Advanced Network Programming (ANP)
XB_0048

Networking concepts

Animesh Trivedi
Autumn 2020, Period 1

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

Layout of upcoming lectures - Part 1

Sep 1st, 2020 (today): HrtreductHon-ara-retworkins-coneepts

Sep 3rd, 2020 (this Tuesday): Networking concepts (continued) -
Sep 8th, 2020 : Linux networking internals

Sep 10th 2020: Multicore scalability

Sep 15th 2020: Userspace networking stacks

Sep 17th 2020: /ntroduction to RDMA networking

A packet’s journey - (simplified) Receiving path

. o '\
Consume data Application
when application A
D i datagrams
calls recv() {D - |EH_| |—H_| g)
D =
" stream > ;
TCP ICMP o
f\ 2
IP processing
Eerform ?et\r/]\{orr]k prcjlf:esjcsing \ Operating
o ata in AT device driver Systems)

gueue data into the queue

/ \ @ Notify the operating system

Network Interface All network cards have device drivers
Controller (NIC)

\ @ A new packet arrives from the network

Still many unanswered questions here

Think of the receive path. This is more complicated than the sending path (can
you think of why?)

4, How much time/steps it takes to receive data? 1 bytes, 1 kB, 1 MB, or 1
GB?
5. ...and many many many more questions.

Lets answer some of them, one by one and introduce the key ideas

What is the unit of data processing, and network 1/0?

The Unit of Processing

What is the largest amount of data you can
transmit in a single send() call?

/

userspace Application
stem cCa H /
>ystem ca e JL send (...);
kernel Networking Stack
hardware Network Interface Controller (NIC)

u|:> packet

$man send

SEND(2) Linux Programmer's Manual SEND(2)
NAME
send, sendto, sendmsg - send a message on a socket POSIX Standard
- unsigned int
SYNOPSIS - unsigned long

#include <sys/types.h>

#include <sys/socket.h> At least 16 bits

ssize_t send(int sockfd, const void *buf, |[size_t len, int flags);

On my x86_64/Linux it is
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags, 8 bytes
const struct sockaddr *dest addr, socklen_t addrlen);

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);

DESCRIPTION
The system calls send(), sendto(), and sendmsg() are used to transmit a
message to another socket.

The send() call may be used only when the socket i?% in a connected
state (so that the intended recipient is known). e only difference
between send() and write(2) is the presence of flags. With a zero
flags argument, send() is equivalent to write(2). Also, the following
call

The unit of network processing

Can you send 1 GB packet on the network?

userspace Application

System call

... JL send (1GB); Let’s assume we call 1GB send

kernel Networking Stack

IE
D — How big this can be?

hardware Network Interface Controller (NIC) /
b:> frame

The unit of network processing

Application
Syster.nmc.:é.l.;L. .. JL send (]GB)’

Networking Stack (\ ﬂ ;/Vhy bother? Why does the
oop count matter

|CEIATA

Network Interface ControllH(NM \
U

The loop count

- 100 bytes

100 bytes

Each layer 1 iteration,
total 3 iterations done

100 bytes -

™ WL

In total 13 iterations

10

Key challenge: different units of data processing

Multiple different abstractions and units

e Transport segments

e Network packets

Host Layers
N

e Linklayer frames

These three can be off different sizes for =
different protocols, and yet we need to have a

notion of interoperability.

Media Layers
A

— Y S\t ¢ T

[

data unit layers
Application
Data Fe -
Network Process to Application
Presentation
Data Data Representation
and Encryption
Dat Session
2 Interhost Communication
Transport
Segments End-to-End Connections
and Reliability
Network
Packets Path Determination and
Logical Addressing (IP)
Data Link
Frames Physical Addressing
(MAC and LLC)
) Physical
Bits Media, Signal and

Binary Transmission

L A AU IREETA A A

By Offnfopt - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=39917431

11

https://commons.wikimedia.org/w/index.php?curid=39917431

Why does “the loop count” matter?

The number of times you execute the “/loop” depends on the
number of “units” at every layer

1. Programing hardware for TX/RX is a slow operation, so
you want to do it as little as possible (frames)

2. There are per packet operations such as building
packet headers and calculating checksums - you want
to do many little times as possible

3. Per segment overheads (TCP), ACKs, SEQ processing,
delivery to userspace, notification management -
minimize it as much as possible

Host Layers

Media Layers

By Offnfopt - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=39917431

—
pa—

Y YA Y Y Y

data unit layers
Dat Application
2 Network Process to Application
Presentation
Data Data Representation
and Encryption
Dot Session
22 Interhost Communication
Transport
Segments End-to-End Connections
and Reliability
Network
Packets Path Determination and
Logical Addressing (IP)
Data Link
Frames Physical Addressing
(MAC and LLC)
. Physical
Bits Media, Signal and
Binary Transmission

12

https://commons.wikimedia.org/w/index.php?curid=39917431

Key challenge: differer‘, . ‘its of data processing

P 2
‘x\a‘»]

e cker] [Errata]
1o 2%
. . e HISTORIC
I- el
Multiple different ~ c\"“\ Errata Exist
e etwork Working Group J. Postel
Request for Comments: 879 ISI

November 1983

The TCP Maximum Segment Size
and Related Topics

T}wese'dwree can be off differ This memo discusses the TCP Maximum Segment Size Option and related
different protocols, and yet V| topics. The purposes is to clarify some aspects of TCP and its

notion of interoperability. interaction with IP. This memo is a clarification to the TCP
specification, and contains information that may be considered as

"advice to implementers".
L N < S A

By Offnfopt - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=39917431

13

https://commons.wikimedia.org/w/index.php?curid=39917431

The Unit of Processing

Can you send 1 GB packet on the network?

Application

J L send (1GB);

Networking Stack

I

Network Interface Controller (NIC)

S

How big this can be?
any guesses?

The Unit of Processing - MTU

ETH ip | TCP data trailer

A MTU (closely, but not exactly) defines how big a frame on a link layer (L2) can be

MTU is “network-layer concept” that defined what is the largest protocol data unit (PDU) (.e.g., for IP it is the
packet) that can be sent/received in a single “network” layer operation (L3)

e |Pv4 Specification expect any L2 layer to support at least 576 bytes of data (old days!)
e Anything less than that, IPv4 will not work. Then L2 must then provide its own way of assembly

Maximum Transmission
Network Interface Controller (NIC) Unit (MTU)

1

https://tools.ietf.org/html/rfc791 (IP RFC) lLIZ\‘> ’ frame 15

https://tools.ietf.org/html/rfc791

The Unit of Processing - MTU

ETH ip | TCP data trailer

A small MTU:
+ more multiplexing, fine grained transmission
- inefficiency (see next slides)

A large MTU
+ less packets, more data per packet, more efficiency
- introduces delay for the next packet, link hogging
- if corrupted then a big overhead to retransmit data

Network Interface Controller (NIC)

1

Maximum Transmission

Unit (MTU)

16

Example: Ethernet MTU

Ethernet has a MTU of 1500 Bytes (payload, excluding its own headers)

® Historical reasons, trade-off between NIC data buffering capacity (onboard memory) and speed
e Thisis greater than 576 octet expected for IPv4, hence, OK

Start Frame Delimiter

Preamble (7) | SFD (1) Ethernet Frame (1518) Inter packet gap (12)

dst mac (6) | src mac (6) type (2) payload (1500)~] crc(4)

IP hdr (20) | TCP hdr (20) || payload (1460)

https://app.netrounds.com/static/2.33.2/support/defs-notes/theor-thput.html
http://switchpacket.blogspot.com/2014/07/understanding-difference-between-mtu.html

https://app.netrounds.com/static/2.33.2/support/defs-notes/theor-thput.html
http://switchpacket.blogspot.com/2014/07/understanding-difference-between-mtu.html

Calculating Ethernet Efficiency for TCP packets

Preamble (7) | SFD (1) Ethernet Frame (1518) Inter packet gap (12)
dst mac (6) | src mac (6) type (2) payload (1500)~] crc(4)
Smallest header $1265C_ 1P hdr (20) | TCP hdr (20) |) payload (1460)

1 Gbps Ethernet link : 10° bits per second on the wire, when constructing a maximum MTU
packet
[J

Total bits on the wire : 1500 + 18 (ETH) + 8 (preamble+SFD) + 12 (gap)
[]

= 1,538 bytes
Total actual data payload in the packet : 1500 - IP hdr (20) - TCP hdr (20) =

1
1,460 bytes
Efficiency = (1500 - 40 /1500 + 38)*100 = 94.93% (in reality, TCP and IP have larger headers)

Hence, on a 1 Gbps link you cannot deliver more than a TCP application bandwidth of 949.3 Mbps

18

Can we improve it?

Ever heard of JUMBO frames? (https://en.wikipedia.org/wiki/lumbo frame)
e Ethernet standard to support larger frames
e Most common 9000 bytes

r.g:

YES WE CAN

Let's do the previous calculation again, substituting 1500 by 9000

e Total bits on the wire : 9,000 + 18 (eth) + 8 (preamble) + 12 (gap) = 9,038 bytes
e Total actual data payload in the packet : 9,000 - IP hdr (20) - TCP hdr (20) = 8,960 bytes

Efficiency = (9000 - 40 /9000 + 38)*100 = 99.14%

Hence, on a 1 Gbps link your maximum bandwidth improves from 949.3 Mbps to 991.4 Mbps

9000 MTU is common inside data centers, where as 1500 common on Internet, why?

) . . , 19
https://metalenborden.nl/index.php/webwinkel/postcards-retro/v-amerika/barack-obama-yes-we-can-postcard-retro-metaal-detail

https://metalenborden.nl/index.php/webwinkel/postcards-retro/v-amerika/barack-obama-yes-we-can-postcard-retro-metaal-detail
https://en.wikipedia.org/wiki/Jumbo_frame

So let's use Jumbo frames everywhere

Advantages:
+ Good throughput
+ Good efficiency

r.g:

YES WE CAN

- Needs support from the NIC -
- Needs support from the Ethernet switch 1]
- Needs support from the routers I
- Can induce delays and multiplexing issues |]

Inside a data center, we use 9K MTU Time (1)

Outside, on the Internet??

https://metalenborden.nl/index.php/webwinkel/postcards-retro/v-amerika/barack-obama-yes-we-can-postcard-retro-metaal-detail

20

https://metalenborden.nl/index.php/webwinkel/postcards-retro/v-amerika/barack-obama-yes-we-can-postcard-retro-metaal-detail

So let's use Jumbo frames everywhere

Advantages:
+ Good throughput
+ Good efficiency

r.g:

YES WE CAN

- Needs support from the NIC -
- Needs support from the Ethernet switch 1]
- Needs support from the routers IR
- Caninduce delays and multiplexing issues ”

Inside a data center, we use 9K MTU
Outside, on the Internet??
e Path MTU discovery (PMTUD) protocols

O ping -s ??? -c 1 -M do 172.217.20.78 https://elifulkerson.com/projects/mturoute.php
O traceroute --mtu 172.217.20.78

https://metalenborden.nl/index.php/webwinkel/postcards-retro/v-amerika/barack-obama-yes-we-can-postcard-retro-metaal-detail

21

https://metalenborden.nl/index.php/webwinkel/postcards-retro/v-amerika/barack-obama-yes-we-can-postcard-retro-metaal-detail
https://elifulkerson.com/projects/mturoute.php

Linux Tools - ifconfig

atr@atr-XPS-13:~$ ifconfig
enx9cebe8cd8f1l: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether 9c:eb:e8:cd:8f:11 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped © overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1O<host>

5 e | h k)
E§°gacﬁ:‘t‘:eg§§§" ;3225 éégggtatp@nantra-rXPS-B:~$ sudo ifconfig lo mtu 8192

[sudo] password for atr:
RX errors 0 dropped 0 over] : .
TX packets 3571 bytes 56680¢3tr@atr-XpPS-13:~ ifconfig lo
TX errors 0 dropped 0 overr‘lo: flag§=73<UP,LOOPBACK,RUNNING> mtu 8192
inet 127.0.0.1 netmask 255.0.0.0
a inet6 ::1 prefixlen 128 scopeid 0x1lO<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 3571 bytes 566808 (566.8 KB)
RX errors © dropped © overruns 0 frame 0
TX packets 3571 bytes 566808 (566.8 KB)
TX errors @ dropped © overruns © carrier ® collisions 0I

22

Linux Tools - MTU shenanigans

| changed the local MTU to 2000 bytes

:=$ sudo tcpdump -i wlp2s0O icmp
tcpdump: verbdse output suppressed, use -v or -vv for full protocol decode
jlListening on wlp2s0, link-type EN1OMB (Ethernet), capture size 262144 bytes
117:27:59.872602 IP atr-XPS-13 > ams1l5s33-in-f14.1el100.net: ICMP echo request, id 15279, seq 1, length 1468
:27:59.878737 IP ams15s33-in-f1l4.1el00.net > atr-XPS-13: ICMP echo reply, id 15279, seq 1, length 76
:29:07.517540 IP atr-XPS-13 > ams15s33-in-f14.1el00.net: ICMP echo request, id 15337, seq 1, length 1508
:29:27.921086 IP atr-XPS-13 > amsl5s33-in-f14.1el00.net: ICMP echo request, id 15352, seq 1, length 1808

; o i -s 1800 -c¢ 1 -M do 172.217.20.78
:~$ ping -s 2000 -c 1 -M do 172.217.20.78 $ ping -s
PING 172.217.20.78 (172.217.20.78) 2000(2028) bytes of data. EéNG 172.217.26.78 (172.217.20.78) 1800(1828) bytes of data.
ping: local error: Message too long, mtu=2000 --- 172.217.20.78 ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time Oms
--- 172.217.20.78 ping statistics --- 2 B
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time Oms :H$ ping -s 1460 -c 1 -M do 172.217.20.78
I PING 172.217.20.78 (172.217.20.78) 14A0(1488) hvtes of data.
76 bytes from 172.217.20.78: icmp seqg=1 ttl=119 (truncated)

--- 172.217.20.78 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 6.174/6.174/6.174/0.000 ms

. | |

Poing being - 1500 MTU (or 1468B) is the most popular

and common type of MTU supported on the internet
23

The Unit of Processing

Application
1

JL send (1IGB); /

<

Networking Stack f\
| CERIATA
7?

|

Network Interface Controller (NIC)

— SR

frame

How big this can be?

24

Host Layers

Media Layers

A Simple Solution

Just keep it as the MTU size, and create MTU size segments (L4) that become
the MTU size packets (L3) and frames (L2): so essentially 1500 bytes

H send (1GB);

Data Representation

Networking Stack

and Reliability

1500B
How many =1GB /1500 = ~716K packets

Network Interface Controller (NIC)

1

frames b[woos | 15008 || 15008 || 15008 || 15008 |

25

But for a Moment, consider the TCP IP Packet

32

How big a TCP/IP
packet can be?

(o) 4 8 12 16 20 24 28
Ligas Ibad il saf-lagaglbiagalegal idqglagil
Version IHL Type of Service Total Length
- |dentification Flags Fragment Offset
S Timetolive Protocol =6
a
Destination Address
4 Options Padding
ol Source Port Destination Port
§ Sequence Number
Acknowledgment Number
Window

Urgent Pointer

TCP Options Padding

b TCP Data

https://erlerobotics.gitbooks.io/erle-robotics-introduction-to-linux-networking/content/introduction _to _network/img/packet.gif

26

https://erlerobotics.gitbooks.io/erle-robotics-introduction-to-linux-networking/content/introduction_to_network/img/packet.gif

Host Layers

Media Layers

Large Packets

Build large TCP/IP packets (L3), so essentially 64kB (more efficient, less I/0 programming)

But we still can not sent 64kB packets with 1500 MTU?

H send (1GB);

Data Representation

Networking Stack

and Reliability

iL 64K How many = 1GB / 64KB = ~16K packets

Network Interface Controller (NIC)

1

frames b[woos | 15008 || 15008 || 15008 || 15008 |

27

How do we cut / segment this packet?

Packet segmentation (network layer) into smaller
link layer frames (e.g., 1500 Bytes on Ethernet)

s it a difficult job?

e [P already has “fragmentation” support
o Flags, and fragment offset in the header
o All routers and switches support it
o |IP packet can be (de)assembled in hw/sw at
end host (keep track of state)
o See, https://tools.ietf.org/html/rfc815

What about TCP?

By Michel Bakni - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=70267999

Protocol Data Unit (PDU)

||>

2500 Bytes
Data
Protocol Data Units
(Fragments)
2500 Bytes
Data
len=2500 |fragflag = 1| fragoffset = 0@
len=2500 |fragflag = 1| fragoffset = 2500
len=2500 |fragflag = 0 |fragoffset = 7500

28

https://tools.ietf.org/html/rfc815
https://commons.wikimedia.org/w/index.php?curid=70267999

TCP Packet Segmentation

Transmission Control Protocol (TCP) Header
20-60 bytes

source port number
2 bytes

destination port number
2 bytes

What are the fields that will change if a large TCP
segment is cut into multiple packets?

sequence number

4 bytes

acknowledgement number

4 bytes

=
data offset | reserved control flags

4 bits 3 bits 9 bits
) 1

window size
2 bytes

checksum
2 bytes

urgent pointer
2 bytes

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

optional data

0-40 bytes 64KB packet

29

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

TCP Packet Segmentation

Transmission Control Protocol (TCP) Header
20-60 bytes

source port number
2 bytes

destination port number
2 bytes

4 bytes

sequence number /

4 bytes

acknowledgement number

\\\\\
data offset | reserved control flags windo
4bits 3 bits obits | 2 bytes
j) 1

checksum . —|

2 bytes

urgent pointer
2 bytes

0-40 bytes

optional data 64KB packet

What are the fields that will change if a large TCP
segment is cut into multiple packets?

B

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

30

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

TCP Packet Segmentation

Transmission Control Protocol (TCP) Header

20-60 bytes How does the sequence number will change?

source port number destination port number

2 bytes 2 bytes

sequence number -
uege. o 100 (sequence number)
acknowledgement number
. 4 bytes
data offset | reserved control flags window size

4 bits 3 bits l I9 b‘m' ‘ 2 bytes

checksum urgent pointer
2 bytes 2 bytes

optionaldata 64KB packet @ 1. TCP packet segmentation

2. Redo checksum SEQ=100 SEQ=1600 | SEQ=3100 SEQ=64136
calculations

1500 MTU

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

TCP Packet Segmentation

Transmission Control Protocol (TCP) Header

20-60 bytes How does the sequence number will change?

source port number destination port number
2 bytes 2 bytes

sequence number -
uege. o 100 (sequence number)
acknowledgement number
S 4 bytes
data offset | reserved control flags window size

4 bits 3 bits l I9 b‘m' ‘ 2 bytes

checksum urgent pointer
2 bytes 2 bytes

optionaldata 64KB packet @ 1. TCP packet segmentation

2. Redo checksum SEQ=100 SEQ=1600 | SEQ=3100 SEQ=64136
calculations

Why can we do this: TCP is a byte-stream protocol
1500 MTU

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

Who does TCP packet segmentation

Network Interface Controller (NIC)

1

u[MTU][MTU][MTU][MTU]

e Either in the software, in the NIC device driver
e Orinthe hardware, in the NIC device

When moving away work from the CPU to devices (here, the NIC) - it is called
Offloading (reverser is called Onloading)

This particular process is called : TCP Segmentation Offloading or TSO

33

Linux Tool: ethtool -k

atr@evelyn:~$ ethtool -k enp0s25

Features for enp0s25:

rx-checksumming: on

tx-checksumming: on
tx-checksum-ipv4: off [fixed]
tx-checksum-ip-generic: on
tx-checksum-ipv6: off [fixed]
tx-checksum-fcoe-crc: off [fixed]
tx-checksum-sctp: off [fixed]

scatter-gather: on
tx-scatter-gather: on
tx-scatter-gather-fraglist: off [fixed]

tcp-segmentation-offload: on
tx-tcp-segmentation: on
tx-tcp-ecn-segmentation: off [fixed]
tx-tcp-mangleid-segmentation: off
tx-tcpb-segmentation: on

udp-fragmentation-offload: off
generic-segmentation-offload: on
generic-receive-offload: on
large-receive-offload: off [fixed]
rx-vlan-offload: on
tx-vlan-offload: on

34

LRO (Large Receive Offload) @ =
TCP
There are different places you can do aggregation Kernel Space EL
In the device driver (pure software, no hardware support =
needed) 10 o |
LRO
LRO is TCP/IPv4 specific and quite lenient in merging el
packets (issues in bridging and/or forwarding setups)
2 I 0 |
Generic Receive Offload (GRO) is more restrictive and

supports multiple protocols (is the preferred way of
doing packet merging)

But the high-level concept remains the same

https://lwn.net/Articles/358910/
https://svOrxw.blogspot.com/2020/04/modern-high-speed-networking-technigues.html

https://lwn.net/Articles/358910/
https://sv9rxw.blogspot.com/2020/04/modern-high-speed-networking-techniques.html

Now that we are Adding Further Logic on the NIC

So far we have seen that a NIC can

e transmit and receive link layer packets
e supports doing DMA
e supports doing scatter-gather DMA operations

We can also offload (move from the CPU to the NIC)

e (now) doing TCP segmentation and generate MTU sized packets
e (now) generating checksum
e (now)LRO and GRO What is next?

https://www.kernel.org/doc/html/latest/networking/checksum-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html|

36

https://www.kernel.org/doc/html/latest/networking/checksum-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html

Pushing to the Extreme: TCP Offload

Why not push to the extreme and put everything in the NIC

Yes - It is called TCP offloading

What do you think, is it a GOOD idea?
Who thinks it is a BAD idea?

Application

send (1GB);

S Z

Network Interface Controller (NIC)
implements TCP protocol

b:> 37

TCP offload is a dumb idea whose time has come

Jeffrey C. Mogul
Hewlett-Packard Laboratories
Palo Alto, CA, 94304
JeffMogul@acm.org

Abstract

Network interface implementors have repeatedly at-
tempted to offload TCP processing from the host CPU.
These efforts met with little success, because they were
based on faulty premises. TCP offload per se is neither
of much overall benefit nor free from significant costs
and risks. But TCP offload in the service of very specific
goals might actually be useful. In the context of the re-
placement of storage-specific interconnect via commod-
itized network hardware, TCP offload (and more gen-
erally, offloading the transport protocol) appropriately
solves an important problem.

1 Introduction

TCP [18] has been the main transport protocol for the
Internet Protocol stack for twenty years. During this
time, there has been repeated debate over the implement-
ation costs of the TCP layer.

One central question of this debate has been whether it
is more appropriate to implement TCP in host CPU soft-

To this day, TCP offload has never firmly caught on
in the commercial world (except sometimes as a stopgap
to add TCP support to immature systems [16]), and has
been scorned by the academic community and Internet
purists. This paper starts by analyzing why TCP offload
has repeatedly failed.

The lack of prior success with TCP offload does not,
however, necessarily imply that this approach is categor-
ically without merit. Indeed, the analysis of past failures
points out that novel applications of TCP might benefit
from TCP offload, but for reasons not clearly anticip-
ated by early proponents. TCP offload does appear to
be appropriately suited when used in the larger context
in which storage-interconnect hardware, such as SCSI
or FiberChannel, is on the verge of being replaced by
Ethernet-based hardware and specific upper-level proto-
cols (ULPs), such as iSCSI. These protocols can exploit
“Remote Direct Memory Access” (RDMA) functionality
provided by network interface subsystems. This paper
ends by analyzing how TCP offload (and more generally,

£A. Ai et do fral

becomes

Network IC

v

TOE

TCP offload is a dumb idea whose time has come (2003)

Network IC

https://www.usenix.org/legacy/events/hotos03/tech/full papers/mogul/mogul.pdf

38

https://www.usenix.org/legacy/events/hotos03/tech/full_papers/mogul/mogul.pdf

The year is 2003 iy i

L
o
|
(&3]
i Processor Frequency Scaling Over Time

10000

3162

1000

316

clock frequency (MHz)

u Intel
* AMD
»BM
 DEC
Sun
+ other

100

32

Ethernet was jumping from
100 Mbps — 1 Gbps — 10 Gbps (late 2010s)
History of computing is littered with failed

“advanced NIC” project who failed to take off
in this period.

CPU DB: Recording Microprocessor History, https://queue.acm.org/detail.cfm?id=2181798 (really cool read!)

https://www.deviantart.com/darhymes/art/Back-to-the-Future-lcon-276270476

39

https://queue.acm.org/detail.cfm?id=2181798
https://www.deviantart.com/darhymes/art/Back-to-the-Future-Icon-276270476

So why was TCP Offload was a dumb idea?

Back in 2003

e Historically it has been shown that TCP “protocol” processing is cheap
o Means: TCP header processing (only!)
o But the devil lives in the socket abstraction ;)

40

An Analysis of TCP Processing Overheads (1989)

AN ANALYSIS OF TCP PROCESSING (VERHEAD

David D. Clark, Van Jacobson, John Romkey, and Howard Salwen

Originally published in
IEEE Communications Magozine

June 1989 — Volume 27, Number 6

AUTHOR'S INTRODUCTION

he Internet’s Transmission Control Protocol, or
TCP, has proved remarkably adaptable, working
well across a wide range of hardware and operating
systems, link capacitics, and round trip delays.
None the less, there has been a background chorus
of pessimism predicting that TCP is about to run out of
steam, that the next throughput objective will prove its
downfall, or that it cannot be ported to the next smaller
class of processor. These predictions sometimes disguise
the desire to develop an alternative, but they arc often
triggered by obscrved performance limitations in the cur-

mance, which can lead us in fruitless directions when we
innovate.

The project in this article had a very simple goal. We
wanted to try to understand one aspect of TCP perfor-
mance: the actual costs that arise from running the TCP
program on the host processor, the cost of moving the
bytes in memory, and so on. These costs of necessity
depend on the particular system, but by taking a typical sit-
uation - the Berkeley BSD TCP running on the Unix oper-
ating system on an Intel processor - we could at least
establish a relevant benchmark.

Their findings in BSD

i () = Instructions
b

Control packet flow
e L
3
' c——.
I 1 -
: Data Data
! sender I receiver
LT T T R
“® Input I 1 Output |[~~~®Input !l Output "%
processing ! | processing processing ! | processing
(191-213) | [(235) ’ (186) | (235)
: H | ' : : o
‘ Data packet flow
‘; E

B FiGURE | Analysis terminology.

® “What we showed was that the code necessary to implement TCP was not the major limitation to overall
performance. In fact, in this tested system (and many other systems subsequently evaluated by others) the
throughput is close to being limited by the memory bandwidth of the system. We are hitting a fundamental limit,

not an artifact of poor design. Practically, other parts of the OS had larger overheads than TCP.

e Buffer management, process coordination, signalling, interrupts — none of them will
improve with a TOE

https://groups.csail.mit.edu/ana/Publications/PubPDFs/An%20Analysis%200f%20TCP%20Processing%200verhead.pdf

41

https://groups.csail.mit.edu/ana/Publications/PubPDFs/An%20Analysis%20of%20TCP%20Processing%20Overhead.pdf

An Analysis of TCP Processing Overheads (1989)

AN Antysis oF TCP

David D. Clark, Van Jacobson, 3 . T, -

J Data
receiver
June 1989 — V. C ’ : ceivel

]
! Qutput —~ %
| processing
1 (235)

L

AUTHOR'S

5 he Internet’s Transmission Control Protocol, or
TCP, has proved remarkably adaptable, working

well across a wide range of hardware and operating
systems, link capacitics, and round trip delays.
None the less, there has been a background chorus
of pessimism predicting that TCP is about to run out of
steam, that the next throughput objective will prove its
downfall, or that it cannot be ported to the next smaller
class of processor. These predictions sometimes disguise o
the desire to develop an alternative, but they arc often

triggered by obscrved performance limitations in the cur-

Their findings in BSD

e "“What we showed wa = ‘ ~ Yl =5) to overall
performance. In fact, i ; ~ i ,
throughput is close to o . : . Jndamenta/ limit,

not an artifact of poor design. Practically, other parts of the OS had larger overheads than TP

e Buffer management, process coordination, signalling, interrupts — none of them wiill
improve with a TOE

https://groups.csail.mit.edu/ana/Publications/PubPDFs/An%20Analysis%200f%20TCP%20Processing%200verhead.pdf

42

https://groups.csail.mit.edu/ana/Publications/PubPDFs/An%20Analysis%20of%20TCP%20Processing%20Overhead.pdf

So why was TCP Offload was a dumb idea?

Back in 2003

e Historically it has been shown that TCP “protocol” processing is cheap
o Means: TCP header processing (only!)
o But the devil lives in the socket abstraction ;)

e Moore's law was working against making intelligent NICs
o Anything that takes more than 18 months - CPU power will over take it

e What is the TOE (TCP offload engine) interface to the system? Interrupts, polls? How
does a TOE reads socket data from application? Does it have enough memory to
hold enough packets? What was the main bottleneck TOE was trying optimize?

e Most of the previously discussed techniques: TSO, LRO, checksum offloading, etc.

are very effective
43

Practically speaking

(we will see later as well again)

Any one who has programmed a hardware/microcontroller - it is pure
pain

o It cannot be better than what you have programming a general purpose CPU
Quality assurance takes time, for 100s of different combinations

o Asyou will see in the ANP code: networking does not work in isolation

If there is a bug - who should you contact? Linus Torvalds? (ahem, good luck!,
anyone nVIDIA fiasco?), NIC hardware manufacturer, or device driver writer

Limited market - only specific site deployments (data centers were just
starting). So, no commodity market at scale 24

There is a ideological war (still on!)

@ LWN User: Password: Logi i i

; 2 : gin|| Subscribe|| Register

% .net J J)
2.

v

| ° .
ol Linux and TCP offload engines

ews from the source

[Posted August 22, 2005 by corbet]

Content
Weekly Edition The TCP/IP protocol suite takes a certain amount of CPU power to implement. So it is not surprising that network adapter manufacturers
Archives have long been adding protocol support to their cards. This support can vary from the simple (checksumming of packets, for example)
Search through to full TCP/IP implementations. An adapter with full protocol support is often called a TCP offload engine or TOE.
Kernel

Will it find its way in? Not if David Miller has anything to say on the matter:

I am still very much against TOE going into the Linux networking stack. There are ways to ob ;
necessitating stateful support in the cards, everything that's worthwhile can be done with(stateless offloads.

ormance without

There is essentially zero chance of a networking patch being merged over David's objections, so the TOE developers have an uphill road
ahead of them.

https://lwn.net/Articles/148697/

Companies like Google are taking a different step
45

https://lwn.net/Articles/148697/

What is Stateless and Stateful Offloading

Stateless Offloading - there is no (or limited) state that a processing element needs to
remember, each packet can be processed independently (self contained)

e Checksum offloading, TSO offloading (LRO, GRO offloading)
e Stateless offloading in hardware (or in driver software also possible)

e Oftenis a performance optimization, than a correctness issue

Stateful Offloading: What you do with the current packet depends upon some state
that needs to be maintained. For example, TCP offloading means maintaining the TCP
state machine in the hardware ...

e (Correctness issue

And in case you have forgotten what the TCP state machineiis ...

46

TCP state machine

Hence, what you do with an
incoming or outgoing packet
depends a lot on what TCP state
machine you are in - hence, a

stateful packet processing

------ —-—
Packet Received
.............. - T!-"' ““""".,Tz
Packet Sent SYN .~ "'-._'SYN
........... - 47 RST~ &
Packet Sent or Recd -~ 1:8, -7 b -
o : R T4 o N
LEGEND i T32| SYN_RECD PO DS O 0 B SR 500, 98 -S;l’:l """""" SYN_SENT T33/‘
S N A
- ' h
HI i
T3 e 3
: 2 ACK of SYN. SYN] ACK of SYN, SYN, FIN :
: L 1
ks Y : T31 !
H 3 ']
T29 : {T34| ACK_WAIT | - _ o) , Ty 1L T) '
FIN : . ACK Lt ACK of SYN, SYN i
: =Ty R S S T7 |
E L s 1 L N s e i o s i s s v o o
ol Y ACKof SYN,FIN 1 !
’4-5] :
" 1
TIl AN S A T10 Fn i
SR Ve Se S B R I AR T A B T B e s .
1
T20 1 RSTor SYN
T12 — T17 : T26| rLasT.
_____ s ek :
| N ACK 1l) Y ACK| ACK_1 .
N ' . 3
TI13' Ao~dY, 'T15 i LAST_ T24 : o, & iT22
CK N \o: | ACK CLOSING | ACK_2 ACK : @ S : ACK
PN of FIN ! e y of FIN
N W " T%‘ ' 4 T4()' oSt
Ti4~ jcLosie.2 p C»\(')\n—
» A
. ACK ACK
{ 38 1 TI8: 1of FIN | of FIN T27
:
1
e S
T19
........................ > s e Ll

https://www.researchgate.net/fisure/TCP-Protocol-State-Machine fig1 221609864

47

https://www.researchgate.net/figure/TCP-Protocol-State-Machine_fig1_221609864

A closer look : Stateless offloading

Transmission Control Protocol (TCP) Header

20-60 bytes

source port number
2 bytes

destination port number
2 bytes

4 bytes

sequence number

TSO

4 bytes

acknowledgement number

\\\\\

data offset | reserved control flags

4 bits 3 bits [9 bits ‘
) 1

window size
2 bytes

checksum
2 bytes

urgent pointer
2 bytes

optional data
0-40 bytes

Checksum can be generated independently for

Checksum offloading

each packet. No further information needed.

)

A given TCP packet can be segmented from a given
initial SEQ number (which is already in the packet)

These two are not the only examples of stateless offloading. Linux support many protocols and associated
offloading mechanisms - but strongly all “stateless” (because they refuse to let anything else in)

48

atr@evelyn:~$ ethtool -k enp0s25
Features for enp®s25:
rx-checksumming: on
tx-checksumming: on
Py tx-checksum-ipv4: off [fixed]
) tx-checksum-ip-generic: on
I n ux O O e O o L tx-checksum-ipv6: off [fixed]
L] tx-checksum-fcoe-crc: off [fixed]
tx-checksum-sctp: off [fixed]
scatter-gather: on
tx-scatter-gather: on
tx-scatter-gather-fraglist: off [fixed]

What features are supported depends on the Linux kernel version e i
d N/C b .l. . tx—tcp»ecn-iegzentation:tqff [f%)f(ed]
tx-tcp-mangleid-segmentation: o

an Capa I Itles tx-tcgﬁ-segmentatign: on
udp-fragmentation-offload: off
generic-segmentation-offload: on
generic-receive-offload: on
large-receive-offload: off [fixed]

ETHTOOL (8) System Manager's Manual rx-vlan-offload: on
tx-vlan-offload: on
NAME ntuple-filters: off [fixed]
ethtool - query or control network driver and hardware settings receive-hashing: on
highdma: on [fixed]
SYNOPSIzthtool Y rx-vlan-filter: off [fixed]
vlan-challenged: off [fixed]
ethtool -h|--help tx-lockless: off [fixed]

netns-local: off [fixed]
tx-gso-robust: off [fixed]
tx-fcoe-segmentation: off [fixed]
tx-gre-segmentation: off [fixed]

ethtool --version

ethtool -a|--show-pause devname

ethtool -A|--pause devname [autoneg on|off] [rx on|off] [tx on|off] tx-gre-csum-segmentation: off [fixed]
tx-ipxip4-segmentation: off [fixed]
ethtool -c|--show-coalesce devname tx-ipxip6-segmentation: off [fixed]

tx-udp tnl-segmentation: off [fixed]

ethtool -C|--coalesce devname [adaptive-rx on|off] [adaptive-tx on|off] [rx-usecs N] [rx-frames N] [rx-usecs-irq N] [rx-frames-irq N] [tx-usecs N] [tx‘f'tx-udp—tnl-csum-segmentation- off [fixed]

[tx-usecs-irq N] [tx-frames-irq N] [stats-block-usecs N] [pkt-rate-low N] [rx-usecs-low N] [rx-frames-low N] [tx-usecs-low N] [tx-frames-low N] [f

[rx-usecs-high N] [rx-frames-high N] [tx-usecs-high N] [tx-frames-high N] [sample-interval N] tx-gso-partial: Off [fixed] :
tx-sctp-segmentation: off [fixed]
ethtool -g|--show-ring devname tx-esp-segmentation: off [fixed]
fcoe-mtu: off [fixed]
ethtool -G|--set-ring devname [rx N] [rx-mini N] [rx-jumbo N] [tx N] tx-nocache-copy: off
- . loopback: off [fixed]
ethtool -i|--driver devname S o
ethtool -d|--register-dump devname [raw on|off] [hex on|off] [file name] rx-all: off
tx-vlan-stag-hw-insert: off [fixed]
ethtool -e|--eeprom-dump devname [raw on|off] [offset N] [length N] rx-vlan-stag-hw-parse: off [fixed]
. rx-vlan-stag-filter: off [fixed]
ethtool -E|--change-eeprom devname [magic N] [offset N] [length N] [value N] 12-fwd-offload: off [fixed]

hw-tc-offload: off [fixed]
esp-hw-offload: off [fixed]

ethtool -K|--features|--offload devname feature on|off ... esp-tx-csum-hw-offload: off [fixed]
rx-udp_tunnel-port-offload: off [fixed]
Jatrgevelyn:~$ |

ethtool -k|--show-features|--show-offload devname

49

Key difference to understand

There is a difference between: (this theme will continue later on)

1. The TCP protocol as specified in the RFC 793

2. The BSD socket implementation and associated semantics
a. At no pointin time while using socket you need know if you are using TCP

50

TCP and Sockets (approx. split)

RDMA, iSCSI,
RPCs, SMB, SCTP
Socket

scheduling TCP Buffers | 60K LOC
JOKLOC 1 RFC 793 (++)
Gyer 16K LOC

T~
Devices

Linux kernel: more than 100,000 lines of code for networking
(which we are going to cover in the next lecture)

51

Key difference to understand

There is a difference between: (this theme will continue later on)

1. The TCP protocol as specified in the RFC 793

2. The BSD socket implementation and associated semantics

a. At no pointin time while using socket you need know if you are using TCP

Unfortunately the way currently things are implemented: sockets and TCP
semantics are kind of glued together. But they don’t have to be!

What Mogul made a case is : TCP offload “might” be a good idea under certain
circumstances with a different API than sockets (iISCSI, NFS, MPI, SMB)

e One such APl is RDMA, we will cover at the end of Part 1

52

The year is 2003 eknomnon ncts <0 e P

i
o
e
iy 4 Processor Frequency Scaling Over Time

10000
3162
1000

316

clock frequency (MHz)

100

32

But then something happened here, and all
our dreams of 10 GHz CPU were shattered ;)

LT

CPU DB: Recording Microprocessor History, https://queue.acm.org/detail.cfm?id=2181798 (really cool read!)

https://www.deviantart.com/darhymes/art/Back-to-the-Future-lcon-276270476

53

https://queue.acm.org/detail.cfm?id=2181798
https://www.deviantart.com/darhymes/art/Back-to-the-Future-Icon-276270476

Linux Tool: ethtool -S

ethtool -S shows a lot of NIC specific statistics
and counters

:/proc/net$ ethtool -S wlp2s0

NIC statistics:

rx_packets: 1814031

rx_bytes: 656139107
rx_duplicates: 2

rx_fragments: 1710631
rx_dropped: 933

tx packets: 221975

tx _bytes: 82353452

tx filtered: 0O

tx _retry failed: 0

tx _retries: 0

sta state: 4

txrate: 6000000

rxrate: 234000000

signal: 198

channel: 5260

noise: 160

ch_time: 149

ch _time busy: 5

ch _time ext busy: 18446744073709551615
ch _time rx: 18446744073709551615
ch_time tx: 18446744073709551615
tx pkts nic: 227554

tx _bytes nic: ©

rx_pkts nic: 1687653

rx_bytes nic: 0

d noise floor: 18446744073709551520
d cycle count: 144895264

54

Linux Tool: netstat

NETSTAT(8) Linux System Administrator's Manual

NAME

netstat - Print network connections, routing tables, interface statistics, masquerade connections, and multicast memberships

SYNOPSIS

NETSTAT(8)

netstat [address family options] [--tcp|-t] [--udp|-u] [--udplite|-U] [--sctp|-S] [--raw|-w] [--l2cap|-2] [--rfcomm|-f] [--listening|-1] [--all|-a] [--numeric|-n] [--numeric-hosts] [--numeric-ports] [--numeric-users]

[--symbolic|-N] [:-extendl-e[--extend|-e]] [--timers|-o] [--program|-p] [--verbose|-v] [--continuous|-c] [--wide|-W]

netstat {--route|-r} [address family options] [--extend|-e[--extend|-e]l] [--verbose|-v] [--numeric|-n] [--numeric-hosts] [--numeric-ports] [--numeric-users] [--continuous|-c]

netstat {--interfaces|-i} [--all|-a] [--extend|-e[--extend|-e]] [--verbose|-v] [--program|-p] [--numeric|-n] [--numeric-hosts] [--numeric-ports] [--numeric-users] [--continuous|-c]

netstat {--groups|-g} [--numeric|-n] [--numeric-hosts] [--numeric-ports] [--numeric-users] [--continuous|-c]

netstat {--masquerade|-M} [--extend|-e] [--numeric|-n] [--numeric-hosts] [--numeric-ports] [--numeric-users]

|atr@evelyn:~$ netstat

Active Internet connections (w/o servers)

. 55

netstat {--statistics|-s} [--tcp|-t] [--udp|-u] [--udplite|-U] [--sctp|-S] [--raw|-w] Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 evelyn.home:36464 ec2-3-123-217-208:https ESTABLISHED
netstat {--version|-v} tcp 0 0 evelyn.home:34204 whatsapp-cdn-shv-:https ESTABLISHED
help|<h tcp 0 0 evelyn.home:58098 ams15s30-in-f3.1le:https ESTABLISHED
LetatatiCohelplLity tep) 0 evelyn.home:60690 1hr26s85-in-f14.1:https ESTABLISHED
Ttcp 0 0 evelyn.home:41244 ams16s29-in-f42.1:https ESTABLISHED
tcp 0 0 evelyn.home:57354 151.101.37.7:https ESTABLISHED
tcp 0 0 evelyn.home:36458 ec2-3-123-217-208:https ESTABLISHED
tcp 0 0 evelyn.home:48968 ec2-52-89-164-184:https ESTABLISHED
tcp 0 © evelyn.home:55238 ams16s29-in-f46.1:https ESTABLISHED
tcp 0 0 evelyn.home:49304 fra02s28-in-f10.1:https ESTABLISHED
tcp 0 0 evelyn.home:53886 108.177.126.189:https ESTABLISHED
tcp 0 0 evelyn.home:46810 149.154.167.99:https ESTABLISHED
tcp 0 © evelyn.home:49690 ams15s32-in-f14.1:https ESTABLISHED
tcp 0 0 evelyn.home:34040 whatsapp-cdn-shv-:https ESTABLISHED
tcp 0 164 evelyn.home:ssh atr-XPS-13.home:36002 ESTABLISHED
Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags Type State I-Node Path
unix 2 [1] DGRAM 33261 /run/user/1000/systemd/notify
unix 2 [1] DGRAM 17673404 /run/wpa_supplicant/wlp3s@
unix 2 [1] DGRAM 17674353 /run/wpa_supplicant/p2p-dev-wlp3s@
unix 3 [1] DGRAM 782 /run/systemd/notify
unix 2 [1] DGRAM 798 /run/systemd/journal/syslog
unix 22 [1] DGRAM 802 /run/systemd/journal/dev-log
unix 8 [1] DGRAM 809 /run/systemd/journal/socket
unix__3 [SEOPACKET _CONNECTED 14222800 @00086

Linux Tool: tcpdump

Inspection of any arbitrary traffic pattern with any

protocol, port, socket, IP, and various other flags...

(tcpdump name is misnomer)

:~$‘sudo tcpdump -i wlp2s0 |
[sudo] password for—atr—
tcpdump: verbose output suppressed,

12:47:38.304007 IP one.one.one.one.domain > atr-XPS-13.37260:
12:47:38.305131 IP atr-XPS-13.51536 > one.one.one.one.domain:

use -v or -vv for full protocol decode
listening on wlp2s0, link-type EN1OMB (Ethernet), capture size 262144 bytes
12:47:38.294054 IP ams15s32-in-f14.1el00.net.443 > atr-XPS-13.53455: UDP, length 47
12:47:38.296035 IP atr-XPS-13.53455 > ams15s32-in-f14.1e100.net.443: UDP, length 33
12:47:38.296450 IP atr-XPS-13.37260 > one.one.one.one.domain:

https://linux.die.net/man/8/tcpdump

"

Also check out “netcat
(to generate traffic)

9781+ PTR? 81.1.168.192.in-addr.arpa
9781 NXDomain 0/0/0
62121+ PTR? 110.211.58.216.in-addr.a

(43)

72
12:
12:
22
12:
12:
12:

49:
49:
49:
49:
49:
49:
49:

15

:-$|sudo tcpdump -i wlp2se tcp

4557360
455968
456152
468147
468232
468273

IpP
IP
IP
IpP
IP
IP
IP

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on wlp2s@, link-type EN16MB (Ethernet), capture size 262144 bytes
.452743
15.
15.
257
15.
157
15.

atr-XPS-13.57962 > ec2-3-123-217-208.eu-central-1.compute.
atr-XpPS-13.58016 > ec2-3-123-217-208.eu-central-1.compute.

atr-XPS-13.57960 > ec2-3-123-217-208.eu-central-1.compute.
atr-XPS-13.57964 > ec2-3-123-217-208.eu-central-1.compute.
ec2-3-123-217-208.eu-central-1.compute.amazonaws.com.https > atr-XPS-13.58016:
atr-XPS-13.58016 > ec2-3-123-217-208.eu-central-1.compute.
ec2-3-123-217-208.eu-central-1.compute.amazonaws.com.https > atr-XPS-13.57962:

amazonaws.com.https:
amazonaws.com. https:
amazonaws.com.https:
amazonaws.com.https:

amazonaws.com.https:

Flags
Flags
Flags
Flags
Flags
Flags
Flags

[P.], seq 3526112934:35261129960,
[P.], seq 1791622675:1791622731,
[P.], seq 3708215032:3708215088,
[P.], seq 1113362382:1113362438,
[P.], seq 1:57, ack 56, win 8, op
[.]1, ack 57, win 501, optlons [no
[P.], seq 1:57, ack 56, win 9, op

tcpdump: verbose

:~$|sudo tcpdump -i wlp2se 'tcp[13] == 2'

11 protocol decode

listening on wlp2s@, link-type ENleMB (Ethernet), capture size 262144 bytes

12:52:21.655038 IP atr-XPS-13.57216 > 142.250.27.105.https:
12:52:22.059653 IP atr-XPS-13.53632 > 142.250.27.106.https:
12:52:22.215793 IP atr-XPS-13.58568 > ams16s30-in-f14.1el00.net.https:

Flags [S], seq 137760916, win 64240, options [mss 1460,sackOK,TS val 822440791 ecr 0,nop,wscale 7], length @
Flags [S], seq 2513723535, win 64240, options [mss 1460,sackOK,TS val 2073482195 ecr ©,nop,wscale 7], length @
Flags [S], seq 379245020, win 64240, options [mss 1460,sackOK,TS val 617959276 ecr 0,nop,wscale 7], length @

56

https://linux.die.net/man/8/tcpdump

Linux Tool: tcpdump X\ y,

Inspection of any arbitrary traffic pattern with any ﬁ

protocol, port, socket, IP, and various other flags...
https://linux.die.net/man/8/tcpdump

(tcpdump name is misnomer)
Also check out “netcat”

(to generate traffic)
atr@atr:~/home/atr/$ sudo tcpdump -i wlp2s@ port 44441

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on wlp2s@, link-type EN10MB (Ethernet), capture size 262144 bytes

14:03:36.476567 IP 192.168.1.161.41730 > atr-XPS-13.44441: Flags [S], seq 2400912466, win 29200, options
[mss 1460,sackOK,TS val 2019536369 ecr 0,nop,wscale 7], length ©

14:03:36.476648 IP atr-XPS-13.44441 > 192.168.1.161.41730: Flags [S.], seq 330668899, ack 2400912467, win
65160, options [mss 1460,sackOK,TS val 2799286267 ecr 2019536369,nop,wscale 7], length ©

14:03:36.477271 IP 192.168.1.161.41730 > atr-XPS-13.44441: Flags [.], ack 1, win 229, options [nop,nop,TS

val 2019536370 ecr 2799286267], length o
57

https://linux.die.net/man/8/tcpdump

Linux Tool: the /proc file system

Recall the UNIX philosophy: Everything is a file

atr@atr-XPS-13:/proc/net$ 1s

anycast6 dev_mcast icmp ip6_flowlabel ip6_tables _targets ip tables targets netfilter psched route snmp stat udplite
arp dev_snmp6 icmp6 ip6_mr_cache ip_mr_cache ipv6_route netlink ptype rt6_stats snmp6 tcp udplite6
bnep fib trie if inet6 ip6 mr_vif ip_mr_vif 12cap netstat raw rt_acct sockstat tcp6 unix
connector fib triestat igmp ip6_tables matches ip tables matches mcfilter packet rawéb rt_cache sockstat6 udp wireless
dev hci igmp6 ip6_tables names ip_tables names mcfilter6 protocols rfcomm sco softnet_stat udp6 xfrm stat
atr@atr-XPS-13:/proc/net$ cat dev

Inter-| Receive | Transmit

face |bytes packets errs drop fifo frame compressed multicast|bytes packets errs drop fifo colls carrier compressed
enx9cebe8cd8f1l: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
wlp2s0: 6613994070 7948199 0 7/ 0 0 0 © 2723641552 4725535 0 0 0 0 0 0
vboxnet0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lo: 585009 3835 0 0 0 0 0 6 585009 3835 0 0 0 0 0 0

virbr@-nic: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
virbro: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

atr@atr-XPS-13:/proc/net$ cat netstat

TcpExt: SyncookiesSent SyncookiesRecv SyncookiesFailed EmbryonicRsts PruneCalled RcvPruned OfoPruned OutOfWindowIcmps LockDroppedIcmps ArpFilter TW TWRecycled TWKilled PAWSActive PAWSEs
tab DelayedACKs DelayedACKLocked DelayedACKLost ListenOverflows ListenDrops TCPHPHits TCPPureAcks TCPHPAcks TCPRenoRecovery TCPSackRecovery TCPSACKReneging TCPSACKReorder TCPRenoReorder
TCPTSReorder TCPFullUndo TCPPartialUndo TCPDSACKUndo TCPLossUndo TCPLostRetransmit TCPRenoFailures TCPSackFailures TCPLossFailures TCPFastRetrans TCPSlowStartRetrans TCPTimeouts TCPLos
sProbes TCPLossProbeRecovery TCPRenoRecoveryFail TCPSackRecoveryFail TCPRcvCollapsed TCPDSACKOldSent TCPDSACKOfoSent TCPDSACKRecv TCPDSACKOfoRecv TCPAbortOnData TCPAbortOnClose TCPAbort
OnMemory TCPAbortOnTimeout TCPAbortOnLinger TCPAbortFailed TCPMemoryPressures TCPMemoryPressuresChrono TCPSACKDiscard TCPDSACKIgnoredOld TCPDSACKIgnoredNoUndo TCPSpuriousRTOs TCPMD5NotF
ound TCPMD5Unexpected TCPMD5Failure TCPSackShifted TCPSackMerged TCPSackShiftFallback TCPBacklogDrop PFMemallocDrop TCPMinTTLDrop TCPDeferAcceptDrop IPReversePathFilter TCPTimeWaitOverf
low TCPReqQFullDoCookies TCPReqQFullDrop TCPRetransFail TCPRcvCoalesce TCPOFOQueue TCPOFODrop TCPOFOMerge TCPChallengeACK TCPSYNChallenge TCPFastOpenActive TCPFastOpenActiveFail TCPFast
OpenPassive TCPFastOpenPassiveFail TCPFastOpenListenOverflow TCPFastOpenCookieReqd TCPFastOpenBlackhole TCPSpuriousRtxHostQueues BusyPollRxPackets TCPAutoCorking TCPFromZeroWindowAdv TC
PToZeroWindowAdv TCPWantZeroWindowAdv TCPSynRetrans TCPOrigDataSent TCPHystartTrainDetect TCPHystartTrainCwnd TCPHystartDelayDetect TCPHystartDelayCwnd TCPACKSkippedSynRecv TCPACKSkippe
dPAWS TCPACKSkippedSeq TCPACKSkippedFinWait2 TCPACKSkippedTimeWait TCPACKSkippedChallenge TCPWinProbe TCPKeepAlive TCPMTUPFail TCPMTUPSuccess TCPWqueueTooBig

TcpExt: © 0 6 0 4 6 0 2 0 6 5474 0 0 0 23 18711 20 5462 0 0 1074912 103468 286362 0 62 6 4 6 0 0 6 7 231 6 0 0 1 63 0 5790 730 443 0 1 0 5412 41 131 1 1947 246 0 526 © ;8 0606206500
0000920000400 0 0 502279 62958 0 41 67 62 0 0 06 0 6 0 0 63 0 46023 24 24 127 3817 426585 65 1451 5 153 0 2 26 0 1 0 50 31641 6 0 ©

IpExt: InNoRoutes InTruncatedPkts InMcastPkts OutMcastPkts InBcastPkts OutBcastPkts InOctets OutOctets InMcastOctets OutMcastOctets InBcastOctets OutBcastOctets InCsumErrors InNoECTPkts
InECT1Pkts InECTOPkts InCEPkts ReasmOverlaps

IpExt: 52 © 4031 9068 2621 2366 6433883901 2649160234 414862 1401162 494808 434825 0 7962649 19915 0 0 ©

https://man7.org/linux/man-pages/man5/proc.5.html (very powerful interface, also /sys/)
58

https://man7.org/linux/man-pages/man5/proc.5.html

Recap

From this lecture (+previous) you should know

How do network packets are transmitted and received

What is a LiveLock? How do you mitigate a livelock?

What is a MTU and how to calculate a link efficiency

What is a TCP segmentation offloading

What is a stateful and stateless offloading (advantages, disadvantages)
What is a TCP offload engine

Basic tools : ethtool, ifconfig, tcpdump, ifstat, netstate, ss, /proc interface

NounhsWh =

Don't forget the office hours now 3:30-4:30pm

59

Useful links

1. ASurvey of End-System Optimizations for High-Speed Networks, https://dl.acm.org/doi/pdf/10.1145/3184899,
ACM Surveys, 2018.

2. Professional Linux Kernel Architecture,

https://www.oreilly.com/library/view/professional-linux-kernel/9780470343432/
3. Modern High-Speed Networking Techniques in Hardware and Software,
https://sv9rxw.blogspot.com/2020/04/modern-high-speed-networking-techniqgues.html

60

https://dl.acm.org/doi/pdf/10.1145/3184899
https://www.oreilly.com/library/view/professional-linux-kernel/9780470343432/
https://sv9rxw.blogspot.com/2020/04/modern-high-speed-networking-techniques.html

