Advanced Network Programming (ANP)
XB_0048

Linux Networking

Animesh Trivedi
Autumn 2020, Period 1

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

Layout of upcoming lectures - Part 1

Sep 1st, 2020 (today):
Sep 3rd, 2020 (this Tuesday): Metworkins-corcepts{eontted)

e MTU and link efficiency
Sep 8th, 2020 : Linux networking internals - e TS0, LRO, GRO

e TCP offload engine
Sep 10th 2020: \ulticore scalability * ggi’,geézsss and stateful

Sep 15th 2020: Userspace networking stacks

Sep 17th 2020: /ntroduction to RDMA networking

A packet’s journey - (simplified) Receiving path

. o '\
Consume data Application
when application A
D i datagrams
calls recv() {D - |EH_| |—H_| g)
D =
" stream > ;
TCP ICMP o
f\ 2
IP processing
Eerform ?et\r/]\{orr]k prcjlf:esjcsing \ Operating
o ata in AT device driver Systems)

gueue data into the queue

/ \ @ Notify the operating system

Network Interface All network cards have device drivers
Controller (NIC)

\ @ A new packet arrives from the network

Linux Code Layout

vmlinux
vmlinux-gdb.py
vmlinux.o

I

All networking device drivers are here

IPv4, TCP, UDP implementation here

$ Many common helper routines here (buffers, sockets)

What NIC / driver do you use?

1:

Active NIC interfaces

ethtool -i wlp2s0 (info)

driver in use for this device

fa @atr-XPS-13:~$ 1lspci -v | grep "02:00.0"
+-p02:00.0 Network controller: Qualcomm Atheros QCA6174 802.1lac Wireless Network Adapter (rev 32)

Too much information?

e Linux kernel source code, function or structure names, command names or their
parameter are not a part of your exam

e Information on various external links is not a part of your exam
o they are put here for your reading, understand, and reference, if you are interested

However, various high level ideas and concepts in networking (which are on these
slides) are part of your exam. For example, what is NAPI? Why it was designed?

https://www.vectorstock.com/rovalty-free-vector/input-overloading-information-overload-concept-vector-22789545

https://www.vectorstock.com/royalty-free-vector/input-overloading-information-overload-concept-vector-22789545

The device interface

Applications
userspace
______________ System Calls
kernel
Networking Stack

Device Driver

hardware NIC

The device interface: Rings

Memory buffers

Applications
-010101
userspace Networking stack processes (consumer)
-------------- System Calls o Unlinks the buffers, and posts new 010101
kernel
Networking Stack ;}
Device‘Driverl
......................... A NIC does DMA (Qdeucer)
interrupts | Marks the buffer used
I TX/RX ring /queues
|
hardware

This producer-consumer ring pattern is a very common data structure (and
pattern) in many areas in OS, virtualization, storage and networking designs 8

)
Linux Tool: ethtool - ol
[} Queries the specified network device for rx/tx ring parameter

information.

-G --set-ring
Changes the rx/tx ring parameters of the specified network de-

vice.
ETHTOOL (8) System Manager's Manual ETHTOOL(T rx N Changes the number of ring entries for the Rx ring.
NAME rx-mini N
ethtool - query or control network driver and hardware settings Changes the number of ring entries for the Rx Mini ring.
SYNOPSIS rx-jumbo N

ethtool devname Changes the number of ring entries for the Rx Jumbo ring.

etiitoobibhEEHelp tx N Changes the number of ring entries for the Tx ring.

ethtool --version

ethtool -a|--show-pause devname

:~$ ethtool -g enp0s25
:Rlng parameters for enp0s25:
IPre-set maximums:

ethtool -A|--pause devname [autoneg on|off] [rx on|off] [tx on|off]

ethtool -c|--show-coalesce devname

ethtool -C|--coalesce devname [adaptive-rx on|off] [adaptive-tx on|off] RX . 4@96
[rx-usecs N] [rx-frames N] [rx-usecs-irq N] [rx-frames-irq N] ! s
[tx-usecs N] [tx-frames N] [tx-usecs-irq N] [tx-frames-irq N] : T .
[stats-block-usecs N] [pkt-rate-low N] [rx-usecs-low N] Rx Mlnl 0
[rx-frames-low N] [tx-usecs-low N] [tx-frames-low N] 1 .
[pkt-rate-high N] [rx-usecs-high N] [rx-frames-high N] RX Jumbo 0
[tx-usecs-high N] [tx-frames-high N] [sample-interval N] TX . 4@96

ethtool -g|--show-ring devname Current hardware settings:

ethtool -G|--set-ring devname [rx N] [rx-mini N] [rx-jumbo N] [tx N] Rx . 256

RX Mini: 0
RX Jumbo: 0
TX: 256

:~$ i

Linux Packet Receive Path

Copy and consumption by an application
Queueing up at a socket receive queue

Local TCP/UDP processing

Local IP processing

Socket Kernel Buffer (SKBs)

Networking stack: “bottom-half” (softirgs)
Networking stack: “top-half”

Hardware interrupt

Does DMA to the next free ring buffer address

NIC receives a packet

10

Plenty of comments !

-

struct net_device - The DEVICE structure.

Actvally, this whole structure is a big mistake. It mixes 1/0
* data with strictly "high-level" data, and it has to know about
almost every data structure used in the INET module.

-

Accept zero addresses only to limited broadcast;
1 even do not know to fix it or not. Waiting for complains :-)

/* An explanation is required here, I think.
Packet length and doff are validated by header prediction,

-

* Really tricky (and requiring careful tuning) part of algorithm
* is hidden in functions tcp_time to_recover() and
tcp_xmit_retransmit_gqueue().

/* skb reference here is a bit tricky to get right, since
shifting can eat and free both this skb and the next,

so not even _safe variant of the loop is enough.

/* Here begins the tricky part :
* We are called from release_sock() with

/* This is TIME_WAIT assassination, in two flavors.
* Oh well... nobody has a sufficient solution to this
protocol bug yet.

BUG(); /* "Please do not press this button again." */

=~
https://www.slideshare.net/Saruspete/linux-network-stack-120620136

The Source Code is all we have ;)

/* The socket is already corked while preparing it. */
/* ... which is an evident application bug. --ANK */

/* Ugly, but we have no choice with this interface.
* Duplicate old header, fix ihl, length etc.

* Parse and mangle SNMP message according to mapping.
* (And this is the fucking 'basic' method).

/* 2. Fixups made earlier cannot be right.

bod I1f we do not estimate RTO correctly without them,
" all the algo is pure shit and should be replaced
- with correct one. It is exactly, which we pretend to do

/* OK, ACK is wvalid, create big socket and
* feed this segment to it. It will repeat all
* the tests. THIS SEGMENT MUST MOVE SOCKET TO
* ESTABLISHED STATE. If it will be dropped after
* socket is created, wait for troubles.

* packets force peer to delay ACKs and calculation is correct too.

* The algorithm is adaptive and, provided we follow specs, it

* NEVER uvnderestimate RIT. BEUT! If peer tries to make some clever

* tricks sort of "quick acks" for time long enough to decrease RTT

* to low value, and then abruptly stops to do it and starts to delay
* ACKs, wait for troubles.

1

https://www.slideshare.net/Saruspete/linux-network-stack-120620136

Linux Packet Receive Path

o struct net_device - The DEVICE structure.

A networking deVice in Linux iS " Actually, this whole structure is a big mistake. It mixes I/0
represented by StI’UCt ﬂet_deVICG data with strictl;.'_‘high-level‘ data, and it has to know about

almost every data structure used in the INET module.
* @name: This is the first field of the "visible” part of this structure

Py Contains functions for a” device I/O ' (i.e. as seen by users in the "Space.c" file). It is the name

of the interface.

aCtIVItleS, management, brlnglng Up ’ @name_node: Name hashlist node

and down the device

char name[IFNAMSIZ] ;
StI’UCt net device OpS struct netdev_name_node *name_node;
- - s.truct dev_ifalias __rcu *ifalias;
Very very large structure o b sietric Felis
° MakeS the COﬂtraCt between a dev'ce :'/ IXME: Merge these and struct ifmap into one
. H igned 1 d;
driver and the rest of the networking sta s i
unsigned long base_addr;
int irq;

*
o)))]] * Some hardware also needs these fields (state,dev_list,
https://elixir.bootlin.com/linux/latest/source/include/linux/netdevice.h s napi_list,unreg_list,close_list) but they are not
o part of the usual set specified in Space.c
*

https://elixir.bootlin.com/linux/latest/source/include/linux/netdevice.h

Linux Packet Receive Path

DRAM
1. Packet received

1010
1001 I:> 2. DMA to memory using ring
0101 buffer addresses

L2

V\ACK and clear IRQ

-

3. Raise an interrupt

Network device driver
.| [interrupt handler, see 6. napi_schedule
int request_irq(...);
int free_irg(..); 1 | >

4. Run IRQ handler

Multiple ways to manage interrupts : https:/linux-kernel-labs.github.io/refs/heads/master/labs/interrupts.html 13

https://linux-kernel-labs.github.io/refs/heads/master/labs/interrupts.html

What is New API (NAPI)? (so much innovation in naming)

New API or NAPI is the
implementation of interrupt

There are only two hard things in Computer Science: cache invalidation and

naming things.

-- Phil Karlton

mitigation technique that we looked earlier (all info in: struct napi_struct)

e By defaultinterrupt: check if NAPI is already requested to be scheduled
e |nthe NAPI processing:

O

(@)

(@)

Interrupts on the NIC are disabled

Process certain number of “weight” packets in one go

Poll the device driver (by calling a driver provided function) to check if there are more
packets ready for processing

m Vvoid netif_napi_add(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct
napi_struct * int), int weight);
If not enough packets available, then yield
The driver will enable the interrupt-driven notification again on the NIC 14

What does napi_schedule do?

Y daia Yt
- napi_schedule - schedule NAPI poll * papi_schedule - schedule for receive
* @n: napi context * @n: entry to schedule
* *
* Schedule NAPI poll routine to be called if it is not already * The entry's receive function will be scheduled to run.
* running. * Consider using __napi_schedule_irqgoff() if hard irqs are masked.
i/ ,‘:/
static inline void napi_schedule(struct napi_struct *n) void __napi_schedule(struct napi_struct *n)
{ {
if (napi_schedule_prep(n)) |:> unsigned long flags;
i napil_schedule(n);

} . local_irq_save(flags);
i napi_schedule(this_cpu_ptr(&softnet_data), n);
<

loca{:{;q:FggigF;(flags);
/* Called with irq disabled */ EXPORT_SYMBOL(__napi_schedule);
static inline void napi_schedule(struct softnet_data *sd,

struct napi_struct *napi)
{
list_add_tail(&napi->poll_list, &sd->poll_list);
| __raise_softirq_irqoff(NET_RX_SOFTIRQ); |

) What is a softirg?

https://elixir.bootlin.com/linux/v4.0/source/include/linux/netdevice.h
https://elixir.bootlin.com/linux/v4.0/source/net/core/dev.c

15

https://elixir.bootlin.com/linux/v4.0/source/include/linux/netdevice.h
https://elixir.bootlin.com/linux/v4.0/source/net/core/dev.c

Who is processing NAPI?

[Application] When processing an interrupt ...
A

e Interrupt handling is a high priority work

e All further interrupts are disabled (on the _CPU_, not just the specific
device which generated the interrupt)

[protocol p'ocessing}

[Interrunt handler } o Ifthere are more packets coming in we will miss out on them
P o If ring buffer overflow - then packets are dropped
e Many long events in the incoming packet processing - memory
D allocation, scheduling of application process to consume incoming
data, TCP ACK generation, TCP transmission processing ... a LOT of

work

h We can not disable interrupt for this long to do all this work in the
R interrupt handler

Linux: Top-Half and Bottom-Half Processing

. Bottom-half processing (also known as SoftIRQs)
[protocol processmg} - High priority
- Most of the protocol processing
[softirqd 1 - Have interrupts enabled (can be preempted)
é - Can preempt other kernel threads, user processing

[Interrupt handler }

Top-Half Interrupt Processing
- Very high priority, very small
- Mostly cleaning hardware registers
- Copying out pointers
- Scheduling the bottom half, if not already there

17

Linux Kernel: Deferred Work Processing Framework

Linux Kernel has multiple mechanisms for deferred work processing

e SoftIRQs: A specific number of predefined SoftIRQ / core for specific tasks (e.g., RX, TX, timer). No
blocking calls. Concurrent execution of same type of softirq on different CPUSs.

e Tasklets: A more flexible SoftIRQs that can be allocated and used by different kernel subsystems.
No blocking calls. No concurrent execution of the same tasklet on different CPUs, serialized.

e WorkQueues: A kernel thread pool with an immediate or delayed work execution in a process
context. Can have blocking calls. Managed by the kernel.

e Kernel Threads: A generic kernel thread, to be used for any purpose by the caller.

It is very very important to always know in what context the code is executing, determines what action you can or cannot

do, and how you should be locking and synchronize with other execution context inside a kernel

https://linux-kernel-labs.github.io/refs/heads/master/labs/deferred work.html# 18

https://linux-kernel-labs.github.io/refs/heads/master/labs/deferred_work.html#

Preemption order and locking

IRQ Handler A
IRQ Handler B
Softirg A
Softirg B
Tasklet A
Tasklet B
Timer A

Timer B

User Context A

User Context B

SLIS
SLI
SL
SLBH

MLI

IRQ Handler A IRQ Handler B Softirg A Softirg B Tasklet A Tasklet B Timer A Timer B User Context A User Context B
None

SLIS None

SLI SLI SL

SLI SLI SL SL

SLI SLI SL SL None

SLI SLI SL SL SL None

SLI SLI SL SL SL SL None

SLI SLI SL SL SL SL SL None

SLI SLI SLBH SLBH SLBH SLBH SLBH SLBH None

SLI SLI SLBH SLBH SLBH SLBH SLBH SLBH MLI None

spin_lock_irgsave
spin_lock_irq

spin_lock

spin_lock_bh
mutex_lock_interruptible

https://www.kernel.org/doc/html/latest/kernel-hacking/locking.html 19
)

https://www.kernel.org/doc/html/latest/kernel-hacking/locking.html

Linux Commands

atr@atr-XPS-13:~¢

There is a priority order with the SoftIRQs defined, as you see in
the print order: high priority, timer, network, block, polling,
tasklets, scheduler, hrtimer, and RCU locks.

As usual there is a lot of information present in the /proc interface
that you can explore about these execution threads.

Understand: preemption vs. priority -

For more reading

T'll Do It Later: Softirqgs, Tasklets, Bottom Halves, Task Queues,
Work Queues and Timers

Matthew Wilcox
Hewlett-Packard Company

matthew.wilcox@hp.com

Abstract

An interrupt is a signal to a device driver that there
is work to be done. However, if the driver does too
much work in the interrupt handler, system respon-
siveness will be degraded. The standard way to avoid
this problem (until Linux 2.3.42) was to use a bot-
tom half or a task queue to schedule some work to do
later. These handlers are run with interrupts enabled
and lengthy processing has less impact on system re-
sponse.

The work done for softnet introduced two new fa-
cilities for deferring work until later: softirqs and
tasklets. They were introduced in order to achieve
better SMP scalability. The existing bottom halves
were reimplemented as a special form of tasklet which

1 Introduction

When writing kernel code, it is common to wish to
defer work until later. There are many reasons for
this. One is that it is inappropriate to do too much
work with a lock held. Another may be to batch
work to amortise the cost. A third may be to call
a sleeping function, when scheduling at that point is
not allowed.

The Linux kernel offers many different facilities for
postponing work until later. Bottom Halves are for
deferring work from interrupt context. Timers allow
work to be deferred for at least a certain length of
time. Work Queues allow work to be deferred to pro-
cess context.

Docs » Kernel Hacking Guides » Unreliable Guide To Locking

Unreliable Guide To Locking

Author: Rusty Russell

Introduction

Welcome, to Rusty’s Remarkably Unreliable Guide to Kernel Locking issues. This document describes the]
With the wide availability of HyperThreading, and preemption in the Linux Kernel, everyone hacking on th
The Problem With Concurrency

(Skip this if you know what a Race Condition is).

In a normal program, you can increment a counter like so:

http://www.cs.columbia.edu/~nahum/w6998/papers/2003-wilcox-softirg.pdf
https://www.kernel.org/doc/html/latest/kernel-hacking/locking.html

21

http://www.cs.columbia.edu/~nahum/w6998/papers/2003-wilcox-softirq.pdf
https://www.kernel.org/doc/html/latest/kernel-hacking/locking.html

Coming Back to NAPI Packet Processing

The main entry point for NET_RX_SOFTIRQ processing is :
static void net_rx_action(struct softirg_action *h)

for (;;) {
struct napi_struct *n;
Polls the network device, where —_— e
if (list_empty(&list)) {
if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))

. goto out;
e Packets are build _' break;
® PUShed In the netStaCk for proceSSIng n = list_first_entry(&list, struct napi_struct, poll_list);
e Return the “budget” consumed "“"”f B RISy MR
e If budget consumed, or & for 2 Jiffies since which will allo
time to reschedule : break ol gl e SR
if (unlikely(budget <= 0 ||
time_after_eq(jiffies, time_limit))) {
. . . sd->time_squeeze++;
LRO/GRO merging can happen in the driver _ e

https://elixir bootlin.com/linux/latest/source/net/core/dev.c#L 6729 22

https://elixir.bootlin.com/linux/latest/source/net/core/dev.c#L6729

In the Driver Polling Function

Data packets are build and pushed into
netif receive skb();

This does not do much, a bit of
accounting, backlog processing, various
tracking hooks before being delivered to
the networking layer at ip_rcv()

int netif_receive_skb(struct sk_buff *skb)
; RFE TN oy TS s
int ret;

trace_netif_receive_skb_entry(skb);

BUt hOId On’ What iS this Sk_bu-F-F*? ret = netif_receive_skb_internal(skb);

trace_netif_receive_skb_exit(ret);
return ret;

EXPORT_SYMBOL (netif_receive_skb);

23

Socket Kernel Buffer or SKB -

One of the most important data types in
the Linux kernel

Represent a data packet in processing

Has headers, trailer, data, metadata,
Linux specific details -- all in a single
structure

Can be extremely complex

(a simplified version of this is

Socket User Buffer (struct su_buff) is
provided in the ANP netstack)

sk_buff {

union {

struct {

union {

struct sk_buff “next;
struct sk_buff “prev;

union {
struct net_device *dev;

unsigned long dev_scratch;

uct sock *sk;

ip_defrag_offset;

tstamp;

skb_mstamp_ns; /* earliest departure tinm

cb[48] __aligned(8);

uct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack
uct list_head list;

24

SKB Basic ldea

Logically it contains

link list pointers

which netdev

which socket

place for headers / trailers
for various protocols

sk_buff

sk_buff_head

next

prev

sk_buff

8k

tatamp

structsock

dev

net_device

..Jots..

[

Ol

...Stuff..

Packetdata

transport header

networx header

mac header

head

data

tail

end

} “*headroom”

“"tailroom"

truesize

users

dataref: 1

nr frags

skb_shared_info

des tructor

e various Linux specific accounting and reference counting information

http://satishabbu.blogspot.com/2015/05/skb-tinkering-part-2.html

25

http://satishabbu.blogspot.com/2015/05/skb-tinkering-part-2.html

SKB Pointers and Operations

head

head room

data

tail

end

user data

length

tail room

skb_shared_info

(a1)
skb -> data

slb-)lenl

—_—
skb > tail

(b1)

skb -> data
"

slh->len1

kb -> tail

(@) skb -> data

skb > tail

(a2)
skb -> data

(d2)
skb -> data

Before and after (a) skb_put (b) skb_push (c) skb_pull (d) skb_reserve

skb->tail

26

Continuing the Data Receiving: main functions

/
/

. Deliver IP Packets to the higher protocol layers.
*/
int ip_local_deliver(struct sk_buff *skb)
{
/ *
* Reassemble IP fragments.
o 4
struct net *net = dev_net(skb->dev);
It's for us >
Packet needs forwarding
/ *
* IP receive entry point
'

int ip_rev(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
struct net_device *orig_dev)

{

struct net *net = dev_net(dev);

int ip_forward(struct sk_buff *skb)

{

u32 mtu;
struct iphdr *iph; /* Our header */
struct rtable *rt; /* Route we use */

struct ip_options *opt = &(IPCB(skb)--opt);
struct net *net;

/* that should never happen */
if (skb--pkt_type !'= PACKET_HOST)
goto drop;

https://elixir.bootlin.com/linux/latest/source/net/ipv4/ip _input.c

IP tx path
27

https://elixir.bootlin.com/linux/latest/source/net/ipv4/ip_input.c

IP Processing : pushing it to the transport

static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
struct sk_buff *prev_tail, struct net_device *dev)

If there is a need for packet { . csocsy cutm e
struct net *net = qp->q.fqdir-=net;
struct iphdr *iph;

assembly v;id fre‘a’sm_datg;

int len, err;

If there are networking

packet processing rules (netfilter)
static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)

a. Special hooks {
b. Programmable code
c. Accounting and memory management

Lastly, once the whole packet is ready, find the appropriate transport

protocol function and call it
ret ~ INDIRECT.CALL 2(ipprot--handler CEep_vd_rev. udp_rcv.>

skb);

__skb_pull(skb, skb_network_header_len(skb));

PS~ we are still in a softirq
28

Transport Entry Point: tcp_v4_recv

/W

tcp_v4_rcv

/
/

w

A/'

From tcp_input.c

int tcp_v4_rcv(struct sk_buff *skb)

{

A

__inet_lookup_skb

(.

Not found

__inet_lookup_established

struct net *net = dev_net(skb->dev);
struct sk_buff *skb_to_free;

int sdif = inet_sdif(skb);

int dif = inet_iif(skb);

const struct iphdr *iph;

const struct tcphdr *th;

__inet_lookup_listener

v

tcp_v4 do_rcv

https://elixir.bootlin.com/linux/latest/source/net/ipv4/tcp ipv4.c

29

https://elixir.bootlin.com/linux/latest/source/net/ipv4/tcp_ipv4.c

TCP Packet Processing

/
int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
{

struct sock *rsk;

if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
struct dst_entry *dst = sk->sk_rx_dst;

sock_rps_save_rxhash(sk, skb);
sk_mark_napi_id(sk, skb);
if (dst) {
if (inet_sk(sk)->rx_dst_ifindex !'= skb->skb_iif ||
!dst->ops->check(dst, 0)) {

Data processing
in ESTB. state

]

/*

w TCP receive function for the ESTABLISHED state.

»

* It is split into a fast path and a slow path. The fast path is

w disabled when:

w - A zero window was announced from us - zero window probing

w is only handled properly in the slow path.

w - Out of order segments arrived.

” - Urgent data is expected.

w - There is no buffer space left

w - Unexpected TCP flags/window values/header lengths are received
w (detected by checking the TCP header against pred_flags)

w - Data is sent in both directions. Fast path only supports pure senders
v or pure receivers (this means either the sequence number or the ack
v value must stay constant)

w - Unexpected TCP option.

N

* When these conditions are not satisfied it drops into a standard
* receive procedure patterned after RFC793 to handle all cases.

w The first three cases are guaranteed by proper pred flags setting,
* the rest is checked inline. Fast processing is turned on in

w tcp_data_queue when everything is OK.

G

void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)

{
const struct tcphdr *th = (const struct tcphdr *)skb->data;

struct tep_sock *tp = tcp_sk(sk);

dst_release(dst); unsigned int len = skb->len;
sk->sk_rx_dst = NULL;
}
1;
tcp_rcv_established(sk, skb);
return 0;
) £2
/ y * This function implements the receiving procedure of RFC 793 for
" all states except ESTABLISHED and TIME_WAIT.
w It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
* address independent.
w
/

State machine processing {

int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)

struct tcp_sock *tp = tcp_sk(sk);

struct inet_connection_sock *icsk

30

inet=csk(sk):

After the state processing ...

eventually
A A 4__’////’"“’ static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
step /: process the segment text ¥ < .
tcp_data_queue(sk, skb); ’ il “fragstolen)
int eaten;

///tcp_data_snd_check(sk); struct sk_buff *tail = skb_peek_tail(isk--sk_receive_queue);

fcp_ack_snd_check(sk):

eaten = (tail &&
tcp_try_coalesce(sk, tail,

Check if TX is suspended ski, feeastolen)) 1L W
tcp_rev_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)--end_seq);
if (leaten) {

__skb_queue_tail(4sk->sk_receive_queue, skb);

Check if ACK needs to be sent —SKb_set_owner_r(SKkb, SKJ;

}

return eaten;

e Each socket has a receive queue associated with it so the incoming packets are queue there
e When a user application calls “recv” then this queue is processed and consumed

31

int tcp_recvmsg(struct sock *sk, struct msghdr *msg,

{
| &

How does the application side look like?

This routine copies from a sock struct into the user buffer.
Technical note: in 2.3 we work on _locked_ socket, so that
tricks with *seq access order and skb->users are not require
Probably, code can be easily improved even more.

int flags, int *addr_len)

struct tcp_sock *tp = tcp_sk(sk);
int copied = 0;

u32 peek_seq;

u32 *seq:

unsigned long used;
int err, inq;

int target;

long timeo;

struct sk_buff *skb, *last;

u32 urg_hole = 0;

struct scm_timestamping_internal tss;

/ - Ton AT c mn y y c
* Read at least this many bytes

size_t len, int nonblock,

recv(...)

e Ifthereis enough data available on
the socket receive queue then copy
the data out

e Otherwise block and wait until
more data arrives

o Also non-blocking modes
possible

. ps~this is_NOT_ in a softirq

32

What are the key components that run

Application
Process
Elﬂl |—H_| |—H_| datagrams context
D
Stream
TCP ICMP
| 5 IP pracessing
\ SoftIRQs
device driver D D D D
/ \ Hardware interrupt
context

Network Interface
Controller (NIC)

N
?

Shared data structures
must be protected properly
from concurrent execution

N
?

33

In the ANP project (at least 3 threads)

void *netdev_rx_loop()

{

int ret;
while (!stop) {

}

// The max size of ethern
// https://searchnetworki
struct subuff *sub = allos
ret = tdev_read((char *)st
if (ret < 0) {
printf("Error in read
free_sub(sub);
return NULL;
}
// whatever we have receiy
process_packet(sub);

return NULL;

TCP client
send/recv

N
4

TAP device

void *timers_start()
{
//10 millisecond timer loop
while (1) {
if (usleep(10000) !'= 0) {
perror("Timer usleep");

}

pthread_rwlock_wrlock(&rwlock);
tick += 10;
pthread_rwlock_unlock(&rwlock);
timers_tick();

Timer thread

34

TCP Sending Path

Sending path is (relatively) simapter-less complex than the receiving path, why?

Receiving path is very gsynchronous, what does this mean? Lots of events
happening that one cannot schedule properly on the time of their choosing:

Reception of a packet

O

Often in network benchmarking you will see the
o Interrupts ft &)
O

receiving side becoming CPU bottleneck before the

Timeouts sending side.
Application calling receive

(@)

That means we need to be ready at any time to process events

In comparison to this, sending side is considered synchronous, that means we

can control what happens when on the sending path
e There are no unexpected events

35

When does send processing starts?

int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)

{
int ret;
static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
lock_sock(sk); € : <
ret - tep_sendmsg_locked(sk, msg, size); return skb_peek_tail(&sk--sk_write_queue);
release_sock(sk); } /
T socket write queue

N\

mss_now = tcp_send_mss(sk, &size_goal, flags);

/* Where to copy to? */
if (skb_availroom(skb) > 0 && !zc) {
/* We have some space in skb head. Superb! */
copy = min_t(int, copy, skb_availroom(skb));
err = skb_add_data_nocache(sk, skb, &msg--msg_iter, copy);
if (err)
goto do_fault;
} else if (lze) {
bool merge = true;
int 1 = skb_shinfo(skb)->nr_frags;

err = -EPIPE;
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
goto do_error;

while (msg_data_left(msg)) {
int copy = 0;

skb = tcp_write_queue_tail(sk);
if (skb)
copy = size_goal - skb-=len;

Data is copied into the kernel space from
user space

36

/* This routine writes packets to the network. It advances the
send_head. This happens as incoming acks open up the remote
window for us.

*

*

*

LARGESEND note: !tcp_urg_mode is overkill, only frames between
snd_up-64k-mss .. snd_up cannot be large. However, taking into
account rare use of URG, this is not a big flaw.

*

*

After Copying ...

*

Send at most one packet when push_one > 0. Temporarily ignore
cwnd limit to force at most one packet out when push_one == 2.

*

* Returns true, if no segments are in flight and we have queued segments,

/* Send _single_ skb sitting at the send head. This function requires :/but cannot send anything now because of SWS or another problem.
v ¢t h di t t be tim tc.
" rue: push: pending fromes: to setup.probe: timer etc static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle
4 ; ; int push_one, gfp_t
void tcp_push_one(struct sock *sk, unsigned int mss_now) (e
{
struct tecp_sock *tp = tecp_sk(sk);
struct sk_buff *skb = tcp_send_head(sk); SEEREE ’kp;uff ,skﬂ. =
unsigned int tso_segs, sent_pkts;
BUG_ON(!skb || skb->len < mss_now); int cwnd_quota;
int result;
tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk--sk_allocation); bool is_cwnd_limited = false, is_rwnd_limited = false;
}

Checks all TCP parameters, ACKs,
window size

/* This routine actually transmits TCP packets queued in by
tcp_do_sendmsg(). This is used by both the initial
transmission and possible later retransmissions.

All SKB's seen here are completely headerless. It is our
job to build the TCP header, and pass the packet down to
IP so it can do the same plus pass the packet off to the
device.

We are working here with either a clone of the original
SKB, or a fresh unique copy made by the retransmit engine.

d/ . .
static int IET BRI R (struct sock *sk, struct sk_buff *skb, Ip_ queue_xmlt()

Building an actual TCP header int clone_it, gfp_t gfp pask, w32 rev_axt)
And pushlng to the IP /ayer const struct inet_connection_sock *icsk = inet_csk(sk);

struct inet_sock *inet;
struct tep_sock *tp;

struct tcp_skb_cb “tcb;
struct tcp_out_options opts;

37

In the IP layer

Build the IP packet here

/* Note: skb->sk can be different from sk, in case of tunnels */
int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
__u8 tos)

{

struct inet_sock *inet = inet_sk(sk);

struct net *“net = sock_net(sk);

struct ip_options_rcu *inet_opt;

struct flowid “fl4;

struct rtable *rt;

struct iphdr *iph;

int res;

/* Skip all of this if the packet is already routed,
* f.e. by something like SCTP.
*/

rcu_read_lock();

inet_opt = rcu_dereference(inet->inet_opt);

fl4 = afl->u.ip4;

Route resolution

int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)

{
— struct net_device *dev = skb_dst(skb)->dev, *indev = skb-->dev;

IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb-=len);

skb->dev = dev;
skb->protocol = htons(ETH_P_IP);

static int __1ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)

{

unsigned int mtu;

#1f defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
/* Policy lookup after SNAT yielded a new policy */

if (skb_dst(skb)->xfrm) {

IPCB(skb)->flags |= IPSKB_REROUTED;

return dst_output({net, sk

, skb); _ 38

Back into netdev structure and functions...

static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)

{

struct net_device *dev = skb->dev;
struct netdev_queue “txq;

struct Qdisc *q;

int rc = -ENOMEM;

bool again = false;

skb_reset_mac_header(skb);

1f (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);

/* Disable soft irqs for various locks below. Also

* stops preemption for RCU.

struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device

{

struct netdev_queue “txq, int *ret)

struct sk_buff *skb = first;
int rc = NETDEV_TX_OK;

while (skb) {
struct sk_buff *next = skb-=>next;

skb_mark_not_on_list(skb);

if (unlikely(!dev_xmit_complete(rc))) {
skb->next = next;
goto out;

*dev,

/"

Various decision regarding packet
scheduling , quality of service, packing
packet rates, etc. are made here

A different kernel subsysem: qdiscs

https://www.linuxjournal.com/content/qu
eueing-linux-network-stack

Actual transmission can run in softirq

39

https://www.linuxjournal.com/content/queueing-linux-network-stack
https://www.linuxjournal.com/content/queueing-linux-network-stack

A Packet’s Journey - (simplified) Sending Path

Queue data Application
when application q
calls send() Elﬂl |—H_| |—H_| datagrams
D
. stream
TCP ICMP

\

Perform data packet building @ IP pracessing
e TCP header \, Operating
e which device
/ @ Tell the device driver to transmit

Network Interface the packet
Controller (NIC)

\ @ Packet is transmitted on the network

40

Zero-copy Transmission

Question: how many time data is copied when doing a packet transmission?

Application
|>Dj|'_|| |—H_| |—H_| datagrams
stream

Networking stack
N\

Netwo rk}wte rfae

Controller (NIC)

41

Zero-copy Transmission

Question: how many time data is copied when doing a packet transmission?

Answer: 1 time, when copying out from the user buffer into the kernel buffer
e DMA is not counted as a copy (NIC is doing it, not the CPU), 2x memory crossing

Application
| VIRl
Copy is happening here D '_' HU HU datagrams
e From: user buffer
e To: kernel buffer (in SKB) stream

Networking stack
N\

Network Interfae

Controller (NIC)

sk->sk_write_queue

Why copy is necessary?
42

Why do zero-copy?

Can we do better? Before we answer that, why copying is necessary?

Kernel cannot control when the DMA happens
User process can be (de)scheduled at any time, hence, memory mappings are not valid
Kernel need access to data in case of retransmission

Kernel need to respect restrictions on memory alignment,
location, and sizes (that a NIC can DMA or I/0 to) A

100% —

NIC driver

|

What would it bring?

ctxt switches
/| & syscalls

~iTCPIP

Free CPU from doing data copy

Better performance

Free CPU cycles for execution of application
Better energy efficiency

I

50% —

CPU load

|| data
| copies

http://www.frev.ws/iwarp/PhD Thesis iIWARP _PhilipFrey.pdf Everything on CPU

http://www.frey.ws/iwarp/PhD_Thesis_iWARP_PhilipFrey.pdf

How it might look like?

Assuming that the NIC has architectural features to do arbitrary DMA

user buffer (va)

{pages are pinned (why?)

tcp_hdr (void *kal)

ip_hdr (void *ka2)

tkal, ka2, va}

NIC transmission

X

How it might look like?

Assuming that the NIC has architectural features to do arbitrary DMA

user buffer (va)

tcp_hdr (void *kal)

ip_hdr (void *ka2)

\ {kat, ka2, va}

What is this call here?

NIC transmission

X

«— " Weonly know send(void *, int);

................... (

pages are pinned (why?)

45

MSG _ZEROCOPY: New Linux feature (only for TCP)

if (setsockopt(fd, SOL_SOCKET, SO_ZEROCOPY, &one, sizeof(one)))

error(1, errno, "setsockopt zerocopy");

register your intent (legacy-proof)

ret = send(fd, buf, sizeof(buf), MSG_ZEROCOPY);

pfd.fd = fd;
pfd.events = ©;
if (poll(&pfd, 1, -1) != 1 || pfd.revents & POLLERR == 0)

error(1, errno, "poll");

ret = recvmsg(fd, &msg, MSG_ERRQUEUE);
if (ret == -1)

error(1, errno, "recvmsg");

read_notification(msg);

https://www.kernel.org/doc/html/latest/networking/msg

pass the additional flag: MSG_ZEROCOPY

Wait until it is safe to reuse the buffer again

T

why?

zerocopy.html 45

https://netdevconf.info/2.1/session.html?debruiin

https://www.kernel.org/doc/html/latest/networking/msg_zerocopy.html
https://netdevconf.info/2.1/session.html?debruijn

How much does it save us?

NETPERF=./netperf -t TCP_STREAM -H $host -T 2 -1 30 -- -m $size
perf stat -e cycles $NETPERF
perf stat -C 2,3 -a -e cycles $NETPERF
Application cycle system-wide
--process cycles = ----Ccpu cycles--~>
std zc [% std zC
4K 27,609 11,217 [41 49,217 39,175
16K 21,370 3,823 | 18 43,540 29,213
64K 20,557 2,312 11 42,189 26,910
256K 21,110 2,134 \ 10 43,006 27,104
1M 20,987 1,610 \ 8 42,759 25,931

https://netdevconf.info/2.1/slides/apr6/msgzerocopy-willemdebruijn-20170405.pdf

https://netdevconf.info/2.1/slides/apr6/msgzerocopy-willemdebruijn-20170405.pdf

Long History of Zero Copy Stacks

Zero-Copy TCP in Solaris

e Thereis along history of developing Hakns b Ch

SunSoft Inc.
p y () Abstract Recent efforts focus on designing an optimal architec-
H H H 1 H Tey { 5 LRI ture capable of moving data between application
o Ofte n I I m Itatl O n S We re I I m |ted d u e to m'L\ 'Plulx“l' desc?nhcs Anew teulf:e "; So'::“"' u“’s v"s“ domains and network i:terfawx widm}u CPU inter-

gains in the CPU performance due to Moore’s law

o Many architectectural pitfalls:
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/zero-copy-tcp-
solaris (very good reading)

e In Linux today, there are more calls
o sendfile, splice, vmsplice (check their man pages, to transfer data between fd and pipes)

Can you implement a zero-copy receiving stack?

We will revisit the idea of zero-copy stack later in the course

https://www.usenix.org/conference/usenix-1996-annual-technical-conference/zero-copy-tcp-solaris
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/zero-copy-tcp-solaris

Types of Optimization(s) or Overhead(s)

Often in paper/research reports you will see when talking about overheads or
optimization, there are two classes of operations

1. Per-packet operations
2. Per-byte operations

What are these?

49

Overhead(s)

Operations that needs to be done on
per packet basis

Examples:

Generation of TCP / IP packets
Allocation of SKB structure
TCP state machine transition
ACK generation

Queue management

vk wn =

Cost increases with the number of packets

Operations that needs to be done on
per-byte basis in any packet

Examples:

1. Data copies

2. Checksum generation

3. DMA

4. IPSec (encryption/decryption)

Cost increases with the number of bytes

50

Classify these optimization for per-byte or per-packet

e Jumbo packets

e TCP segmentation offloading (TSO)
e Checksum offloading

e Large Receive Offload (LRO)

e Interrupt coalescing

e Scatter-gather I/0O capabilities

e Zero-copy stack

Think: do they change the number of packet or number of bytes that a CPU need to process

51

Key Message Here is

Networking does not happen in isolation

Memory management: SKB, rx/tx queues, user buffers

Scheduling : softirq, kthreads, user threads

Device management : NAPI, ethtool, MTU management
Architectural implications : DMA, alignment, system calls, interrupts
...and everything happening inside an operating system

Sending and receiving data have many parameters that can be set and
optimized for application’s needs, check the man pages
atr@atr:~$ man 7 tcp

atr@atr:~$ man 7 ip
atr@atr:~$ man 7 socket

52

Recap: What You Should Know from this Lecture

1. A general idea about Linux networking stack internals
a. How is the source code organized

What is a SoftIRQ, top-half, and bottom-half processing

a. Whatyou can and can not in them

What is a NAPI, what is it used for

What is a SKB

What happens when a user application calls : send(), recv()
What is a zero/one copy stack? What is it good for?

A

o v kW

Next week we will see what challenges this basic stack has to deal with in
presence of high performance networks like 100 Gbps

53

Next Lecture: Multicore scalability

i
el
e ; Processor Frequency Scaling Over Time
10000
3162

1000

316

clock frequency (MHz)

100

But then something happened here, and all
our dreams of 10 GHz CPU were shattered ;)

LT

CPU DB: Recording Microprocessor History, https://queue.acm.org/detail.cfm?id=2181798 (really cool read!)

https://www.deviantart.com/darhymes/art/Back-to-the-Future-lcon-276270476

54

https://queue.acm.org/detail.cfm?id=2181798
https://www.deviantart.com/darhymes/art/Back-to-the-Future-Icon-276270476

Useful links and references (some briefly outdated)

The linux networking architecture, https://www.slideshare.net/hugolu/the-linux-networking-architecture

2. TCP Implementation in Linux: A Brief Tutorial, https://snOrt.github.io/media/paper/TCPlinux.pdf
3. Path of a packet in the Linux kernel stack,

https://www.cs.dartmouth.edu/~sergey/netreads/path-of-packet/Network stack.pdf
4. Understanding Linux Network Internals, Book by Christian Benvenuti,

Linux kernel documentation: https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html

55

https://www.slideshare.net/hugolu/the-linux-networking-architecture
https://sn0rt.github.io/media/paper/TCPlinux.pdf
https://www.cs.dartmouth.edu/~sergey/netreads/path-of-packet/Network_stack.pdf
https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html

