
Advanced Network Programming (ANP)
XB_0048

Linux Networking
Animesh Trivedi

Autumn 2020, Period 1

1

Layout of upcoming lectures - Part 1
Sep 1st, 2020 (today): Introduction and networking concepts

Sep 3rd, 2020 (this Tuesday): Networking concepts (continued)

Sep 8th, 2020 : Linux networking internals

Sep 10th 2020: Multicore scalability

Sep 15th 2020: Userspace networking stacks

Sep 17th 2020: Introduction to RDMA networking

2

● MTU and link efficiency
● TSO, LRO, GRO
● TCP offload engine
● Stateless and stateful

offloads

Application

A packet’s journey - (simplified) Receiving path

3

Network Interface
Controller (NIC)

1

2

device driver

IP processing

TCP UDP ICMP

3

4

A new packet arrives from the network

Notify the operating system
All network cards have device drivers

Perform network processing
figure out which application
queue data into the queue

Consume data
when application
calls recv()

Operating
Systems

stream

datagrams end-host

Linux Code Layout

4

All networking device drivers are here

Ethernet drivers here

IPv4, TCP, UDP implementation here

Many common helper routines here (buffers, sockets)

What NIC / driver do you use?

5

Active NIC interfaces

ethtool -i wlp2s0 (info)

driver in use for this device

6

● Linux kernel source code, function or structure names, command names or their
parameter are not a part of your exam

● Information on various external links is not a part of your exam
○ they are put here for your reading, understand, and reference, if you are interested

However, various high level ideas and concepts in networking (which are on these
slides) are part of your exam. For example, what is NAPI? Why it was designed?

Too much information?

https://www.vectorstock.com/royalty-free-vector/input-overloading-information-overload-concept-vector-22789545

7

Applications

The device interface

System Calls

Networking Stack

Device Driver

NIC

userspace

kernel

hardware

The device interface: Rings

8

Applications

System Calls

Networking Stack

Device Driver

NIC

RX TXinterrupts
TX/RX ring /queues

010101

010101

NIC does DMA (producer)
Marks the buffer used

Networking stack processes (consumer)
Unlinks the buffers, and posts new

This producer-consumer ring pattern is a very common data structure (and
pattern) in many areas in OS, virtualization, storage and networking designs

Memory buffers

userspace

kernel

hardware

Linux Tool: ethtool -g

9

Linux Packet Receive Path

10

Copy and consumption by an application

Queueing up at a socket receive queue

Local TCP/UDP processing

Local IP processing

Socket Kernel Buffer (SKBs)

Networking stack: “bottom-half” (softirqs)

Networking stack: “top-half”

Hardware interrupt

Does DMA to the next free ring buffer address

NIC receives a packet

The Source Code is all we have ;)

11

https://www.slideshare.net/Saruspete/linux-network-stack-120620136

Linux Packet Receive Path
A networking device in Linux is
represented by struct net_device

● Contains functions for all device I/O
activities, management, bringing up
and down the device
struct net_device_ops

● Very very large structure
● Makes the contract between a device

driver and the rest of the networking stack

12

https://elixir.bootlin.com/linux/latest/source/include/linux/netdevice.h

https://elixir.bootlin.com/linux/latest/source/include/linux/netdevice.h

Linux Packet Receive Path

13

1. Packet received

1010
1001
0101

DRAM

2. DMA to memory using ring
buffer addresses

3. Raise an interrupt
Network device driver

[interrupt handler, see
int request_irq(...);

int free_irq(...);]

4. Run IRQ handler

5. ACK and clear IRQ

6. napi_schedule

https://linux-kernel-labs.github.io/refs/heads/master/labs/interrupts.html

What is New API (NAPI)? (so much innovation in naming)

New API or NAPI is the
implementation of interrupt
mitigation technique that we looked earlier (all info in: struct napi_struct)

● By default interrupt: check if NAPI is already requested to be scheduled
● In the NAPI processing:

○ Interrupts on the NIC are disabled
○ Process certain number of “weight” packets in one go
○ Poll the device driver (by calling a driver provided function) to check if there are more

packets ready for processing
■ void netif_napi_add(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct

napi_struct *, int), int weight);
○ If not enough packets available, then yield
○ The driver will enable the interrupt-driven notification again on the NIC 14

What does napi_schedule do?

15

What is a softirq?

https://elixir.bootlin.com/linux/v4.0/source/include/linux/netdevice.h
https://elixir.bootlin.com/linux/v4.0/source/net/core/dev.c

Who is processing NAPI?

16

Interrupt handler

protocol processing

Application When processing an interrupt …

● Interrupt handling is a high priority work

● All further interrupts are disabled (on the _CPU_, not just the specific
device which generated the interrupt)
○ If there are more packets coming in we will miss out on them
○ If ring buffer overflow - then packets are dropped

● Many long events in the incoming packet processing - memory
allocation, scheduling of application process to consume incoming
data, TCP ACK generation, TCP transmission processing … a LOT of
work

We can not disable interrupt for this long to do all this work in the
interrupt handler

Linux: Top-Half and Bottom-Half Processing

17

Interrupt handler

softirqd

protocol processing

Top-Half Interrupt Processing
- Very high priority, very small
- Mostly cleaning hardware registers
- Copying out pointers
- Scheduling the bottom half, if not already there

Bottom-half processing (also known as SoftIRQs)
- High priority
- Most of the protocol processing
- Have interrupts enabled (can be preempted)
- Can preempt other kernel threads, user processing

Linux Kernel: Deferred Work Processing Framework

Linux Kernel has multiple mechanisms for deferred work processing

● SoftIRQs: A specific number of predefined SoftIRQ / core for specific tasks (e.g., RX, TX, timer). No
blocking calls. Concurrent execution of same type of softirq on different CPUs.

● Tasklets: A more flexible SoftIRQs that can be allocated and used by different kernel subsystems.
No blocking calls. No concurrent execution of the same tasklet on different CPUs, serialized.

● WorkQueues: A kernel thread pool with an immediate or delayed work execution in a process
context. Can have blocking calls. Managed by the kernel.

● Kernel Threads: A generic kernel thread, to be used for any purpose by the caller.

It is very very important to always know in what context the code is executing, determines what action you can or cannot

do, and how you should be locking and synchronize with other execution context inside a kernel

18

https://linux-kernel-labs.github.io/refs/heads/master/labs/deferred_work.html#

Preemption order and locking

19https://www.kernel.org/doc/html/latest/kernel-hacking/locking.html

https://www.kernel.org/doc/html/latest/kernel-hacking/locking.html

Linux Commands

20

There is a priority order with the SoftIRQs defined, as you see in
the print order: high priority, timer, network, block, polling,
tasklets, scheduler, hrtimer, and RCU locks.

As usual there is a lot of information present in the /proc interface
that you can explore about these execution threads.

Understand: preemption vs. priority

For more reading

21

http://www.cs.columbia.edu/~nahum/w6998/papers/2003-wilcox-softirq.pdf
https://www.kernel.org/doc/html/latest/kernel-hacking/locking.html

Coming Back to NAPI Packet Processing
The main entry point for NET_RX_SOFTIRQ processing is :
static void net_rx_action(struct softirq_action *h)

Polls the network device, where

● Packets are build
● Pushed in the netstack for processing
● Return the “budget” consumed
● If budget consumed, or

time to reschedule : break

LRO/GRO merging can happen in the driver

22

https://elixir.bootlin.com/linux/latest/source/net/core/dev.c#L6729

In the Driver Polling Function
Data packets are build and pushed into

This does not do much, a bit of
accounting, backlog processing, various
tracking hooks before being delivered to
the networking layer at

But hold on, what is this

23

Socket Kernel Buffer or SKB

One of the most important data types in
the Linux kernel

Represent a data packet in processing

Has headers, trailer, data, metadata,
Linux specific details -- all in a single
structure

Can be extremely complex
(a simplified version of this is
Socket User Buffer (struct su_buff) is
provided in the ANP netstack)

24

SKB Basic Idea

Logically it contains

● link list pointers
● which netdev
● which socket
● place for headers / trailers

for various protocols
● various Linux specific accounting and reference counting information

25

http://satishabbu.blogspot.com/2015/05/skb-tinkering-part-2.html

SKB Pointers and Operations

26

head room

user data

tail room

skb_shared_info

head

data

tail

end

length

routing?

Continuing the Data Receiving: main functions

27

Packet needs forwarding

It’s for us

IP tx path

https://elixir.bootlin.com/linux/latest/source/net/ipv4/ip_input.c

IP Processing : pushing it to the transport

1. If there is a need for packet
assembly

2. If there are networking
packet processing rules (netfilter)
a. Special hooks
b. Programmable code
c. Accounting and memory management

3. Lastly, once the whole packet is ready, find the appropriate transport
protocol function and call it

28
PS~ we are still in a softirq

Transport Entry Point: tcp_v4_recv

29

Not found

https://elixir.bootlin.com/linux/latest/source/net/ipv4/tcp_ipv4.c

TCP Packet Processing

30

State machine processing

Data processing
in ESTB. state

After the state processing ...

31

● Each socket has a receive queue associated with it so the incoming packets are queue there
● When a user application calls “recv” then this queue is processed and consumed

Check if ACK needs to be sent

Check if TX is suspended

eventually

How does the application side look like?

32

recv(...)

● If there is enough data available on
the socket receive queue then copy
the data out

● Otherwise block and wait until
more data arrives
○ Also non-blocking modes

possible

ps~ this is _NOT_ in a softirq

What are the key components that run

33

Application

Network Interface
Controller (NIC)

device driver

IP processing

TCP UDP ICMP
stream

datagrams

Hardware interrupt
context

SoftIRQs

Process
context

Shared data structures
must be protected properly
from concurrent execution

In the ANP project (at least 3 threads)

34

TAP device
Timer thread

TCP client
send/recv

TCP Sending Path
Sending path is (relatively) simpler less complex than the receiving path, why?

Receiving path is very asynchronous, what does this mean? Lots of events
happening that one cannot schedule properly on the time of their choosing:

○ Reception of a packet
○ Interrupts
○ Timeouts
○ Application calling receive

That means we need to be ready at any time to process events

In comparison to this, sending side is considered synchronous, that means we
can control what happens when on the sending path
● There are no unexpected events

35

Often in network benchmarking you will see the
receiving side becoming CPU bottleneck before the
sending side.

When does send processing starts?

36

socket write queue

Data is copied into the kernel space from
user space

After Copying …

37

Checks all TCP parameters, ACKs,
window size

Building an actual TCP header
And pushing to the IP layer

ip_queue_xmit()

In the IP layer

38

Build the IP packet here

Route resolution

Back into netdev structure and functions…

39

Various decision regarding packet
scheduling , quality of service, packing
packet rates, etc. are made here

A different kernel subsysem: qdiscs

Actual transmission can run in softirq

https://www.linuxjournal.com/content/queueing-linux-network-stack
https://www.linuxjournal.com/content/queueing-linux-network-stack

A Packet’s Journey - (simplified) Sending Path

40

Network Interface
Controller (NIC)

4

3

device driver

IP processing

TCP UDP ICMP

Application

2

1

Packet is transmitted on the network

Tell the device driver to transmit
the packet

Perform data packet building
● TCP header
● IP header
● which device

Queue data
when application
calls send()

Operating
Systems

stream

datagrams

Zero-copy Transmission
Question: how many time data is copied when doing a packet transmission?

41

Network Interfae
Controller (NIC)

Networking stack

Application

stream

datagrams

Zero-copy Transmission
Question: how many time data is copied when doing a packet transmission?

Answer: 1 time, when copying out from the user buffer into the kernel buffer
● DMA is not counted as a copy (NIC is doing it, not the CPU), 2x memory crossing

42

Copy is happening here
● From: user buffer
● To: kernel buffer (in SKB)

sk->sk_write_queue

Network Interfae
Controller (NIC)

Networking stack

Application

stream

datagrams

Why copy is necessary?

Why do zero-copy?
Can we do better? Before we answer that, why copying is necessary?

● Kernel cannot control when the DMA happens
● User process can be (de)scheduled at any time, hence, memory mappings are not valid
● Kernel need access to data in case of retransmission
● Kernel need to respect restrictions on memory alignment,

location, and sizes (that a NIC can DMA or I/O to)

What would it bring?

● Free CPU from doing data copy
● Better performance
● Free CPU cycles for execution of application
● Better energy efficiency

43

http://www.frey.ws/iwarp/PhD_Thesis_iWARP_PhilipFrey.pdf

How it might look like?
Assuming that the NIC has architectural features to do arbitrary DMA

44

user buffer (va)

tcp_hdr

ip_hdr

pages are pinned (why?)

NIC transmission

{ka1, ka2, va}

How it might look like?
Assuming that the NIC has architectural features to do arbitrary DMA

45

user buffer (va)

tcp_hdr

ip_hdr

pages are pinned (why?)

NIC transmission

What is this call here?
We only know send(void *, int);

{ka1, ka2, va}

MSG_ZEROCOPY: New Linux feature (only for TCP)

46●
●

register your intent (legacy-proof)

pass the additional flag: MSG_ZEROCOPY

Wait until it is safe to reuse the buffer again

why?

https://www.kernel.org/doc/html/latest/networking/msg_zerocopy.html
https://netdevconf.info/2.1/session.html?debruijn

How much does it save us?

47

Application cycle system-wide

https://netdevconf.info/2.1/slides/apr6/msgzerocopy-willemdebruijn-20170405.pdf

Long History of Zero Copy Stacks
● There is a long history of developing

zero-copy stacks (1980s)
○ Often limitations were limited due to

gains in the CPU performance due to Moore’s law
○ Many architectectural pitfalls:

(very good reading)

● In Linux today, there are more calls
○ (check their man pages, to transfer data between fd and pipes)

Can you implement a zero-copy receiving stack?

We will revisit the idea of zero-copy stack later in the course 48

https://www.usenix.org/conference/usenix-1996-annual-technical-conference/zero-copy-tcp-solaris
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/zero-copy-tcp-solaris

Types of Optimization(s) or Overhead(s)
Often in paper/research reports you will see when talking about overheads or
optimization, there are two classes of operations

1. Per-packet operations
2. Per-byte operations

What are these?

49

Overhead(s)
Operations that needs to be done on
per packet basis

Examples:

1. Generation of TCP / IP packets
2. Allocation of SKB structure
3. TCP state machine transition
4. ACK generation
5. Queue management

Cost increases with the number of packets

50

Operations that needs to be done on
per-byte basis in any packet

Examples:

1. Data copies
2. Checksum generation
3. DMA
4. IPSec (encryption/decryption)

Cost increases with the number of bytes

Classify these optimization for per-byte or per-packet

● Jumbo packets

● TCP segmentation offloading (TSO)

● Checksum offloading

● Large Receive Offload (LRO)

● Interrupt coalescing

● Scatter-gather I/O capabilities

● Zero-copy stack

51

Think: do they change the number of packet or number of bytes that a CPU need to process

Key Message Here is
Networking does not happen in isolation

● Memory management: SKB, rx/tx queues, user buffers
● Scheduling : softirq, kthreads, user threads
● Device management : NAPI, ethtool, MTU management
● Architectural implications : DMA, alignment, system calls, interrupts
● ...and everything happening inside an operating system

Sending and receiving data have many parameters that can be set and
optimized for application’s needs, check the man pages

atr@atr:~$ man 7 tcp
atr@atr:~$ man 7 ip
atr@atr:~$ man 7 socket 52

Recap: What You Should Know from this Lecture

1. A general idea about Linux networking stack internals
a. How is the source code organized

2. What is a SoftIRQ, top-half, and bottom-half processing
a. What you can and can not in them

3. What is a NAPI, what is it used for
4. What is a SKB
5. What happens when a user application calls : send(), recv()
6. What is a zero/one copy stack? What is it good for?

Next week we will see what challenges this basic stack has to deal with in
presence of high performance networks like 100 Gbps

53

Next Lecture: Multicore scalability

54

But then something happened here, and all
our dreams of 10 GHz CPU were shattered ;)

??

https://queue.acm.org/detail.cfm?id=2181798
https://www.deviantart.com/darhymes/art/Back-to-the-Future-Icon-276270476

Useful links and references (some briefly outdated)

55

https://www.slideshare.net/hugolu/the-linux-networking-architecture
https://sn0rt.github.io/media/paper/TCPlinux.pdf
https://www.cs.dartmouth.edu/~sergey/netreads/path-of-packet/Network_stack.pdf
https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html

