) is an example hash function

e Same input -> same output

e Very low probability that two different
values map to a same output hash

IP Header

Locvvrvebevrr v bvervrvebervarad

Version | ML | Type of Service

Total Length

identification Flags |

Fragment Offset

Time to Live | Protocol =6

Header Checksum

Source Address

Destination Address

P Optiens

| Padding

<h

TCP

Source Port]

Destination Port

Sequence Number

Acknowledgment Number

U|A[P|R|S|F
R|C[S|S|Y]|!I
G|K[H|T|N|N

Data
Offset

Window

Checksum

Urgent Pointer

¢ TCP Options

| Padding

? TCP Data

LA, LA,

Hash function output is a the number of CPU core or queue number

35

Strategy 2: Receive Side Scaling (RSS)

CPUO CPU1 CPU?2 CPU3 A simple hash calculation :
IP addresses are 4 bytes
OO O O O + Port addresses are 2 bytes

1,3,5 \ 46,7 Add all them up as a number then

Destination queue = sum % #queue
RX_queue_number = hash('192.168.254.30', '192.168.254.1', 65400, 4321) %

number_of_queues

Now, packets 1,3,5 will be put to the same
core, and 2,4,6,7 go to another

e Intra connection parallelism is _HARD_

W B2

&7 e (5) 4 (3) @27 (1]

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garvcplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

36

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garycplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

RSS Advantages

Making sure that packets belonging to a same connection go to the same CPU

o Early decision on which CPU processing should be (in hardware) - early multiplexing
o Typically that CPU will have all the other data associated with that connection in the cache

as well - cache locality < very important !
o That CPU also knows that no other CPU can process packets for this connection - hence,

no need to take locks
o Generally, good performance

However, it does not a bit of support from the network card to be able to run
a hash function for all incoming packets, what if you don’t have such hardware?

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garvcplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

37

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garycplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

Software Mechanism: RPS: Receive Packet Steering

i

EniEn
i) i)

i

softirq

softirq

softirq

softirq

1,3,5

[2,4,6,7

interrupt interrupt interrupt || interrupt

Q0,007 Q5

Wi

73 e (5) 4 (3) @27 (1]

RPS has some advantages over RSS:
1. it can be used with any NIC
2. software filters can easily be added to
hash over new protocols
3. Does notincrease the interrupt rate

But, it does increase inter-processor interrupts
(IPIs) and notifications.

38

What about Application Processing?

app1 app1
CrtQ (CPU1] (CPU2 1 CPU3
T —
1 U j_r L
softirq softirq softirq softirq

e Applications can be scheduled on any core where they call recv()
e They can be moved around as well

e Then how do we make sure that packet processing also respects “application locality”

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garvcplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garycplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

RFS: Receive Flow Steering (RFS)

app1 app2

flow lookup table

v | (o) -

t ﬁ ﬁ t app1: core0

app2: core3

softirq softirq softirq softirq
2,4,6,7 1 1,35

/ G Y,
interrupt interrupt interrupt interrupt
Lhiﬂdlnu Lhiﬂdlnu LhiﬂdlﬂULhiﬂdlﬂu Looks up which core to schedule

data processing on

° https://www.kernel.org/doc/Documentation/networking/scaling.txt
° https://garvcplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

40

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garycplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

RFS: Receive Flow Steering

scheduled

app1 app2

flow lookup table

| (o) -—

11 ih T i app1: core0
appE-cores
softirq softirq softirq softirq app2: corel

1

J

/ @
interrupt | [interrupt | [interrupt || interrupt
interrup Interrup IMEETTHPL 1 INEertHp Looks up which core to schedule

data processing on

RFS can be implemented in software or hardware (if appropriate NIC supported is there)

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garvcplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

41

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garycplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

XPS: Transmit Packet Steering

A similar concern arises on the transmit side, which transmit queue to choose
to transmit a packet, why?

e Often there are n:m mapping between RX queue and TX queues, it makes

sense to pick the TX queue, where its associated RX queue is
o Why is this helpful?
e Data can be transmitted in softirq processing (with qdisc) processing
e General optimization for caching locality

Conceptually it works the same as RPS with a lookup data structure

atj@atr-XPS-13:-$ cat /sys/class/net/wlp2s0/queues/tx-2/xps_cpus

00
atr@atr-XPS-13:-$

42

Why you should consider RX:TX mappings

CPUO CPU1 CPU2 CPU3

1:1 mapping 1:2 mapping

Which core should cpul pick for transmission? cpuQ or cpu2

XPS dictate that you should pick cpu0, because it has the TX queue associated with the RX queue which is on CPU1.
And often in any network communication if you are transmission you are expecting to receive incoming packets -
response, ACKs

e So when you pick CPUO then the incoming packet will come to cpu1, which has all the connection state

e Ifyou pick cpu2 then the incoming packet will arrive on cpu3, hence missing out on the connection state

In short, it depends upon your system architecture and NIC queue mappings 43

RSS, RPS, RFS, and XFS

Questions

1. are they stateful or stateless offloads ?
2. do they help with per-packet or per-byte overheads?

44

RSS, RPS, RFS, and XFS

Questions

1. are they stateful or stateless ?
2. do they help with per-packet or per-byte overheads?

Linux tool: ethtool

zz:aa:bb:cc [m xx:yy:zz:aa:bb:cc]]
[proto N [m N]] [src-ip ip-address [m ip-address]] Adst-ip ip-address [W ip-address]] [tos N [m N]] [tclass N [m N]] [14proto N [m N]] [src-port N [m N]]
[dst-port N [m N]] [spi N [m N]] [l4data N [m N]]/[vlian-etype N [m N]] [\lan N [m N]] [user-def N [m N]] [dst-mac xx:yy:zz:aa:bb:cc [m xx:yy:zz:aa:bb:cc]] [action N]
[loc NJ |
delete N 1
Receive flow hash
Which protocol, headers Which queue?

Specific NIC vendors such Intel also offer their specific tools like Intel Flow Director.

45
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf

A bit of System Organization

Interrupts
Processor

\ Cache |
e e

Memory-I/O Interconnect
Main o o] (o]
memory controller controller controller
"_'J"_‘: <.'_"L":: ' \ p l <)
= RS Graphics / Network
Disk Disk output |

FIGURE 6.1 A typical collection of I/0 devices. The connections between the IO devices,
processor, and memory are historically called buses, although the term means shared parallel wires and most
/O connections today are closer to dedicated serial lines. Communication among the devices and the pro-
cessor uses both interrupts and protocols on the interconnect, as we will see in this chapter. Figure 6.9 shows

the organization for a desktop PC.

REE VI SIE DS PREINT NG

COMPUTER
ORGANIZATION
AND DESIGN

THE HARDWARE / SOFTWARE INTERFACE

DAVID A. PATTERSON
JOHN L. HENNESSY

46

Modern Servers

Important changes

e Multicore systems

e Integrated /0O lanes
o Ethernet locations

e NUMA vs SMP effect

o Symmetric Multi-Processing
o Non-Uniform Memory Access

And much more ...

CPU-1 cPU-2

—
DDR4 JCHO

@ cfgo

CH1 Intdl’ Xeon' CRISCSTI Intel’ Keor &
o E5-R600 v3 E5-26p0 v3

Prodict Family QP19.6 GT/s ProductiFam ly s
ICH3 4 E)

y } PCle* 3.0 x8 (16GB/s)

Riser Slot #3
PCle* 3.0 x8 (16 GB/s) _

Ethernet
Controller

PCle* 2.0 x8 (10 GB/s)

@. (Port 4) - SATA -6 Gbps

@ (Port 5) - SATA - 6 Gbps

o
o
o
on) /0 Module: o w
nnector(15W) = <) {
PCle* 3.0 x8 (16GB/s) w % DMI x4 (PCle* 2.0) (4 GB/s)
(=} —_ .
o x = Riser Sfot #2
g 3 al| |lece30x8 06
X 2 @) [
> o) PCle* 3.0 x16 (32
- o
8 o \) Riser Slot #1 Dual Port
) 0
2)[l | Intel 1 GbE or
=l
=
Q
2
o

Shared Mgmt

@ Port - 50/100

)

SATA RAID 5 Upgrade Key

N

(Ports 0:3) - SATA

6 Gbos
Intel’ C612

N
(Ports 0:3) - sSSATA
N Series Chipset
Dual Mini- LPC
SAS HD
—_— S

Video
[" B E'i Rear [0
Serial Port A
— m RJ45 External
-
A serial A Jumper
- DCD/DSR

Serial Port B

PCle* 1.0x1

‘

Internal Mount TPM (Option) DH-10 Internal
LPeUSB SSD 1GbE
(Option) 4—
Dedicated Management NIC
USB 2.0 (8)
Internal Dual Port Front | | Dual Port Front | | Stacked Triple é RMM4 Lite (Option)
Mount Panel Header Panel Header Port Back Panel
Type-A
USB 2.0(5,6) UsB30(1,4) | | USB30(235) Revil2
USB 2.0 (3) USB 2.0(10,13) uUsB 2.0(0,1,2)

https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys

-system-review/index.html

47

https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys-system-review/index.html
https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys-system-review/index.html

SMP vs NUMA : Example SMP Machine

T

Socket 0 . 2 s

cores | [2 [3 1. 6 || 7

This is a dual socket example LLC cache LLC cache

2.
3. (N 3.
[DRAI\/Ir - Memory 4= DRAM
’ Controller r
N J

l PCle connection

| E PR

Key property: memory is equidistant from all CPU cores and the NIC
e |t does not matter which core or memory to choose, because none of them is special
(all of them 3 hops away for every core) 48

SMP vs NUMA : Example NUMA Machine

Local memory (close) Remote memory (slow, further away)
2. (0 1 4 5|\ 4.
DRAM |—— Memory [| 2. Memory —“{ DRAM .
I Controller 2 3 6 / 3 Controller I
N — —>
LLC cache LLC cache

Key property: Memory and cores are not equidistant

e [t does matter which core or memory to choose, because some of them are closer than others
Distance to local memory for [0-4]: 2 hops, distance to remote memory [0-3]: 4 hops
How does it look for a single socket machine?

SMP vs NUMA

Local memory (close) Remote memory (slow, further away)
2. 0 1 4 51— 4.
DRAM |—— Memory 1. . 2. Memory —{(DRAMr
I Controller 2 3 6 / 3 Controller I
N I —>
LLC cache LLC cache
1\???/7
PCle connection ~ ® Interrupts
e DMA accesses
e Memory mapped I/0
e e Multiqueue mappings

Key property: Memory and cores are not equidistant

e [t does matter which core or memory to choose, because some of them are closer than others
Distance to local memory for [0-4]: 2 hops, distance to remote memory [0-3]: 4 hops
How does it look for a single socket machine?

application

7

SMP vs NUMA

Local memory (close) Remote memory (slow, further away)
2. 0 1 4 51— a.
DRAM |—— Memory 1. . 2. Memory —{(DRAMr
I Controller 2 3 6 / 3 Controller I
- I »—'
LLC cache LLC cache
1\???/7
PCle connection ° Interrupts
e DMA accesses
e Memory mapped I/0
e e Multiqueue mappings

Key property: Memory and cores are not equidistant

e [t does matter which core or memory to choose, because some of them are closer than others
Distance to local memory for [0-4]: 2 hops, distance to remote memory [0-3]: 4 hops
How does it look for a single socket machine?

Impact of SMP and NUMA Architectures

[application

)

> Intel® Xeon®

: N\ Intel® Xeon®
G—p Scalable Processor D ’4 Scalable Processor

Intel® Omni-Path Fabric

Typical 2S Cfonfiguration

e} 111
: 3x16 PCle*
1x 100G : 1x 100G

Intel® Omni-Path Fabric

NA

A w

Here are multiple concerns

Which CPU (socket) NIC is connected to?
Which CPU cores its interrupts and queues
mapped to?

Where memory for DMA is allocated?
Where application is processing networking
data?

Can you think of a solution for this dual-socket machine?

52

https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/purlev/intel-xeon-scalable-processors.html

https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/purley/intel-xeon-scalable-processors.html

Now do for these...:

Typical 4S Cross Bar Configuration

Intel® Xeon* Intel® Xeon®
Scalable Processor Scalable Processor
Intel’
UPI
fomixa + 333
i imerce20 1 | 3x16 PCle* i imetce20 1 [3x16 PCle*
§ e Clpeat 1 i Senss Chiesat_y
Intel* Xeon® Intel” Xeon®
Scalable Processor : Scalable Processor
Intel!
upPl
Typical 4S Config
Jomixa 2=
Intel* C620 3x16 PCle*
Series Chipset . .
Nopited et et Intel® Xeon
Conmection X722 Scalable Processor
Intel’
DDR4 DIMMs UPI
Optional
.| fomxa + 313
I intel'ce20 | 3x16 PCle* i
|
i
Intel® Xeon®
Scalable Processor o
Intel
uPI

ok

1DMIx4

uration
—>
>
Intel* Xeon* —

Scalable Processor [EEPEEEES

fome} £11

inel'c620 | |3x16 PCle*
Series Chipset

Intel® Xeon*
Scalable Processor

intel* ce20 1 3x16 PCle*

el* C620 3x16 PCle* H i
Series Chipset | Series Chipset |

Integrated Inket” Enermet
Comnection X722

Key DDR4 DIMMs

3x16 PCle*

1l

3x16 PCle*

229

I

Intel” Xeon® Intel* Xeon®
Scalable Processor | t l' Scalable Processor
nte
UPI
e
4.
-re Intel* Xeon* Intel* Xeon"
A Bl Scalable Processor ® Scalable Processor
>l B Intel
-+ uPI
-—p
—r
=Y Intel* Xeon® ¢ > Intel* Xeon"
Ml Bl S<alable Processor r Scalable Processor
S Intel
33 Fit UPI
s
R =
> = Intel* Xeon" Intel® Xeon®
Samm gl Scalable Processor Scalable Processor R e g
l—b Intel —
— Gt
*h
o g3 33 ! 11t
Intel® C620 3x16PCle* 1% 100G o | 3x16 PCle*
Series set Intel® Omni-Path :Ec:t_sc_h:n_c!_l
ntegrated intel” Exhernet Fabric$

Conmection X722

t Technology and Inte

Its an open research problem, to do it
e Automatically
o ffficiently
e for all machines — See Barrelfish 0553

Linux Tool: numactl

NUMACTL(8) Linux Administrator's Manual

NAME

numactl - Control NUMA policy for processes or shared memory

SYNOPSIS

numactl [--all] [--interleave nodes] [--preferred node] [--membind nodes] [--cpunodebind nodes] [--physcpubind cpus] [--localalloc] [--] command {arguments

numactl --show

numactl --hardware

numactl [--huge] [--offset offset] [--shmmode shmmode] [--length length] [--strict
[--shmid id] --shm shmkeyfile | --file tmpfsfile

[--touch] [--dump] [--dump-nodes] memory policy

DESCRIPTION

numactl runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for command and inherited by all of its children. In addition it can
set persistent policy for shared memory segments or files.

Use -- before command if using command options that could be confused with numactl options.

nodes may be specified as N,N,N or N-N or N,N-N or N-N,N-N and so forth. Relative nodes may be specifed as +N,N,N or +N-N or +N,N-N and so forth. The + indicates that
the node numbers are relative to the process' set of allowed nodes in its current cpuset. A !IN-N notation indicates the inverse of N-N, in other words all nodes except N-N.
If used with + notation, specify !+N-N. When same is specified the previous nodemask specified on the command line is used. all means all nodes in the current cpuset.

Instead of a number a node can also be:

netdev:DEV The node connected to network device DEV.
file:PATH The node the block device of PATH.
ip:HOST The node of the network device of HOST
block:PATH The node of block device PATH
pci:[seg:]bus:dev[:func] The node of a PCI device.

Note that block resolves the kernel block device names only for udev names in /dev use file:
Policy settings are:

--all, -a
Unset default cpuset awareness, so user can use all possible CPUs/nodes for following policy settings

--interleave=nodes, -i nodes
Set a memory interleave policy. Memory will be allocated using round robin on nodes. When memory cannot be allocated on the current interleave target fall back to
other nodes. Multiple nodes may be specified on --interleave, --membind and --cpunodebind.

--membind=nodes, -m nodes
Only allocate memory from nodes. Allocation will fail when there is not enough memory available on these nodes. nodes may be specified as noted above

--cpunodebind=nodes, -N nodes
Only execute command on the CPUs of nodes. Note that nodes may consist of multiple CPUs. nodes may be specified as noted above

--physcpubind=cpus, -C cpus

Research Paper: MegaPipe (2012)

MegaPipe: A New Programming Interface for Scalable Network I/0

Sangjin Han*, Scott Marshall*, Byung-Gon Chun’, and Sylvia Ratnasamy*

*University of California, Berkeley *Yahoo! Research

Abstract

We present MegaPipe. a new API for efficient, scalable
network I/O for message-oriented workloads. The design
of MegaPipe centers around the abstraction of a channel —
a per-core, bidirectional pipe between the kernel and user
space, used to exchange both I/O requests and event noti-
fications. On top of the channel abstraction, we introduce
three key concepts of MegaPipe: partitioning. lightweight
socket (Iwsocket). and batching.

We implement MegaPipe in Linux and adapt mem-
cached and nginx. Our results show that, by embracing a
clean-slate design approach. MegaPipe is able to exploit
new opportunities for improved performance and ease
of programmability. In microbenchmarks on an 8-core
server with 64 B messages. MegaPipe outperforms base-
line Linux between 29% (for long connections) and 582%
(for short connections). MegaPipe improves the perfor-
mance of a modified version of hed b 15%
and 320%. For a workload based on real-world HTTP
traces, MegaPipe boosts the throughput of nginx by 75%.

1 Introduction

Existing network APIs on multi-core systems have diffi-
culties scaling to high ion rates and are ineffici

for “message-oriented” workloads, by which we mean
workloads with short connections' and/or small mes-
sages. Such message-oriented workloads include HTTP.

ing and blocking ication, asyncl 1/0.
event polling. and so forth — limits the extent to which
it can be optimized for performance. In contrast, a clean-
slate redesign offers the opportunity to present an API that
is specialized for high performance network I/O.

An ideal network API must offer not only high perfor-
mance but also a simple and intuitive programming ab-
straction. In modern network servers, achieving high per-
formance requires efficient support for concurrent I/0 so
as to enable scaling to large numbers of connections per
thread. multiple cores. etc. The original socket API was
not designed to support such concurrency. Consequently,
a number of new programming abstractions (e.g.. epoll,
kqueue, etc.) have been introduced to support concurrent
operation without overhauling the socket APIL. Thus, even
though the basic socket API is simple and easy to use,
programmers face the unavoidable and tedious burden of
layering several abstractions for the sake of concurrency.
Once again, a clean-slate design of network APIs offers
the opportunity to design a network API from the ground
up with support for concurrent I/O.

Given the central role of networking in modern applica-
tions, we posit that it is worthwhile to explore the benefits
of a clean-slate design of network APIs aimed at achiev-
ing both high performance and ease of programming. In
this paper we present MegaPipe, a new API for efficient,

scalable network I/O. The core abstraction MegaPipe in-
A dethot of 2 '] b ds 3 1

Megapipe: https://www.usenix.org/system/files/conference/osdi12/0sdi12-final-40.pdf

55

https://www.usenix.org/system/files/conference/osdi12/osdi12-final-40.pdf

MegaPipe:A New Programming Interface for Scalable Network 1/0

What: is a new networking abstraction for doing high-performance network operations
Why:

e High overheads in small packet processing
e |nefficiencies in the Linux kernel networking stack with scalability

What do we mean by “scalable network 170"

1. How does the system perform when we increase number of concurrent connection
2. How does the system perform with increasing number of cores in the system

56

Setup and Challenge

1. connect()

]

2. request (64B)

\

3. response (64B)
o

4. close()

\

Server
machine

These clients connect to a server machine
Request a file, operation, or transaction - get a
response back

“Small” request - response (not a data heavy
workload) - a few bytes to kilobytes
“Short-lived” - quick connect, disconnect

Very common network pattern inside a data center
e On internet as well, but does not matter that much

here, why?

Setup and Challenge

)

client
~
)

client
~
)

client
~
)

client
~
)

client

Server
machine

e These clients connect to a server machine

e Request afile, operation, or transaction - get a
response back

e “Small” request - response (not a data heavy
workload) - a few bytes to kilobytes

e “Short-lived” quick connect, disconnect

~——

Very stressful to the CPU, system cannot use many
of the previously discussed tricks

e System need to process millions packets/sec
e Per-packet costs dominate

o Packet and protocol processing

o Per packet memory management

o Scheduling

TSO, LRO, checksum offloading, Jumbo frames are
not useful - why?

58

Specific Problems (1) Global Accept Queue

M

lock

3. accept()

I
I
I
I
|
I
|
I
I
I
I
|
I
|

request socket
TCP socket

https://pdos.csail.mit.edu/papers/affinity-accept:eurosysi2.pdf

1. Incoming SYN packets are putin a
“request hash table”

2. Once SYN + ACK is done, they are moved to
a “accept queue”

3. Once, the application calls “accept” they
are taken out from the accept queue

Problem: The request hash table and accept
queues are shared between all “cores”
e Locking
e Imagine what happens when thousands of
new TCP clients connect?

59

https://pdos.csail.mit.edu/papers/affinity-accept:eurosys12.pdf

Specific Problems (2) Lack of Connection Affinity

The open problem that we discussed before

— accept()
Network Application recv()
processiqg processing send()

e

The problem becomes more challenging because previous flow-steering
mechanisms do flow steering after “sampling” some packets

With short connections - there aren't enough packets to sample

60

Specific Problems (3) Implementation Details

1. What s a socket
a. lItis a file descriptor
b. Complain to the POSIX standard
c. “The POSIX standard requires that a newly allocated file descriptor be the lowest integer not
currently used by the process” - figuring out minimum requires coordination between all
CPUs (not needed)

2. All file descriptors get attached to the Linux VFS (everything is a file)
a. The VFS has its own set of file instance, inode, and dentry data structures
b. For short connections - lots of global state allocation and de-allocation (not needed)

3. System calls

a. Isthe way we communicate with the operating system
b. But they have performance issues (raises an interrupt/exception, disrupt ongoing flow)

61

What does MegaPipe propose

1. Partition the Request Hash Table and Accept queue for per-core
a. Application dictated partitioning and accept redirection
b. Concurrent work with Affinity Accept and Linux 3.19 (SO_REUSEPORT)
c. Allows multiple threads to listen on to the same port number

2. A special “lightweight” socket descriptor

a. Not afile, but just an identifier. Aavoids the VFS overheads

3. Anew channel and message based APl which allows system call “batching”
a. Multiple send/recv requests can be passed in one go, hence, amortizing the overhead of
doing a system call
b. Readiness vs notification based systems

62

Understand

stream vs. message based 1/0

e TCPis a"“stream” protocol

e Stream interfaces or byte-by-byte
interfaces for files and sockets (as they
both are treated as files)

e read() and write() can send/recv any
number of bytes

e BSD sockets do not have any idea of what is

d message

readiness vs. event based I/0

Readiness model for sockets: an
application needs to constantly check if
sockets are ready for more 1/0 (epoll, select,
non-blocking 1/0)

Event based model: application posts an
I/0 operations and get an event in

response when the operation completes

o No constant “readiness” checks
o But needs how to deliver completion event?

63

Mega Pi pe ArCh itECtu re Partitioned on each core

e Application provided CPU mask

Application thread

MegaPipe user-level library

i

Special Iwsockets, which are

Batched c(?;tcll;fiin not files (or attached to the
async 1/0 P ¢ / VES)
commands SR

i r

ChanM .
Pending
lwsocket File completion
handles handles events
H VFS J
TCP/IP

64

Channel and Notification Based I/0

int send (void *, int...)

int recv (void *, int...)

Notification based 1/O:
e Asimple notification on a separate channel
e Per operation - no need to constantly keep track of
e Efficient, less application involvement

1. messages in one shot 2. batching
4. Batch completion
event notification
m_ D (wg
] 170 channel B

(same idea as RX/TX queues)

3. Syscall to megapipe

65

What all of this buys you?

B Baseline’Thronghpot MMegaPipe —{—Baseline Per-Core Efficiency --"A"*MegaPipe
18 o 1.5 7] ‘... B 100
s 2 Deee... Y
FRER 212 1 - 80
g -5 M = g
E : 5 0.9 A - 60 z
Caeal B T
4 2 0.6 40 =
£,.0.6 /1) =
= =
E 03| 2037 - 20
=l =
0 N T T T 0
4 8 16 32 64 128 12 3 4 5 6 7 8
of Transactions per Connection # of CPU Cores

66

However

1. New non-socket API

a. Very hard to convince people to rewrite their networking code
b. New semantics

2. Kernel modifications
a. Very hard to convince people to modify their kernels
3. Need support from the application

a. Very hard to convince people to tell the networking stack how to partition the
listening socket and manage accept queues

Some of its proposals (and the prior work, Affinity Accept) are part of the Linux
kernel now

67

Some of these issues you will be facing in the project

1. How do you plan to keep track of outgoing SYN packets?

How do you allocate a file descriptor
How do you keep track of ANP allocated file descriptors?

Are you doing anything special for multicore systems?

ook Wb

Anything else you can think of?

68

Recap So far

—_—

What is interrupt load balancing

How do you find which interrupt(s) a device is using and which CPU
core(s) is servicing that interrupt(s)

How to map an interrupt to a single/multiple CPU cores

What is a multi-queue NIC, what does it help with

What is RSS, RPS, RFS, and XFS - and what is the difference between them
What impact does NUMA system have on NIC configuration and network
processing?

7. What problem(s) MegaPipe solves and how

N

o U AW

Do not forget office hours from 3:30 to 4:30

69

Layout of upcoming lectures - Part 1

Sep 1st, 2020 (today):
Sep 3rd, 2020 (this Tuesday): Metworkins-corcepts{eontted)
Sep 8th, 2020 : HrwnretworkiREtternals

Sep 10th 2020: #uticorescatabitity
Sep 15th 2020: Userspace networking stacks -

Sep 17th 2020: /ntroduction to RDMA networking

70

