
Advanced Network Programming (ANP)
XB_0048

Networking concepts
Animesh Trivedi

Autumn 2020, Period 1

1

Layout of upcoming lectures - Part 1
Sep 1st, 2020 (today): Introduction and networking concepts

Sep 3rd, 2020 (this Tuesday): Networking concepts (continued)

Sep 8th, 2020 : Linux networking internals

Sep 10th 2020: Multicore scalability

Sep 15th 2020: Userspace networking stacks

Sep 17th 2020: Introduction to RDMA networking

2

Application

A packet’s journey - (simplified) Receiving path

3

Network Interface
Controller (NIC)

1

2

device driver

IP processing

TCP UDP ICMP

3

4

A new packet arrives from the network

Notify the operating system
All network cards have device drivers

Perform network processing
figure out which application
queue data into the queue

Consume data
when application
calls recv()

Operating
Systems

stream

datagrams end-host

Still many unanswered questions here
Think of the receive path. This is more complicated than the sending path (can
you think of why?)

1. How to transfer data between a network controller and the end host
2. How to notify the end host about network packet reception

a. Do you need to tell the end host about a packet transmission?

3. How to build a packet with multiple protocols and headers
4. How much time/steps it takes to receive data? 1 bytes, 1 kB, 1 MB, or 1

GB?
5. ...and many many many more questions.

Lets answer some of them, one by one and introduce the key ideas
4

5

What is the unit of data processing, and network I/O?

The Unit of Processing

6

Application

Networking Stack

Network Interface Controller (NIC)

send (...);

packet

userspace

kernel

hardware

What is the largest amount of data you can
transmit in a single send() call?

$man send

7

POSIX standard
- unsigned int
- unsigned long

At least 16 bits

On my x86_64/Linux it is
8 bytes

The unit of network processing

8

Application

Networking Stack

Network Interface Controller (NIC)

send (1GB);

frame

How big this can be?
??

Can you send 1 GB packet on the network?

userspace

kernel

hardware

Let’s assume we call 1GB send

Application

The unit of network processing

9

Networking Stack

Network Interface Controller (NIC)

send (1GB);

frame

??

Why bother? Why does the
loop count matter

The loop count

10

100 bytes

100 bytes

100 bytes

Each layer 1 iteration,
total 3 iterations done

In total 13 iterations

100 bytes

25 bytes x 4

12.5 bytes x 8

Key challenge: different units of data processing

11

Multiple different abstractions and units

● Transport segments

● Network packets

● Link layer frames

These three can be off different sizes for
different protocols, and yet we need to have a
notion of interoperability.

https://commons.wikimedia.org/w/index.php?curid=39917431

Why does “the loop count” matter?
The number of times you execute the “loop” depends on the
number of “units” at every layer

1. Programing hardware for TX/RX is a slow operation, so
you want to do it as little as possible (frames)

2. There are per packet operations such as building
packet headers and calculating checksums - you want
to do many little times as possible

3. Per segment overheads (TCP), ACKs, SEQ processing,
delivery to userspace, notification management -
minimize it as much as possible

12

https://commons.wikimedia.org/w/index.php?curid=39917431

Key challenge: different units of data processing

13

Multiple different abstractions and units

● Transport segments

● Network packets

● Link layer frames

These three can be off different sizes for
different protocols, and yet we need to have a
notion of interoperability.

Whenever in doubt check, there is an RFC for that ;)

https://commons.wikimedia.org/w/index.php?curid=39917431

The Unit of Processing

14

Application

Networking Stack

Network Interface Controller (NIC)

send (1GB);

frame

How big this can be?
any guesses?

??

Can you send 1 GB packet on the network?

A MTU (closely, but not exactly) defines how big a frame on a link layer (L2) can be

MTU is “network-layer concept” that defined what is the largest protocol data unit (PDU) (.e.g., for IP it is the
packet) that can be sent/received in a single “network” layer operation (L3)

● IPv4 Specification expect any L2 layer to support at least 576 bytes of data (old days!)
● Anything less than that, IPv4 will not work. Then L2 must then provide its own way of assembly

The Unit of Processing - MTU

15

Network Interface Controller (NIC)

frame

Maximum Transmission
Unit (MTU)

ETH trailer IP TCP data

https://tools.ietf.org/html/rfc791

A small MTU:
+ more multiplexing, fine grained transmission
- inefficiency (see next slides)

A large MTU
+ less packets, more data per packet, more efficiency
- introduces delay for the next packet, link hogging
- if corrupted then a big overhead to retransmit data

The Unit of Processing - MTU

16

Network Interface Controller (NIC)

frame

ETH trailer IP TCP data

Maximum Transmission
Unit (MTU)

Example: Ethernet MTU
Ethernet has a MTU of 1500 Bytes (payload, excluding its own headers)

● Historical reasons, trade-off between NIC data buffering capacity (onboard memory) and speed
● This is greater than 576 octet expected for IPv4, hence, OK

17

Preamble (7) Ethernet Frame (1518) Inter packet gap (12)

dst mac (6) src mac (6) type (2) payload (1500) crc (4)

IP hdr (20) TCP hdr (20) payload (1460)

SFD (1)

Start Frame Delimiter

https://app.netrounds.com/static/2.33.2/support/defs-notes/theor-thput.html
http://switchpacket.blogspot.com/2014/07/understanding-difference-between-mtu.html

Calculating Ethernet Efficiency for TCP packets

18

1 Gbps Ethernet link : 109 bits per second on the wire, when constructing a maximum MTU
packet

● Total bits on the wire : 1500 + 18 (ETH) + 8 (preamble+SFD) + 12 (gap) = 1,538 bytes
● Total actual data payload in the packet : 1500 - IP hdr (20) - TCP hdr (20) = 1,460 bytes

Efficiency = (1500 - 40 / 1500 + 38)*100 = 94.93% (in reality, TCP and IP have larger headers)

Hence, on a 1 Gbps link you cannot deliver more than a TCP application bandwidth of 949.3 Mbps

Preamble (7) Ethernet Frame (1518) Inter packet gap (12)

dst mac (6) src mac (6) type (2) payload (1500) crc (4)

IP hdr (20) TCP hdr (20) payload (1460)

SFD (1)

Smallest header sizes

Can we improve it?

19

Ever heard of JUMBO frames? (https://en.wikipedia.org/wiki/Jumbo_frame)
● Ethernet standard to support larger frames
● Most common 9000 bytes

Let's do the previous calculation again, substituting 1500 by 9000

● Total bits on the wire : 9,000 + 18 (eth) + 8 (preamble) + 12 (gap) = 9,038 bytes
● Total actual data payload in the packet : 9,000 - IP hdr (20) - TCP hdr (20) = 8,960 bytes

Efficiency = (9000 - 40 / 9000 + 38)*100 = 99.14%

Hence, on a 1 Gbps link your maximum bandwidth improves from 949.3 Mbps to 991.4 Mbps

9000 MTU is common inside data centers, where as 1500 common on Internet, why?

https://metalenborden.nl/index.php/webwinkel/postcards-retro/v-amerika/barack-obama-yes-we-can-postcard-retro-metaal-detail
https://en.wikipedia.org/wiki/Jumbo_frame

So let's use Jumbo frames everywhere

20

Advantages:
+ Good throughput
+ Good efficiency

But,
- Needs support from the NIC
- Needs support from the Ethernet switch
- Needs support from the routers
- Can induce delays and multiplexing issues

Inside a data center, we use 9K MTU
Outside, on the Internet??

Time (t)

https://metalenborden.nl/index.php/webwinkel/postcards-retro/v-amerika/barack-obama-yes-we-can-postcard-retro-metaal-detail

So let's use Jumbo frames everywhere

21

Advantages:
+ Good throughput
+ Good efficiency

But,
- Needs support from the NIC
- Needs support from the Ethernet switch
- Needs support from the routers
- Can induce delays and multiplexing issues

Inside a data center, we use 9K MTU
Outside, on the Internet??
● Path MTU discovery (PMTUD) protocols

○
○

https://metalenborden.nl/index.php/webwinkel/postcards-retro/v-amerika/barack-obama-yes-we-can-postcard-retro-metaal-detail
https://elifulkerson.com/projects/mturoute.php

Linux Tools - ifconfig

22

Linux Tools - MTU shenanigans

23

I changed the local MTU to 2000 bytes

Poing being - 1500 MTU (or 1468B) is the most popular
and common type of MTU supported on the internet

The Unit of Processing

24

Application

Networking Stack

Network Interface Controller (NIC)

send (1GB);

frame

How big this can be?

??

A Simple Solution
Just keep it as the MTU size, and create MTU size segments (L4) that become
the MTU size packets (L3) and frames (L2): so essentially 1500 bytes

25

Networking Stack

Network Interface Controller (NIC)

send (1GB);

1500B1500B1500B1500B1500B
How many = 1GB / 1500 = ~716K packets

1500B 1500B 1500B 1500B 1500Bframes

But for a Moment, consider the TCP IP Packet

26

0 4 8 12 16 20 24 28 32

How big a TCP/IP
packet can be?

https://erlerobotics.gitbooks.io/erle-robotics-introduction-to-linux-networking/content/introduction_to_network/img/packet.gif

Large Packets
Build large TCP/IP packets (L3), so essentially 64kB (more efficient, less I/O programming)

But we still can not sent 64kB packets with 1500 MTU?

27

Networking Stack

Network Interface Controller (NIC)

send (1GB);

64KB How many = 1GB / 64KB = ~16K packets

1500B 1500B 1500B 1500B 1500Bframes

64KB64KB

How do we cut / segment this packet?
Packet segmentation (network layer) into smaller
link layer frames (e.g., 1500 Bytes on Ethernet)

Is it a difficult job?

● IP already has “fragmentation” support
○ Flags, and fragment offset in the header
○ All routers and switches support it
○ IP packet can be (de)assembled in hw/sw at

end host (keep track of state)
○ See, https://tools.ietf.org/html/rfc815

What about TCP?

28

https://tools.ietf.org/html/rfc815
https://commons.wikimedia.org/w/index.php?curid=70267999

TCP Packet Segmentation

29

64KB packet

What are the fields that will change if a large TCP
segment is cut into multiple packets?

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

TCP Packet Segmentation

30

64KB packet

What are the fields that will change if a large TCP
segment is cut into multiple packets?

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

TCP Packet Segmentation

31

 = 100 (sequence number)

64KB packet

SEQ=100 SEQ=1600 SEQ=3100 SEQ=64136

1. TCP packet segmentation

1500 MTU

How does the sequence number will change?

2. Redo checksum
calculations

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

TCP Packet Segmentation

32

 = 100 (sequence number)

64KB packet

SEQ=100 SEQ=1600 SEQ=3100 SEQ=64136

1. TCP packet segmentation

1500 MTU

How does the sequence number will change?

2. Redo checksum
calculations

Why can we do this: TCP is a byte-stream protocol

https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

Who does TCP packet segmentation

33

Network Interface Controller (NIC)

64KB

● Either in the software, in the NIC device driver
● Or in the hardware, in the NIC device

When moving away work from the CPU to devices (here, the NIC) - it is called
Offloading (reverser is called Onloading)

This particular process is called : TCP Segmentation Offloading or TSO

MTU MTU MTU MTU

Linux Tool: ethtool -k

34

LRO (Large Receive Offload)

35

There are different places you can do aggregation

In the device driver (pure software, no hardware support
needed)

LRO is TCP/IPv4 specific and quite lenient in merging
packets (issues in bridging and/or forwarding setups)

Generic Receive Offload (GRO) is more restrictive and
supports multiple protocols (is the preferred way of
doing packet merging)

But the high-level concept remains the same

https://lwn.net/Articles/358910/
https://sv9rxw.blogspot.com/2020/04/modern-high-speed-networking-techniques.html

Now that we are Adding Further Logic on the NIC

So far we have seen that a NIC can

● transmit and receive link layer packets
● supports doing DMA
● supports doing scatter-gather DMA operations

We can also offload (move from the CPU to the NIC)

● (now) doing TCP segmentation and generate MTU sized packets
● (now) generating checksum
● (now) LRO and GRO What is next?

36

https://www.kernel.org/doc/html/latest/networking/checksum-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html

Pushing to the Extreme: TCP Offload
Why not push to the extreme and put everything in the NIC

Yes - It is called TCP offloading

37

Application

Networking Stack

Network Interface Controller (NIC)
implements TCP protocol

send (1GB);

packet

What do you think, is it a GOOD idea?
Who thinks it is a BAD idea?

TCP offload is a dumb idea whose time has come (2003)

38

https://www.usenix.org/legacy/events/hotos03/tech/full_papers/mogul/mogul.pdf

The year is 2003

39

Well on the way for a 10 GHz CPU
(we know how that went)

Ethernet was jumping from

100 Mbps → 1 Gbps → 10 Gbps (late 2010s)

History of computing is littered with failed
“advanced NIC” project who failed to take off
in this period.

https://queue.acm.org/detail.cfm?id=2181798
https://www.deviantart.com/darhymes/art/Back-to-the-Future-Icon-276270476

So why was TCP Offload was a dumb idea?
Back in 2003

● Historically it has been shown that TCP “protocol” processing is cheap
○ Means: TCP header processing (only!)
○ But the devil lives in the socket abstraction ;)

● Moore’s law was working against making intelligent NICs
○ Anything that takes more than 18 months - CPU power will over take it

● What is the TOE (TCP offload engine) interface to the system? Interrupts, polls? How
does a TOE reads socket data from application? Does it have enough memory to
hold enough packets? What was the main bottleneck TOE was trying optimize?

● Most of the previously discussed techniques: TSO, LRO, checksum offloading, etc.
were very effective

40

An Analysis of TCP Processing Overheads (1989)

41

Their findings in BSD
● “What we showed was that the code necessary to implement TCP was not the major limitation to overall

performance. In fact, in this tested system (and many other systems subsequently evaluated by others) the
throughput is close to being limited by the memory bandwidth of the system. We are hitting a fundamental limit,
not an artifact of poor design. Practically, other parts of the OS had larger overheads than TCP. “

● Buffer management, process coordination, signalling, interrupts → none of them will
improve with a TOE

Classic paper

https://groups.csail.mit.edu/ana/Publications/PubPDFs/An%20Analysis%20of%20TCP%20Processing%20Overhead.pdf

An Analysis of TCP Processing Overheads (1989)

42

Their findings in BSD
● “What we showed was that the code necessary to implement TCP was not the major limitation to overall

performance. In fact, in this tested system (and many other systems subsequently evaluated by others) the
throughput is close to being limited by the memory bandwidth of the system. We are hitting a fundamental limit,
not an artifact of poor design. Practically, other parts of the OS had larger overheads than TCP. “

● Buffer management, process coordination, signalling, interrupts → none of them will
improve with a TOE

Classic paper

https://groups.csail.mit.edu/ana/Publications/PubPDFs/An%20Analysis%20of%20TCP%20Processing%20Overhead.pdf

So why was TCP Offload was a dumb idea?
Back in 2003

● Historically it has been shown that TCP “protocol” processing is cheap
○ Means: TCP header processing (only!)
○ But the devil lives in the socket abstraction ;)

● Moore’s law was working against making intelligent NICs
○ Anything that takes more than 18 months - CPU power will over take it

● What is the TOE (TCP offload engine) interface to the system? Interrupts, polls? How
does a TOE reads socket data from application? Does it have enough memory to
hold enough packets? What was the main bottleneck TOE was trying optimize?

● Most of the previously discussed techniques: TSO, LRO, checksum offloading, etc.
are very effective

43

Practically speaking
(we will see later as well again)

● Any one who has programmed a hardware/microcontroller - it is pure
pain
○ It cannot be better than what you have programming a general purpose CPU

● Quality assurance takes time, for 100s of different combinations

○ As you will see in the ANP code: networking does not work in isolation

● If there is a bug - who should you contact? Linus Torvalds? (ahem, good luck!,

anyone nVIDIA fiasco?), NIC hardware manufacturer, or device driver writer

● Limited market - only specific site deployments (data centers were just
starting). So, no commodity market at scale 44

There is a ideological war (still on!)

45
Companies like Google are taking a different step

https://lwn.net/Articles/148697/

What is Stateless and Stateful Offloading
Stateless Offloading - there is no (or limited) state that a processing element needs to
remember, each packet can be processed independently (self contained)

● Checksum offloading, TSO offloading (LRO, GRO offloading)
● Stateless offloading in hardware (or in driver software also possible)
● Often is a performance optimization, than a correctness issue

Stateful Offloading: What you do with the current packet depends upon some state
that needs to be maintained. For example, TCP offloading means maintaining the TCP
state machine in the hardware …

● Correctness issue

And in case you have forgotten what the TCP state machine is …
(you will need it for your project) 46

TCP state machine

47

Hence, what you do with an

incoming or outgoing packet

depends a lot on what TCP state

machine you are in - hence, a

stateful packet processing

https://www.researchgate.net/figure/TCP-Protocol-State-Machine_fig1_221609864

A closer look : Stateless offloading

48

Checksum can be generated independently for
each packet. No further information needed.

A given TCP packet can be segmented from a given
initial SEQ number (which is already in the packet)

TSO

Checksum offloading

These two are not the only examples of stateless offloading. Linux support many protocols and associated
offloading mechanisms - but strongly all “stateless” (because they refuse to let anything else in)

Linux Tool: ethtool -k

49

What features are supported depends on the Linux kernel version
and NIC capabilities

Key difference to understand
There is a difference between: (this theme will continue later on)

1. The TCP protocol as specified in the RFC 793
2. The BSD socket implementation and associated semantics

a. At no point in time while using socket you need know if you are using TCP

Unfortunately the way currently things are implemented: sockets and TCP
semantics are kind of glued together. But they don’t have to be!

What Mogul made a case is : TCP offload “might” be a good idea under certain
circumstances with a different API than sockets (iSCSI, NFS, MPI, SMB)

● He was referring to RDMA -- we will cover at the end of Part 1
50

TCP and Sockets (approx. split)

51

TCP
RFC 793 (++) Buffer

s
Buffer
s
Buffer
s
Buffers

processesprocessesprocessesprocesses

scheduling

IP layer

Devices

30K LOC

Socket
management

RDMA, iSCSI,
RPCs, SMB, SCTP

16K LOC

60K LOC

Linux kernel: more than 100,000 lines of code for networking
(which we are going to cover in the next lecture)

Key difference to understand
There is a difference between: (this theme will continue later on)

1. The TCP protocol as specified in the RFC 793
2. The BSD socket implementation and associated semantics

a. At no point in time while using socket you need know if you are using TCP

Unfortunately the way currently things are implemented: sockets and TCP
semantics are kind of glued together. But they don’t have to be!

What Mogul made a case is : TCP offload “might” be a good idea under certain
circumstances with a different API than sockets (iSCSI, NFS, MPI, SMB)

● One such API is RDMA, we will cover at the end of Part 1
52

The year is 2003

53

Well on the way for a 10 GHz CPU
(we know how that went)

But then something happened here, and all
our dreams of 10 GHz CPU were shattered ;)

??

https://queue.acm.org/detail.cfm?id=2181798
https://www.deviantart.com/darhymes/art/Back-to-the-Future-Icon-276270476

Linux Tool: ethtool -S

54

ethtool -S shows a lot of NIC specific statistics
and counters

Linux Tool: netstat

55

Linux Tool: tcpdump
Inspection of any arbitrary traffic pattern with any
protocol, port, socket, IP, and various other flags…

(tcpdump name is misnomer)

56

https://linux.die.net/man/8/tcpdump

Also check out “netcat”
(to generate traffic)

https://linux.die.net/man/8/tcpdump

Linux Tool: tcpdump

57…

Inspection of any arbitrary traffic pattern with any
protocol, port, socket, IP, and various other flags…

(tcpdump name is misnomer)
https://linux.die.net/man/8/tcpdump

Also check out “netcat”
(to generate traffic)

https://linux.die.net/man/8/tcpdump

Linux Tool: the /proc file system

58
https://man7.org/linux/man-pages/man5/proc.5.html (very powerful interface, also /sys/)

Recall the UNIX philosophy: Everything is a file

https://man7.org/linux/man-pages/man5/proc.5.html

Recap
From this lecture (+previous) you should know

1. How do network packets are transmitted and received
2. What is a LiveLock? How do you mitigate a livelock?
3. What is a MTU and how to calculate a link efficiency
4. What is a TCP segmentation offloading
5. What is a stateful and stateless offloading (advantages, disadvantages)
6. What is a TCP offload engine
7. Basic tools : ethtool, ifconfig, tcpdump, ifstat, netstate, ss, /proc interface

59
Don't forget the office hours now 3:30-4:30pm

Useful links
1. A Survey of End-System Optimizations for High-Speed Networks, https://dl.acm.org/doi/pdf/10.1145/3184899,

ACM Surveys, 2018.
2. Professional Linux Kernel Architecture,

https://www.oreilly.com/library/view/professional-linux-kernel/9780470343432/
3. Modern High-Speed Networking Techniques in Hardware and Software,

https://sv9rxw.blogspot.com/2020/04/modern-high-speed-networking-techniques.html

60

https://dl.acm.org/doi/pdf/10.1145/3184899
https://www.oreilly.com/library/view/professional-linux-kernel/9780470343432/
https://sv9rxw.blogspot.com/2020/04/modern-high-speed-networking-techniques.html

