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Video content has been dominating the Internet

Global IP traffic %
By 2020, video on the internet will eat 1%
up a bigger share of increased web traffic. o

Gaming
File sharing
Web/data 18%

— 1%
8%
IPVOD 22%

InterHEt Video

2016

Total traffic: 96 exabytes

2021

278 exabytes

Source: Cisco

recode

@statistaCharts  SOLITCE

YouTube is Responsible for 37% of All Mobile Internet Traffic

Share of global downstream mobile traffic, by app

@ YouTube

37.0%

urce: Sandvine | The Mobile Internet Phenomena Report (February 2019) statista %

Video trafficis dominant nowadays: by 2021 it would represent more than 67% of the Internet traffic



Pre-streamingera

Network

99% —

>

Download the whole video file and play it when the download is finished.



Streaming era

Network

>

Chunk the video into small segments and stream from any segment.



Challenges invideo streaming

4 Network condition is dynamic: best effort!

\/\,\ Packet drop
>
.0 Time /
o
® Internet
&

How to address/mitigate this issue?

Bandwidth




Video compression

Reduce the amount of data to be transmitted over the network while keeping the video quality

Techniques:
= Frame-level compression: resize/encode the image

= Video-level compression: encode the images across time (calculating deltas)

.
i} ¥ o

Frame 1
Frame1 Frame1 Frame 2 Frame 3

Frame-level compression Video-level compression



Frame-level compression

JPEG compression

= Changes RGB to YCuC, [76,141,248]
. _ #4C8DF8
= Y:luminance, C,C, are chrominance 1
_ / Compression
Why this change? - \
= Human eyes are less sensitive to E
chrominance than to luminance
RGB Y . Ch Cr )

JPEG reduces sizes of Cp and C;: quantization

= Total compression rate x2



Video-level compression

Group of

Pictures (COP)

Remove temporal redundancy by keeping track of
the relative differences (deltas) between frames

Macro blocks

| I(intra-coded) frame: self-contained, e.g., JPEG

| P (predictive) frame: looks back to | and P frames

for prediction

| B (bidirectional) frame: looks forward and
backward to other frames

Compressibility highly depends on | frames are the largest, P frames are medium-
the content, why? size, and B frames are the smallest.



Bitrate

Measures the data size per unit time:

= Amount of data used to encode video (or audio) persecond, e.g., Mbps, Kbps

Bitrate affects both the file size and the quality of the video

» Affect the required bandwidth when streaming the video over the network

8Mbps

>

Check here for a live demo: https://reference.dashif.org/
dash.js/latest/samples/dash-if-reference-player/index.html
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Constant bitrate (CBR)

Compress video with a constant bitrate

= Constant bitrate - constant compression ratio - varying quality

bitrate

4 Quality is bad for
complex segments

In H.264, quality is worse when the motion is higher due to the larger deltas

quality

Time

Stuffing, wasted space

¥

Poor quality due to

/ lack of space

Constant bitrate

—
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Variable bitrate (VBR)

Encode video with varying bitrates

Higher bitrate for more complex segments

= Smooth out the quality

(D]
g Quality is smoothed
"y with varying bitrates A
max q--=----=  meemeeaeaaaaaa-- 2
“
3
target frtvtttotTomommmmmmmmmeeeeeoooes <
min

VBR algorithms are more complex and
typically require support from the hardware

Utilize the space more flexibly for
the entire video

|

Variable bitrate

12



Video streaming with CBR

CBRis suitable for video streaming since we know already the
required bandwidth which is also constant over time

Bandwidth

Fora single user, CBR is sufficient,
though not perfect

CBR is not efficient when multiple users with
different bandwidth availabilities are present

13



CBR improvement

Encode the video with different CBRs at the
streaming server and choose a suitable CBR
based on the real-time bandwidth availability

14



Adaptive bitrate (ABR)

Main idea:
= Chop thevideo into small segments (chunks) and encode the segments with different bitrates

= Adaptively select the bitrate for each segment in streaming for each user

: Video segments in
Video segments Varying bandwidth g

10Mbps D D D \/\/‘
Bitrates 5Mbps D D D g

1Mbps Hinn

Time

varying bitrates

1. Video streaming protocols

15



Questions?



Video streaming protocols

Video streaming
TCP UDP
IP Layer
Link Layer

Physical Layer

Which transport layer protocol to use?

17



Video streaming protocols

Video streaming
TCP UDP
IP Layer
Link Layer

Physical Layer

Majority video streaming protocols are based on
UDP in favor of timeliness instead of reliability

Video streaming
HTTP
TCP UDP
IP Layer
Link Layer

Physical Layer

Modern video streaming protocols
are based on HTTP

18



Video streaming protocol: RTP

= Primary standard for audio/video transport in IP networks, widely used for real-time multimedia applications

such as voice over |IP audio over IP WebRTC (uses SRTP), and IP television

Real-time transport protocol: based on UDP

= Includes timestamps for synchronization, sequence numbers for packet loss and reordering detection

=  Comes with a control protocol, RTCP, which is used for QoS feedback and synchronization between media

streams, account for around 5% of total bandwidth usage

RTP RTCP _
Media streams (RTP)
TCP UDP
Control Flows (RTCP)
IP Layer
Link Layer

Physical Layer
19



RTP packet header

v=2| P | X|cC| M| PT | Sequence number

Timestamp

Synchronization source (SSRC) identifier

Contributing source (CSRC) identifiers

Extension header

RTP payload

No. Time Source Destination

Sequence number (16 bits): used for packet loss

detection or packet reordering, initially randomized

Timestamp (32 bits): used by the receiver to play back

the received samples at appropriate time and interval

(e.g., use a clock of 9okHz for a video stream)

SSRC (32 bits): uniquely identify the source of a stream

CSRC (32 bits): enumerate contributing sources to a

stream which has been generated from multiple sources

Protocol Length Info

1 0.000000
2 0.000037 10.2.2.
3 0.020622 Wity

10.1.1.1
W)oPaPns

5 0.025986 10.1.1.
6 0.026109 10.1.1.
7 0.026153 Wi Tl Tl
8 0.026290 10.1.1.

10.2.2.2
10.2.2.2
10.2.2.2
10.2.2.2

1
2
1
4 0.020653 10.2.2.2 1031
1
1
1
1

RTP
RTP
RTP
RTP
RTP
RTP
RTP

121 PT=DynamicRTP-Type-111, SSRC=0xC2B13255, Seq=19591, Time=2760404098
121 PT=DynamicRTP-Type-111, SSRC=0xB5770A56, Seq=4305, Time=4131840
131 PT=DynamicRTP-Type-111, SSRC=0xC2B13255, Seq=19592, Time=2760405058
131 PT=DynamicRTP-Type-111, SSRC=0xB5770A56, Seq=4306, Time=4132800

1190 PT=DynamicRTP-Type-96,
1190 PT=DynamicRTP-Type-96,
1190 PT=DynamicRTP-Type-96,
1196 PT=DynamicRTP-Type-96,

SSRC=0x69E8BDC,
SSRC=0x69E8BDC,
SSRC=0x69E8BDC,
SSRC=0x69E8BDC,

Seq=24102, Time=3068471093
Seq=24103, Time=3068471093
Seq=24104, Time=3068471093
Seq=24105, Time=3068471093

20



Control in RTP: RTCP

Receiver constantly measure transmission quality

= Delay,jitter, packet loss, RTT

Regular control information exchange between senders and receivers
= Feedbackto sender (receiver report) Media streams (RTP)

= Feed forward to recipients (sender report) Control Flows (RTCP)

Allow applications to adapt to current QoS

= Limiting a flow or using a different codec

Limited overhead: a small fraction, e.g., 5% max. of total bandwidth per RTP session

RTP/RTCP has no support for ABR!

21



Video streaming protocols based on HTTP

Three major players
= Microsoft Smooth Streaming
= Adobe HTTP Dynamic Streaming (HDS)

= Apple HTTP Live Streaming (HLS)
Each has a proprietary format and its own ecosystem

Bad for the industry such as CDN providers like Akamai since
every functionality has to be implemented three times

—HAX

SS/HDS/HLS
HTTP
TCP
IP Layer
Link Layer

Physical Layer

22



Why HTTP?

HTTP 1.1+ supports progressive download

= Prevalent form of web-based media delivery for video share sites

= Progressive = playback begins while download is in progress (byte range request)

ooooo

Video file

HTTP GET

<

J00000000000;

aiN

Progressive file download

Playback

<«—— Playback buffer

Browser cache

23



HOW STANDARDS PROUFERATE:

(65 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, £TC)

SITUATION:

THERE ARE
|4 COMPETING
STANDPRDS.

¥?! RiDICULoLS!

WE NEED To DEVELOP

ONE UNIVERSAL STANDARD
THAT COVERS EVERYONES
USE CASES. YERH!

O

)

)

OCON:

SITUATION:
THERE ARE
15 COMPETING
STANDPRDS.




Yet another standard: MPEG-DASH

Dynamic adaptive streaming over HTTP (DASH) is an ISO standard for the adaptive delivery of segmented content

= Blending existing formats into a new format

MPEG (moving pictures experts group)

= Standardized MP3, MP4
Standardization work from 2010-2012

Note: DASH is not a protocol

mpeg-DASH

25



DASH: data model

MDP (media presentation description) describes accessible segments and corresponding timing

= Ensuring interoperability

Media Presentation

Period, start=0s

Period Representations
Segments
start=100s Segment1
Ads baseURL = http://a.com Representation 1 starteos
Period, start=100s Adaptation Set1 500Kkbps, 640x480 Segment 2
q video Representation 2 start=10s
Ads Adaptation Set 2 1Mbps, 800600 >egment3

Period, start=290s audio start=20s

26



DASH WOf'kﬂOW DASH server DASH client

Representations Segments ,
Segment REQ manifest — | Start
Representation 1 start=0s ¢
500kbps, 640x480 Segment 2 Manifest
- start=10s
Representation 2 Segment 3 REQ SEG1 (REP7) — |<eep requesting
1Mbps, 800x600 _ <+
start=20s REQ SEG2 (REP2) — .
. Improve quality
REQ SEG3 (REP3) -
Video file is encoded using the MDP data REQSEGS (REP2) | Loss/congestion
model described with a manifest file
REQ SEG7 (REP3) — | Revamp
‘.7
v v
Time

27



Questions?



Bit rate selectionin ABR

Video segments Varying bandwidth

10Mbps D D D
Bitrates 5Mbps D D D

1Mbps O]

Time

2. Bitrate selection algorithms

How to design such an algorithm? Any ideas?

Video segments in
varying bitrates

29



Bit rate selectionin ABR

. , . Video segments in
Video segments Varying bandwidth

10Mbps D D D
Bitrates 5Mbps D D D

1Mbps O]

varying bitrates

Time
2. Bitrate selection algorithms : -
£ 14000
i
The most straightforward approach is to V o
perform bandwidth estimation i 00

0 500 1000 1500 2000 2500
Time (s)

Challenge: bandwidth variation can be very high!

30



Bit rate selectionin ABR

. , . Video segments in
Video segments Varying bandwidth

10Mbps D D D
Bitrates 5Mbps D D D

1Mbps O]

varying bitrates

Time
2. Bitrate selection algorithms : -
: - Otherideas?
The most straightforward approach is to V o
perform bandwidth estimation i 00

0 500 1000 1500 2000 2500
Time (s)

Challenge: bandwidth variation can be very high!

31



ABR algorithm: buffer-based

Video segments Varying bandwidth

ol ||

51\/\bps

1Mbps L] D D

Time

Video ID / sCPN
Viewport / Frames
Current / Optimal Res
Volume / Normalized
Codecs

Connection Speed
Network Activity
Buffer Health
Mystery Text

Make ABR decisions based on the buffer occupancy at the client

6QxYAwcSh0s / YXP6 WN1V KHR2
894x503*2.00 / 0 dropped of 79
1920x1080@25 / 1920x1080@25
100% / 100% (content loudness -9.7dB)
avc1.640028 (137) / mp4a.40.2 (140)
——'
T 111 | I
|
s:41:1.33 b:0.000-34.720 P

40%

60110 Kbps
1530 KB
33.39s

32



ABR algorithm: buffer-based

Main motivation
=  Avoid bandwidth estimation

= Buffer occupancy contains implicit
information about the bandwidth

BBA (buffer-based algorithm): pick the bitrate

based on a function of buffer occupancy

40%
bit rate = f( )

A Buffer-Based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell*, Mark Watson*
Stanford University, Netflix*
{huangty,rjohari,nickm}@stanford.edu, {mtrunnell,watsonm}@netflix.com

ABSTRACT

Existing ABR algorithms face a significant challenge in esti-
mating future capacity: capacity can vary widely over time,
a phenomenon commonly observed in commercial services.
In this work, we suggest an alternative approach: rather
than presuming that capacity estimation is required, it is
perhaps better to begin by using only the buffer, and then
ask when capacity estimation is needed. We test the viabil-
ity of this approach through a series of experiments spanning
millions of real users in a commercial service. We start with
a simple design which directly chooses the video rate based
on the current buffer occupancy. Our own investigation re-
veals that capacity estimation is unnecessary in steady state;
however using simple capacity estimation (based on immedi-
ate past throughput) is important during the startup phase,
when the buffer itself is growing from empty. This approach
allows us to reduce the rebuffer rate by 10-20% compared

ACM SICCOMM 2014

(kbls)

Average Throughput over a Chunk Download

Figure 1: Video streaming clients experience highly
variable end-to-end throughput.




BBA: system model

Input rate l C)/R()

Buffer size

Buffer occupancy B() (seconds)

(seconds)

I
Output rate 1

We use the unit of video seconds: representing how
many seconds of video we can fetch/buffer

System dynamics

C(t)/R(t) >1: buffer B(t) grows

= Atacertain point, itis safe to increase R(t) to

improve the streaming quality

C(t)/R(t) <1: buffer B(t) drains
= Arrival rate is smaller than 1 second of video
= The chosen rate R(t) is too high

= Bufferwill be depleted and “rebuffering” happens

Question: find a good function R(t) = f(B(t))

34



BBA: theoretical analysis

3
@ Ry Goal 1: no unnecessary rebuffering
o ; ,
L3 T
2 Risky s Aslongas C(t) > Rmin forall t and we adapt f(B) - Rmin
3 Area .............. Safe_from B “ l b ]CF b
VRN WS e Unnecessary as B~ 0, we will never unnecessarily rebuffer because
'E:; .................. » rebuffering the buffer will start to grow before it runs dry
O Riminfdl
x .
2 > Goal 2: average video rate maximization

T B . |

Playout Buffer Occupancy ™ = Aslongasf(B)isincreasing and eventually reaches

Rmax, the average video rate will match the average

capacity when Rmin < C(t) < Rmax forall t >0
Assumptions: infinitesimal segment size,

continuous bit rate, videos are CBR coded,

videos are infinitely long

35



BBA in practice

Assumptions do not always hold in practice, we need to be more conservative

- Video
Rate

Boundary of the safe area

max
Rm-l
R3
R2
Rmin: ............................................ l ............... i
r— =+ ¢ i T .1 ypper:
reservoirr | icushion i “PPET: B
Pl : ‘reservoirBpoy
B, B, By Br1i Bm  Buffer
Occupancy

36



ABR algorithm: control theory based

Future
Reference Future error Control Signal
» Optimizer l
1. T Cost Process
Biars Constraints Eunction
Predicted Actual
Output < Output
Model P

Model the ABR control problem as Markov
processes and apply control theory

A Control-Theoretic Approach for
Dynamic Adaptive Video Streaming over HTTP

Xiaogi Yin, Abhishek Jindal, Vyas Sekar, Bruno Sinopoli
Carnegie Mellon University
{yinxiaoqi522, abhishekjindal93}@gmail.com, {vsekar,brunos}@andrew.cmu.edu

ABSTRACT

User-perceived quality-of-experience (QoE) is critical in In-
ternet video applications as it impacts revenues for content
providers and delivery systems. Given that there is little sup-
port in the network for optimizing such measures, bottle-
necks could occur anywhere in the delivery system. Conse-
quently, a robust bitrate adaptation algorithm in client-side
players is critical to ensure good user experience. Previ-
ous studies have shown key limitations of state-of-art com-
mercial solutions and proposed a range of heuristic fixes.
Despite the emergence of several proposals, there is still a
distinct lack of consensus on: (1) How best to design this
client-side bitrate adaptation logic (e.g., use rate estimates
vs. buffer occupancy); (2) How well specific classes of ap-
proaches will perform under diverse operating regimes (e.g.,
high throughput variability); or (3) How do they actually
balance different QoE obijectives (e.g., startup delay vs. re-

1 Introduction

Many recent studies have highlighted the critical role that
user-perceived quality-of-experience (QoE) plays in Internet
video applications, as it ultimately affects revenue streams
for content providers [24, 35]. Specifically, metrics such as
the duration of rebuffering (i.e., the player’s playout buffer
does not have content to render), startup delay (i.e., the lag
between the user clicking vs. the time to begin rendering),
the average playback bitrate, and the variability of the bitrate
delivered have emerged as key factors.

Given the complex Internet video delivery ecosystem and
presence of diverse bottlenecks, the bitrate adaptation logic
in the client-side video player becomes critical to optimize
user experience [16]. In the HTTP-based delivery model that
predominates today [44], videos are typically chunked and
encoded at different bitrate levels. The goal of an adaptive
video player is to choose the bitrate level for future chunks

ACM SICCOMM 2015
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ABR algorithm: deep reinforcement learning based

Rendered
video chun

bandwidth

— 1

M\“\
[ L=H

T

Video Player

Throughput
Predictor

ks

Playback
Buffer

Buffer Occupancy

1 — QoE metric

4

A7
FR
W

Client-side network and video player measurements

Neural Adaptive Video Streaming with Pensieve

Hongzi Mao, Ravi Netravali, Mohammad Alizadeh
MIT Computer Science and Artificial Intelligence Laboratory
{hongzi,ravinet,alizadeh}@mit.edu

ABSTRACT

Client-side video players employ adaptive bitrate (ABR) algorithms
to optimize user quality of experience (QoE). Despite the abundance
of recently proposed schemes, state-of-the-art ABR algorithms suffer
from a key limitation: they use fixed control rules based on simplified
or inaccurate models of the deployment environment. As a result,
existing schemes inevitably fail to achieve optimal performance
across a broad set of network conditions and QoE objectives.

‘We propose Pensieve, a system that generates ABR algorithms
using reinforcement learning (RL). Pensieve trains a neural network
model that selects bitrates for future video chunks based on obser-
vations collected by client video players. Pensieve does not rely
on pre-programmed models or assumptions about the environment.
Instead, it learns to make ABR decisions solely through observations
of the resulting performance of past decisions. As a result, Pensieve
automatically learns ABR algorithms that adapt to a wide range of
environments and QoE metrics. We compare Pensieve to state-of-the-
art ABR algorithms using trace-driven and real world experiments
spanning a wide variety of network conditions, QoE metrics, and
video oroverties. In all considered scenarios. Pensieve outnerforms

content providers [12, 25]. Nevertheless, content providers continue
to struggle with delivering high-quality video to their viewers.

Adaptive bitrate (ABR) algorithms are the primary tool that con-
tent providers use to optimize video quality. These algorithms run
on client-side video players and dynamically choose a bitrate for
each video chunk (e.g., 4-second block). ABR algorithms make bi-
trate decisions based on various observations such as the estimated
network throughput and playback buffer occupancy. Their goal is
to maximize the user’s QoE by adapting the video bitrate to the
underlying network conditions. However, selecting the right bitrate
can be very challenging due to (1) the variability of network through-
put [18, 42, 49, 52, 53]; (2) the conflicting video QOE requirements
(high bitrate, minimal rebuffering, smoothness, etc.); (3) the cascad-
ing effects of bitrate decisions (e.g., selecting a high bitrate may
drain the playback buffer to a dangerous level and cause rebuffering
in the future); and (4) the coar: ined nature of ABR decisi
‘We elaborate on these challenges in §2.

The majority of existing ABR algorithms (§7) develop fixed con-
trol rules for making bitrate decisions based on estimated network
throughput (“rate-based” algorithms [21, 42]), playback buffer size

Model the ABR control problem as a Markov Decision ACM SICCOMM 2017

Process and apply deep reinforcement learning

38



Replacing video codecs with machine learning

Very little bandwidth consumption for super-high quality real-time video streaming

l

Bandwidth: 0.1265 KB/frame Bandwidth: 0.1165 KB/frame Bandwidth: 0.1474 KB/frame

https://wwwyoutube.com/watch?v=NgmMnjl6GEg

What are the down-sides of this cool technology?

Bandwidth: 0.1165 KB/frame

39



Questions?



Video streaming vs. video stream analytics

Video stream

Streaming server Client Cloud server Client

Video streaming

Video stream analytics: still an
active research field

41



Challenges invideo stream analytics

Large volume of traffic needs to be sent across the wide area network (WAN)
WAN has scarce, expensive, and variable bandwidth

Less than 25%

= _ 100 T vseeet 7 5= -~

-c—) 92, 75 \\ :l vl ° ’I b\ .".‘"0"'. 4

; o b 0%e%e0e0% .4 \ /I ‘\ r‘\ !

o 0O 50 4 hol W i :' \"

c & o254

© ~— ¢

m O T I I I I
06:00 12:00 18:00 00:00 06:00

Time

Applications have quality of service requirements which are complex to optimize

= Unlike video streaming where quality of experience is well-defined

= Videoanalytics rely on deep learning models and the analytics accuracy has a nonlinear relationship with the
quality metrics (resolution, frame rate, latency)

42



Application-specificoptimization

Scenario1: a surveillance application that detects pedestrians on a busy street

t=1s, small difference

Adapting Frame Rate

B Bandwidth (normalized) ™ Acccuracy
100100

100 o 0 87 84
50 40
[ -
0 [ | [
30 10 5 3 2

Adapting Resolution

B Bandwidth M Acccuracy
100100

87 8
100 79 71
50 29
0 . [

1080p 900p  720p  540p  360p
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Application-specificoptimization

Scenario 2: an application that detects objects on a mobile phone

Adapting Frame Rate

B Bandwidth (normalized) M Acccuracy

| 100100
100
b : 65 64
> ) 34
50 8 27
B B
t=0s, nearby and large target m B
30 10 5 3 2

0

Adapting Resolution

M Bandwidth (normalized) ™ Acccuracy

‘ 100100
100 87 97 93 87
69
4
5 33 22
t=1s, large difference due to . m

camera movement 1080p 900p  720p  540p  360p

o

o



A general framework: AWStream

Systematic and quantitative adaptation

= New programming abstractions to express
adaptation

= Automatic data-driven profiling

= Runtime adaptation balancing the different goals

2 . Profile )
Develop Profiler T—— Runtime
== (§3.2) 3.3
Training 10.7 1920 1 550
REiR 8.3 1920 0.91
Accuracy
Function

Online
Data

client

AWStream: Adaptive Wide-Area Streaming Analytics

Ben Zhang Xin Jin Sylvia Ratnasamy
UC Berkeley Johns Hopkins University UC Berkeley
John Wawrzynek Edward A. Lee
UC Berkeley UC Berkeley
ABSTRACT Analytics. In SIGCOMM ’18: ACM SIGCOMM 2018 Conference,

The emerging class of wide-area streaming analytics faces
the challenge of scarce and variable WAN bandwidth. Non-
adaptive applications built with TCP or UDP suffer from
increased latency or degraded accuracy. State-of-the-art ap-
proaches that adapt to network changes require developer writ-
ing sub-optimal manual policies or are limited to application-
specific optimizations.

‘We present AWStream, a stream processing system that
simultaneously achieves low latency and high accuracy in the
wide area, requiring minimal developer efforts. To realize this,
AWStream uses three ideas: (i) it integrates application adap-
tation as a first-class programming abstraction in the stream
processing model; (ii) with a combination of offline and on-
line profiling, it automatically learns an accurate profile that
models accuracy and bandwidth trade-off; and (iii) at runtime,
it carefully adjusts the application data rate to match the avail-

August 20-25, 2018, Budapest, Hungary. ACM, New York, NY,
USA, 17 pages. https:/doi.org/10.1145/3230543.3230554

1 INTRODUCTION

‘Wide-area streaming analytics are becoming pervasive, espe-
cially with emerging Internet of Things (IoT) applications.
Large cities such as London and Beijing have deployed mil-
lions of cameras for surveillance and traffic control [46, 85].
Buildings are increasingly equipped with a wide variety of
sensors to improve energy efficiency and occupant comfort [44]
Geo-distributed infrastructure, such as content delivery net-
works (CDNs), analyze requests from machine logs across
the globe [54]. These applications all transport, distill, and
process streams of data across the wide area, in real time.

A key challenge that the above applications face is dealing

ACM SIGCOMM 2018
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Clownfish: real-time video stream analytics

Combine a local fast processing and a remote
accurate processing

Video '
source . Video
% frames Complete

‘ Selected DNN
E ‘ Window Manager |

windows
I by
%E{)l Local H Filter |
Optimized v

DNN \ Fusion
Edge ml

Analytics results

4

Remote

WAN Cloud

Clownfish: Edge and Cloud Symbiosis for Video
Stream Analytics

Vinod Nigade, Lin Wang, Henri Bal
VU Amsterdam

Abstract—Deep learning (DL) has shown promising results
on complex computer vision tasks for video stream analytics
recently. However, DL-based analytics typically requires intensive
computation, which imposes to the current i
infrastructure. In particular, cloud-only solutions struggle to
maintain stable real-time performance due to the streaming over
the best-effort Internet, while edge-only solutions require the DL
model to be optimized (e.g., pruned or quantized) carefully to fit
on resource-constrained devices, affecting the analytics quality.

In this paper, we propose Clownfish, a framework for efficient
video stream analytics that achieves symbiosis of the edge and
the cloud. Clownfish deploys a lightweight optimized DL model
at the edge for fast response and a complete DL model at the
cloud for high accuracy. By exploiting the temporal correlation
in video content, Clownfish sends only a subset of video frames
intermittently to the cloud and enhances the analytics quality
by fusing the results from the cloud model with these from the
edge model. Our evaluation based on a system prototype shows
that Clownfish always runs in real time and is able to achieve
analytics quality comparable to that of cloud-only solutions, even

jitter that are omnipresent in WAN and wireless and cellular
networks [7], [21], [22]. When the network performance drops,
the analytics quality will be degraded accordingly.
Alternatively, edge-only solutions propose to deploy com-
puting devices at the network edge and carry out video stream
analytics directly from the edge [2]. Since the computation
is now performed in close proximity of the video source,
the network-related issues can be avoided. However, embed-
ded edge devices (e.g., microcontrollers or NVIDIA Jetson
boards), due to their limitations of physical space or energy
efficiency, are typically resource-constrained [23], [24]. Thus,
DL models have to be optimized or compressed to fit on
these devices. The popular model optimization techniques
include input resizing, network pruning, data quantization,
and model distillation [23]-[27]. However, applying these
hniq without affecting the analytics is chal-
lenging, which depends on various factors such as the choice

ACM/IEEE SEC 2020
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Open research projects / thesis topics

1. Latency control for edge-based mobile Augmented Reality

= Mobile AR, WebRTC, video streaming, deep learning

01100 O,
#1101000 O13.
101100 o1

2. Edge-based deep learning management framework CLOUD DATACENTER

s Deep learning, RPC, monitoring, programming model,

scheduling

3. Machine learning on switches

= P4, machinelearning

INTERNET OF THINGS

4. Intermittent edge computing S .
ource: mc.al

= Microcontrollers, battery-free computing/communication

If you are interested, please contact me at: linwang@vu.nl
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More topics

1. Empirically evaluating the multicore scalability of Linux networking stack (or how good or bad is it at delivering full
performance scalability) on DAS

2. Understanding performance of DPDK on DAS by benchmarking it thoroughly on DAS

3. How low can we go -- answering what is the lowest round trip time we can achieve between a pair of machines on
DAS and why. You need to benchmark and explain every last nanosecond time spent.

4. Designing and building a reliable “message” oriented protocol (instead of byte oriented TCP a message oriented
protocol would send a complete “message” and receive a complete “message”) - we will use the same ANP
infrastructure for development and testing

More will be announced on Canvas!
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Summary

Lecture 11: Beyond networking

Video streaming

Compression methods

Video streaming protocol: RTP
DASH

ABR algorithms: BBR

Video stream analytics

Open research projects

3 YouTube

-

— Video streaming
a
AN >
41— %

s
Video stream

analytics

49



Course summary

Project
ANP networking stack

— ~
Consume data ‘ Application ‘ Partl |
when appicaton QELEE [ e 2. Networking concepts
N EH 3 3. Linux networking internals
3 3.
stream 0 . .
[t | [ upop | [ icwmP ] e 2 4. Multicore scalability
- .
IP pracessin 5. User space networking
Perform network processing6> ij_j Operating 6 RDMA
figure out which application - - Systems .
queue data into the queue device driver J

@ Notify the operating system

Network Interface

All network cards have device drivers

Partll

7. Forwarding and routing

8. Software defined networking

9. Programmable data plane

10. Data center networking

11. Beyond network: video streaming

Controller (NIC)
Application @ A new packet arrives from the network
Transport
Network
Link Router
Physical - uu:‘-ﬁ

Wireless AP

Internet

o r Server

Data Center
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