
Advanced Network Programming (ANP)
XB_0048

Multicore scalability
Animesh Trivedi

Autumn 2020, Period 1

1

Layout of upcoming lectures - Part 1
Sep 1st, 2020 (today): Introduction and networking concepts

Sep 3rd, 2020 (this Tuesday): Networking concepts (continued)

Sep 8th, 2020 : Linux networking internals

Sep 10th 2020: Multicore scalability

Sep 15th 2020: Userspace networking stacks

Sep 17th 2020: Introduction to RDMA networking

2

● NAPI
● SoftIRQ (TH, BH)
● Locking order
● SKB
● Zero-copy stacks
● Per-packet/byte overheads

The System Model

3

The processor is the primary workhorse of the system - executes a series of instructions per cycle
Have a number of cycles/second → roughly determined by the CPU frequency

The year is 2003

4

Well on the way for a 10 GHz CPU
(we know how that went)

https://queue.acm.org/detail.cfm?id=2181798
https://www.deviantart.com/darhymes/art/Back-to-the-Future-Icon-276270476

Dennard’s Scaling (1972)
Power = (N x C x F x V2) + (V x I (leakage))

N = transistors (following Moore’s Law)
C = Capacitance (decreases for small transistors)
F = Frequency (increased, small transistors → low delay)
V = Operational voltage
I = Leakage current (mostly constant)

For a given power budget, we continue to push for
more transistors within a given power budget

● frequency scaling
● more caches
● more instructions

5

The year is 2003

6

Well on the way for a 10 GHz CPU
(we know how that went)

But then something happened here, and all
our dreams of 10 GHz CPU were shattered ;)

??

https://queue.acm.org/detail.cfm?id=2181798
https://www.deviantart.com/darhymes/art/Back-to-the-Future-Icon-276270476

Dennard’s Scaling (1972)
Power = (N x C x F x V2) + (V x I (leakage))

Slowing down the of Dennard’s scaling

Around 2003-2004 years : 65 nanometer

● Leakage current become dominant
● Cannot increase voltage (TDP)
● Power dissipation become

challenging in a small chip

Hence, frequency scaling stalled, but the number of
transistors were still increasing … 7

Welcome to the world of Multicore Processing

8

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://drivescale.com/2020/01/mulitcore-crisis/

Networking speed are growing exponentially …

9

https://ethernetalliance.org/wp-content/uploads/2018/02/Ethernet-Alliance-Roadmap-Panel-OFC-2018.pdf

Three Phases of Evolution
1. When Moore’s Law was valid (pre 2005)

a. CPU was faster than the network
b. Can (mostly) cope up with the demands of commodity network processing (not HPC!)
c. CPU performance doubled every 18 months ← important

2. When frequency scaling slowed down, manycore era (2005 - 2015)
a. Ethernet continued to improve (1 → 10 → 40 Gbps)
b. Innovation in the networking stack: Jumbo frames, interrupt management, stateless

offloading (→ all beneficial for a single core, single connection processing!)
c. Many core scalability efforts

3. Now CPU performance is not increasing dramatically (2015 - now)
a. Performance delivery by specialization : hardware and software

10

Manycore Scalability

11

CPU0 CPU1 CPU2 CPU3

What are the high-level problems here with multicores

● Synchronization: all of them can read and write the same data structure
concurrently

○ Yes, you can take locks, mutexes, but then you stall the other core
● Cache pollution: A poorly designed data structure can lead to what is known as

(a) cache line ping-pong; (b) shared cache pollution
○ Need a careful data layout and alignment

12

Manycore Scalability : Counter Example
CPU0 CPU1 CPU2 CPU3

13

Manycore Scalability : Counter Example
CPU0 CPU1 CPU2 CPU3

14

Manycore Scalability : Counter Example
CPU0 CPU1 CPU2 CPU3

They all write without
taking locks

What else can possibly go wrong here? ;)

15

Manycore Scalability : Counter Example
CPU0 CPU1 CPU2 CPU3

64 byte cache line size

L1/L2 caches

0x00 0x08 0x10 0x18

16

Manycore Scalability : Counter Example
CPU0 CPU1 CPU2 CPU3

64 byte cache line size

Whichever core needs to access the counter (cache line ping-pong)
- L1 cache miss
- Fetch the ENTIRE cache line

17

Manycore Scalability : Counter Example
CPU0 CPU1 CPU2 CPU3

64 byte cache line size

Manycore Scalability

18

CPU0 CPU1 CPU2 CPU3

How should NIC and CPUs coordinate network packet processing to deliver
● Highest bandwidth
● Lowest latency
● Millions of small packet processing per second

while not stepping on each others’ toe. ideas?

Goal:
+ Minimize synchronization
+ Minimize cache pollution
+ Minimize shared data structures

Let's start from the beginning
What is the first thing NIC does when receiving or sending packets? Interrupts

19

CPU0 CPU1 CPU2 CPU3

? which CPU should get an interrupt?

Incoming network packets

Typically, the cpu0 is what gets all the interrupts

Why?

● Because the basic assumption that it is the CPU core that is always on
● Easy to configure
● In booting cpu0 comes up first and bring other cores up
● Generally, core0 is a bit special

20

CPU0 handling majority of interrupts

Interrupt Balancing
Linux has a framework (service) called :

Tries to distributed interrupt load across CPU cores, you can configure it to

1. Balance interrupt once or periodically (static vs dynamic)
2. Tell which interrupts should go to which CPU (affinity)
3. Tell which CPUs should not handle which interrupts (!affinity)
4. Which interrupts should not be balanced (manual pinning)

How do you assign an interrupts to CPU cores?

How do I find out which NIC has which interrupt numbers?

21

Interrupt Investigation

22

A single device can have multiple interrupts assigned to it for various purposes

Figure out details about interrupts

23

NIC interrupts at cpu1

Keyboard interrupts at cpu0 and cpu1

For every interrupt there is a file: that tells the shows the
CPU bitmask mask where interrupts can go

● In a 8 core system if you have : 0xFF (all CPUs can get interrupt)
○ 0xF0 (only cpus 4-7 are allowed, not 0-3)
○ 0x11 (only cpu 0 and 4 are allowed)

Lets try to change IRQ affinity

24

Recall we talk about the rings (or queue) where the outgoing and incoming packets are
queued while they wait for processing from the NIC

● Let’s say we have mapped that all interrupts should go to all CPUs
● Now we have incoming packets

After getting interrupts all of them try to run the interrupt handler, and then?

Step 2: What happens then?

25

CPU0 CPU1 CPU2 CPU3

Device Driver

NIC

RX TXinterrupts
TX/RX ring buffers

hardwareIncoming network packets

Step 2: What happens then?

26

CPU0 CPU1 CPU2 CPU3

Incoming network packets
RX TX

TX/RX ring buffers

interrupts

Step 2: What happens then?

27

CPU0 CPU1 CPU2 CPU3

Incoming network packets
RX TX

TX/RX ring buffers

The ring data structure needs to be protected by locks
All CPUs trying to access to the same data structure

Lots of lock contention → Loss in performance !

Synchronization, lock, mutex, semaphores

ideas?

Solution Multi-Queue NICs (and other devices)

28

CPU0 CPU1 CPU2 CPU3

RX TX

Multiple TX/RX rings

RX TX RX TX RX TX

Solution Multi-Queue NICs (and other devices)

29

CPU0 CPU1 CPU2 CPU3

RX TX RX TX RX TX RX TX

This way no contention between CPU cores, no locking and stepping on each other toe’s

Multiple TX/RX rings

Solution Multi-Queue NICs (and other devices)

30

CPU0 CPU1 CPU2 CPU3

RX TX TX TX

Caution: even though I am showing 4 queue pairs for 4 CPUs, in reality a NIC can have any
number of TX and RX queues - 2, 4, 8, 16, so

● Multiple CPUs can share TX and RX queue
● Each queue (TX and RX) could work independently with their interrupts
● Multiple TX queues might share RX queues (n:m) mapping

Here it is 1:3 mapping (RX:TX) where CPU2 does not have a TX or RX queue

Next Challenge: which packet go to which queue?

31

CPU0 CPU1 CPU2 CPU3

Incoming network packets

ideas???

Strategy 1: Random assignment

32

CPU0 CPU1 CPU2 CPU3

Incoming network packets

1,5
2,7 4 3,6

Will it work? YES

+ Simple and easy to implement
+ Load balanced at the packet-level

- What happens if packet 1,3,5 belong
to connection_1, and 2,4,6,7 to
connection_2?

Processing is distributed all over the place,
locking, poor cache management

No connection based management
5 4 3 2 167

Connection 1
Connection 2

What is Poor Cache Locality Mean

33

cpu0

DRAM

cache

1. Process incoming packet
2. Cache miss, bring the
packet in the cache

3. SoftIRQ processing
4. IP processing
5. TCP processing
6. Process recv() processing

Done all in cache

cpu1cache

What is Poor Cache Locality Mean

34

cpu0

DRAM

cache

1. Process incoming packet
2. Cache miss, bring the
packet in the cache

3. SoftIRQ processing
5. TCP processing

cpu1cache

4. IP processing
6. Process recv() processing

Lots of unnecessary cache misses, write backs (blue lines), and hence, poor cache performance

We want to avoid this and pick and stick with which core is going to do packet processing for which
packets, TCP connections, IP connections, etc. (flow-locality)

Strategy 2: Receive Side Scaling (RSS)
How do we identify a TCP flow?

4-Tuple

Execute a “ ” function over 4 values

● Hash function: deterministically map
a set of values to another set, e.g.,
modulo (%) is an example hash function

● Same input -> same output
● Very low probability that two different

values map to a same output hash

Hash function output is a the number of CPU core or queue number
35

Strategy 2: Receive Side Scaling (RSS)

36

CPU0 CPU1 CPU2 CPU3 A simple hash calculation :

 IP addresses are 4 bytes
+ Port addresses are 2 bytes

Add all them up as a number then

Destination queue = sum % #queue

Now, packets 1,3,5 will be put to the same
core, and 2,4,6,7 go to another

● Intra connection parallelism is _HARD_

1,3,5 2,4,6,7

5 4 3 2 167

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garycplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

RSS Advantages
Making sure that packets belonging to a same connection go to the same CPU

○ Early decision on which CPU processing should be (in hardware) - early multiplexing
○ Typically that CPU will have all the other data associated with that connection in the cache

as well - cache locality ← very important !
○ That CPU also knows that no other CPU can process packets for this connection - hence,

no need to take locks
○ Generally, good performance

However, it does not a bit of support from the network card to be able to run
a hash function for all incoming packets, what if you don’t have such hardware?

37

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garycplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

Software Mechanism: RPS: Receive Packet Steering

38

1,3,5

3,4

interrupt
handler

interrupt
handler

interrupt
handler

interrupt
handler

softirq softirq softirq softirq

CPU0 CPU1 CPU2 CPU3

1,2 5,6 7

2,4,6,7

5 4 3 2 167

RPS has some advantages over RSS:
1. it can be used with any NIC
2. software filters can easily be added to

hash over new protocols
3. Does not increase the interrupt rate

But, it does increase inter-processor interrupts
(IPIs) and notifications.

What about Application Processing?

39

softirq softirq softirq softirq

CPU0 CPU1 CPU2 CPU3

app1 app1

● Applications can be scheduled on any core where they call recv()

● They can be moved around as well

● Then how do we make sure that packet processing also respects “application locality”

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garycplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

RFS: Receive Flow Steering (RFS)

40

interrupt
handler

interrupt
handler

interrupt
handler

interrupt
handler

softirq softirq softirq softirq

CPU0 CPU1 CPU2 CPU3

app1: core0
app2: core3
…

app1 app2
flow lookup table

2,4,6,7 1,3,5

Looks up which core to schedule
data processing on

●
●

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garycplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

RFS: Receive Flow Steering

41

interrupt
handler

interrupt
handler

interrupt
handler

interrupt
handler

softirq softirq softirq softirq

CPU0 CPU1 CPU2 CPU3
app1: core0
app2: core3
app2: core1
…

app1 app2
flow lookup table

app2
scheduled

Looks up which core to schedule
data processing on

RFS can be implemented in software or hardware (if appropriate NIC supported is there)

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://garycplin.blogspot.com/2017/06/linux-network-scaling-receives-packets.html

XPS: Transmit Packet Steering
A similar concern arises on the transmit side, which transmit queue to choose
to transmit a packet, why?

● Often there are n:m mapping between RX queue and TX queues, it makes
sense to pick the TX queue, where its associated RX queue is

○ Why is this helpful?

● Data can be transmitted in softirq processing (with qdisc) processing
● General optimization for caching locality

Conceptually it works the same as RPS with a lookup data structure

42

Why you should consider RX:TX mappings

43

CPU0 CPU1 CPU2 CPU3
?

1:1 mapping 1:2 mapping

Which core should cpu1 pick for transmission? cpu0 or cpu2

XPS dictate that you should pick cpu0, because it has the TX queue associated with the RX queue which is on CPU1.
And often in any network communication if you are transmission you are expecting to receive incoming packets -
response, ACKs

● So when you pick CPU0 then the incoming packet will come to cpu1, which has all the connection state
● If you pick cpu2 then the incoming packet will arrive on cpu3, hence missing out on the connection state

In short, it depends upon your system architecture and NIC queue mappings

RSS, RPS, RFS, and XFS

Questions

1. are they stateful or stateless offloads ?
2. do they help with per-packet or per-byte overheads?

44

RSS, RPS, RFS, and XFS

Questions

1. are they stateful or stateless ?
2. do they help with per-packet or per-byte overheads?

45

Linux tool: ethtool

Receive flow hash
Which protocol, headers Which queue?

Specific NIC vendors such Intel also offer their specific tools like Intel Flow Director.

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf

A bit of System Organization

46

Modern Servers
Important changes

● Multicore systems
● Integrated memory controllers
● Integrated I/O lanes

○ Ethernet locations

● NUMA vs SMP effect
○ Symmetric Multi-Processing
○ Non-Uniform Memory Access

And much more …

47
https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys
-system-review/index.html

https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys-system-review/index.html
https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys-system-review/index.html

SMP vs NUMA : Example SMP Machine

48

Key property: memory is equidistant from all CPU cores and the NIC
● It does not matter which core or memory to choose, because none of them is special

(all of them 3 hops away for every core)

PCIe connection

Socket

Cores

This is a dual socket example

1.

2.
3. 3.

SMP vs NUMA : Example NUMA Machine

49

Key property: Memory and cores are not equidistant
● It does matter which core or memory to choose, because some of them are closer than others

Distance to local memory for [0-4]: 2 hops, distance to remote memory [0-3]: 4 hops
How does it look for a single socket machine?

Local memory (close) Remote memory (slow, further away)

1.
2.

1. 2.
3.

4.

SMP vs NUMA

50

Key property: Memory and cores are not equidistant
● It does matter which core or memory to choose, because some of them are closer than others

Distance to local memory for [0-4]: 2 hops, distance to remote memory [0-3]: 4 hops
How does it look for a single socket machine?

Local memory (close) Remote memory (slow, further away)

1.
2.

1. 2.
3.

4.

PCIe connection

???
● Interrupts
● DMA accesses
● Memory mapped I/O
● Multiqueue mappings

SMP vs NUMA

51

Key property: Memory and cores are not equidistant
● It does matter which core or memory to choose, because some of them are closer than others

Distance to local memory for [0-4]: 2 hops, distance to remote memory [0-3]: 4 hops
How does it look for a single socket machine?

Local memory (close) Remote memory (slow, further away)

1.
2.

1. 2.
3.

4.

PCIe connection

???
● Interrupts
● DMA accesses
● Memory mapped I/O
● Multiqueue mappings

Local memory (close) Remote memory (slow, further away)

application

???

Impact of SMP and NUMA Architectures

52

application

Here are multiple concerns

1. Which CPU (socket) NIC is connected to?
2. Which CPU cores its interrupts and queues

mapped to?
3. Where memory for DMA is allocated?
4. Where application is processing networking

data?

Can you think of a solution for this dual-socket machine?

https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/purley/intel-xeon-scalable-processors.html

Now do for these… ;)

53

Its an open research problem, to do it
● Automatically
● Efficiently
● For all machines → See Barrelfish OS

Linux Tool: numactl

54

Research Paper: MegaPipe (2012)

55

https://www.usenix.org/system/files/conference/osdi12/osdi12-final-40.pdf

MegaPipe:A New Programming Interface for Scalable Network I/O

What: is a new networking abstraction for doing high-performance network operations

Why:

● High overheads in small packet processing
● Inefficiencies in the Linux kernel networking stack with scalability

What do we mean by “scalable network I/O”:

1. How does the system perform when we increase number of concurrent connection
2. How does the system perform with increasing number of cores in the system

56

Setup and Challenge

57

Server
machine

client

● These clients connect to a server machine
● Request a file, operation, or transaction - get a

response back
● “Small” request - response (not a data heavy

workload) - a few bytes to kilobytes
● “Short-lived” - quick connect, disconnect1. connect()

2. request (64B)

3. response (64B)

4. close()

Very common network pattern inside a data center
● On internet as well, but does not matter that much

here, why?

Setup and Challenge

58

Server
machine

client

client

client

client

client

● These clients connect to a server machine
● Request a file, operation, or transaction - get a

response back
● “Small” request - response (not a data heavy

workload) - a few bytes to kilobytes
● “Short-lived” quick connect, disconnect

Very stressful to the CPU, system cannot use many
of the previously discussed tricks

● System need to process millions packets/sec
● Per-packet costs dominate

○ Packet and protocol processing
○ Per packet memory management
○ Scheduling

TSO, LRO, checksum offloading, Jumbo frames are
not useful - why?

Specific Problems (1) Global Accept Queue

59

1. Incoming SYN packets are put in a
“ ”

2. Once SYN + ACK is done, they are moved to
a “ ”

3. Once, the application calls “ ” they
are taken out from the accept queue

Problem: The request hash table and accept
queues are shared between all “cores”

● Locking
● Imagine what happens when thousands of

new TCP clients connect?

https://pdos.csail.mit.edu/papers/affinity-accept:eurosys12.pdf

Specific Problems (2) Lack of Connection Affinity

The open problem that we discussed before

60

core0 core1

Network
processing

Application
processing

accept()
recv()
send()

The problem becomes more challenging because previous flow-steering
mechanisms do flow steering after “sampling” some packets

With short connections - there aren't enough packets to sample

Specific Problems (3) Implementation Details

61

1. What is a socket
a. It is a file descriptor
b. Complain to the POSIX standard
c. “The POSIX standard requires that a newly allocated file descriptor be the lowest integer not

currently used by the process” - figuring out minimum requires coordination between all
CPUs (not needed)

2. All file descriptors get attached to the Linux VFS (everything is a file)
a. The VFS has its own set of file instance, inode, and dentry data structures
b. For short connections - lots of global state allocation and de-allocation (not needed)

3. System calls
a. Is the way we communicate with the operating system
b. But they have performance issues (raises an interrupt/exception, disrupt ongoing flow)

What does MegaPipe propose
1. Partition the Request Hash Table and Accept queue for per-core

a. Application dictated partitioning and accept redirection
b. Concurrent work with Affinity Accept and Linux 3.19 ()
c. Allows multiple threads to listen on to the same port number

2. A special “lightweight” socket descriptor
a. Not a file, but just an identifier. Aavoids the VFS overheads

3. A new channel and message based API which allows system call “batching”
a. Multiple send/recv requests can be passed in one go, hence, amortizing the overhead of

doing a system call
b. Readiness vs notification based systems

62

Understand

stream vs. message based I/O

● TCP is a “stream” protocol

● Stream interfaces or byte-by-byte

interfaces for files and sockets (as they

both are treated as files)

● read() and write() can send/recv any

number of bytes

● BSD sockets do not have any idea of what is

a message

63

readiness vs. event based I/O

● Readiness model for sockets: an

application needs to constantly check if

sockets are ready for more I/O (epoll, select,

non-blocking I/O)

● Event based model: application posts an

I/O operations and get an event in

response when the operation completes

○ No constant “readiness” checks
○ But needs how to deliver completion event?

MegaPipe Architecture

64

Partitioned on each core
● Application provided CPU mask

Special lwsockets, which are
not files (or attached to the
VFS)

Channel and Notification Based I/O

65

Notification based I/O:
● A simple notification on a separate channel
● Per operation - no need to constantly keep track of
● Efficient, less application involvement

I/O channel
(same idea as RX/TX queues)

1. messages in one shot 2. batching

3. Syscall to megapipe

4. Batch completion
event notification

What all of this buys you?

66

However
1. New non-socket API

a. Very hard to convince people to rewrite their networking code
b. New semantics

2. Kernel modifications
a. Very hard to convince people to modify their kernels

3. Need support from the application
a. Very hard to convince people to tell the networking stack how to partition the

listening socket and manage accept queues

Some of its proposals (and the prior work, Affinity Accept) are part of the Linux
kernel now

67

Some of these issues you will be facing in the project

1. How do you plan to keep track of outgoing SYN packets?

2. How do you allocate a file descriptor

3. How do you keep track of ANP allocated file descriptors?

4. Are you doing anything special for multicore systems?

5. Anything else you can think of?

68

Recap So far
1. What is interrupt load balancing
2. How do you find which interrupt(s) a device is using and which CPU

core(s) is servicing that interrupt(s)
3. How to map an interrupt to a single/multiple CPU cores
4. What is a multi-queue NIC, what does it help with
5. What is RSS, RPS, RFS, and XFS - and what is the difference between them
6. What impact does NUMA system have on NIC configuration and network

processing?
7. What problem(s) MegaPipe solves and how

69

Do not forget office hours from 3:30 to 4:30

Layout of upcoming lectures - Part 1
Sep 1st, 2020 (today): Introduction and networking concepts

Sep 3rd, 2020 (this Tuesday): Networking concepts (continued)

Sep 8th, 2020 : Linux networking internals

Sep 10th 2020: Multicore scalability

Sep 15th 2020: Userspace networking stacks

Sep 17th 2020: Introduction to RDMA networking

70

