
Advanced Network Programming
Cloud Networking

Lin Wang

Fall 2020, Period 1

Part 2: network infrastructure

Lecture 7: Network forwarding and routing

Lecture 8: Software defined networking

Lecture 9: Programmable data plane

Lecture 10: Cloud networking

Lecture 11: Beyond networking

2

Cloud network

Cloud computing

Elastic resources

■ Expand and contract resources

■ Pay-per-use, infrastructure on demand

Multi-tenancy

■ Multiple independent users, resource isolation

■ Amortize the cost of the shared infrastructure

Flexible service management

■ Resilience: isolate failures of server and storage

■ Workload migration: move work to other locations

3

Source: fastmetrics

What is behind cloud computing?

Large-scale data centers

4

Equinix’s AM4 data center @ Science ParkData center distribution in Europe

How does a data center look inside?

5

Source: skanska

Equinix’s AM4 data center @ Science Park
Well organized & interconnected

racks of servers!

How to connect these servers in a data center?

6

Build a giant switch and connect

all servers with the switch

What problems can you think of with such a design?

How to connect these servers in a data center?

7

Build a giant switch and connect

all servers with the switch

Switches have a limited port density and cannot scale to huge

number of servers (recall the switching fabric design)

A dedicated network for the data center

8

Line Bus Mesh

Ring Star Fully connected Tree

Tradeoff between connectivity and complexity

A typical data center network architecture

9

A 3-tier tree architecture

Core switches (10Gbps)

Aggregation

switches (10Gbps)

Top-of-rack (ToR)

switches (1Gbps)

What if ToR switches go for 10Gbps or beyond?

Bottleneck in tree networks

10

Less bandwidth

More bandwidth

How to quantitatively measure the connectivity?

Bisection bandwidth

11

Bisection width

Bisection bandwidth

Full bisection bandwidth

The minimum number of links cut to divide the

network into two halves

The total bandwidth of the above links

One half of nodes can communicate simultaneously

with the other half of nodes

Oversubscription

Definition

■ Ratio of worst-case required aggregate bandwidth among end-hosts to the total bisection bandwidth of the

network topology

■ Ability of hosts to fully utilize its uplink capabilities

Examples

■ 1:1 → All hosts can use full uplink capacity

■ 5:1 → Only 20% of host bandwidth may be available

Typical data center subscription ratio is 2.5:1 to 8:1

12

What is the oversubscription ratio of the

above topology?

1Gbps

10Gbps

Questions?

Motivation for data center network design

Commoditization in the data center

■ Inexpensive, commodity servers and storage devices

■ But the network is still highly specialized (using large-

fanout proprietary switches)

Data center is not a “small Internet”

■ One admin domain, not adversarial, limited policy

routing, etc…

Bandwidth is often the bottleneck

■ Data-intensive workloads (big data, graph

processing, machine learning)

14

Large-fanout proprietary switch

Fat-tree

15

ACM SIGCOMM 2008

Expand the tree topology with a “fat” root to increase the root connectivity

Fat-tree: design goals

Scalable interconnection bandwidth

■ Full bisection bandwidth (1:1 oversubscription ratio) between all pairs of hosts

Economies-of-scale

■ Price/port constant with number of hosts

■ Must leverage commodity merchant silicon

Compatibility

■ Support Ethernet and IP without host modifications

Easy management

■ Modular design, avoid manual management

16

Fat-tree topology

A special instance of the Clos topology

■ Clos networks are originally designed for telephone switches

■ Emulate a single huge switch with many smaller switches

■ Proposed in 1953 by Charles Klos

■ Fat-tree was proposed by Leiserson in 1985

17

IEEE TOC 1985

Fat-tree example

18

A fat-tree network built from 4-port identical switches

Fat-tree example

19

Support 16 hosts organized into 4 pods:

- Each pod is 2-ary 2-tree

- Fully bandwidth among hosts directly

connected to the pod

Fat-tree example

20

Full bisection bandwidth

Fat-tree scalability

21

Suppose we use k-port switches, how many servers can we

interconnect with fat-tree, and how many switches are needed?

Fat-tree scalability

22

(5k2/4) k-port switches

k3/4 servers

Fat-tree can scale to any link capacity at the edge: 10Gbps, 40Gbps, 100Gbps, …

Why this has not been done before?

Recall fat-tree was proposed in 1985!!

Needs to be backward compatible with IP/Ethernet

■ Existing routing and forwarding protocols do not work for fat-tree

■ Scalability challenges with millions of end points

Management

■ Thousands of individual elements that must be programmed individually

Cabling explosion at each level of fat-tree

■ Tens of thousands of cables running across the data center

23

Challenges with fat-tree

Backward compatible with IP/Ethernet

■ Routing algorithms (such as OSPF2) will naively choose a single shortest path to use between subnets

■ Leads to bottleneck quickly

■ (k/2)2 shortest paths available, should use them all equally

Complex wiring due to lack of high-speed ports

24

Hints: take advantage of the regularity of the fat-tree structure to

simplify protocol design and improve performance

Addressing in fat-tree

Use 10.0.0.0/8 private address block

Pod switches: 10.pod.switch.1

■ Pod and switch between [0, k-1] based on

the position

Core switches: 10.k.j.i

■ i and j denote core positions in (k/2)2 core

switches

Hosts: 10.pod.switch.id

■ ID in [2, (k/2)+1]

■ k < 256, does not scale indefinitely

25

10.pod.switch.1

10.k.j.i

10.pod.switch.id

Why?

Forwarding

Two-level lookup table

■ Prefixes used for forwarding intra-pod traffic

■ Suffixes used for forwarding inter-pod traffic

26

10.pod.switch.idHost IP:

Hosts in the same pod

are forwarded based on

the IP prefix

Hosts in different pods are

forwarded based on the host ID

TCAM-based implementation

Routing

Prefixes in two-level lookup table prevent intra-pod traffic

from leaving the pod

Inter-pod traffic is handled by suffix table

■ Suffixes based on host IDs, ensuring spread of traffic

across core switches

■ Prevent packet reordering by having static path

Each host-to-host communication has a single static path

■ Not perfect, but better than having a single static

path between two subnets (as in OSPF)

27

Routing

Core switches contain [10.pod.0.0/16, port] entries

■ Statically forward inter-pod traffic on specific port

Aggregation switches contain [10.pod.switch.0/24, port] entries

■ Switch value is the edge switch number

Assume a central entity with full knowledge of the topology

generates these routing tables

■ Also responsible for detecting switch failures and re-

routing traffic

28

Core

Aggregation

ToR

Routing example

29

(10.pod.switch.0/24, port)

(0.0.0.id, port)

10.0.1.2 → 10.2.0.3

(10.pod.switch.0/24, port)

(0.0.0.id, port)

(10.pod.0.0/16, port)

Flow collision

30

Hard-coded traffic diffusion can lead to bad collisions

→ performance bottleneck

Solutions to flow collisions

Equal-cost multi-path (ECMP)

■ Static path between end-hosts → static path for each flow

Flow scheduling

■ Have a centralized scheduler to assign flows to paths

(leveraging SDN)

31

IP MACPortPayload

Hash

0

1

2

3

Next hop A

Next hop B

Next hop C

Next hop D

Hash bucket Next hops

Packet

USENIX NSDI 2010

Fat-tree cabling solution

32

Organize switches into pod racks leveraging the regular structure of fat-tree

Questions?

Unaddressed issues in fat-tree

34

VM

No support for seamless VM migration: IP

addresses are location-dependent and

migration would break the TCP connection

Plug-and-play not possible: IP

addresses have to be pre-assigned

to both switches and hosts

It seems that the location-dependent IP address is the

culprit. Any ideas from what you have learned?

L2 vs L3 data center network fabric

35

Technique Plug-and-play Scalability Small switch state
Seamless VM

migration

Layer 2: flat MAC

addresses

Layer 3: IP

addresses

L2 vs L3 data center network fabric

36

Technique Plug-and-play Scalability Small switch state
Seamless VM

migration

Layer 2: flat MAC

addresses

Layer 3: IP

addresses

Broadcast

Location-dependent

addresses mandate

manual configuration

IP endpoint changes

Switch state: L2 vs L3

Commodity switches have ~640KB of low latency, power hungry, expensive on chip memory (e.g., TCAM)

■ Can store 32-64K forwarding entries

In a data center with 500K servers, there could be 10 million virtual endpoints that need to be addressed

■ Flat address (MAC address)

■ Hierarchical address (IP address)

37

10 million address

mappings

~100MB on-chip

memory
~150x over the limit

100-1000 address mappings

(using prefix/suffix matching)
~10KB of memory

easily accommodated in

today’s switches

PortLand

Main idea: separate node location from node identifier

■ Host IP: node identifier

■ Pseudo MAC (PMAC): node location

Fabric manager

■ Maintains IP → PMAC mapping for ARP

■ Facilitates fault tolerance

PMAC sufficient for positional forwarding

38

ACM SIGCOMM 2009

PortLand design

39

Plug-and-play + small switch state

PMAC: pod.position.port.vmid

Switches self-discover location by exchanging

Location Discovery Messages (LDMs):

■ Tree-level/role: based on neighbor

identify

■ Pod number: fetch from the Fabric

manager

■ Position number: aggregation switches

help ToR switches choose unique

position number

Fabric manager

40

ARP mappings

Network map

Soft state: no need for

manual configurations

ECMP at the core

PortLand workflow

41

Step 3: Packet is forwarded on the network using the PMAC

Step 4: Destination edge switch

rewrites PMAC to AMAC and forward

the packet to the destination host

Step 1: source host issues an ARP

Step 2: Edge switch

intercepts the ARP to the

FM to get the PMAC

PortLand workflow

42

Step 3: Packet is forwarded on the network using the PMAC

Step 4: Destination edge switch

rewrites PMAC to AMAC and forward

the packet to the destination host

Hardware support:

- No modification needed for hosts

- PMAC <> AMAC translation on edge switches

- Other switches forward based on prefix-matching on PMAC

Step 1: source host issues an ARP

Step 2: Edge switch

intercepts the ARP to the

FM to get the PMAC

PortLand workflow

43

Step 1: source host issues an ARP

Step 2: Edge switch

intercepts the ARP to the

FM to get the PMAC

Step 3: Packet is forwarded on the network using the PMAC

Step 4: Destination edge switch

rewrites PMAC to AMAC and forward

the packet to the destination host

In case of no matching entry, the FM

broadcasts the ARP request
How does the FM populate

the IP-PMAC table?

PortLand workflow

44

How does the FM populate

the IP-PMAC table?

Recall learning switch: an IP-PMAC entry is forwarded to

the FM every time the edge switch sees a new IP

Questions?

Evolution of Google’s cloud networking

46

04 05 06 07 08 09 10 11 12 13 14 Year

1T

10T

100T

1000T

Bisection bandwidth (bps)

Jupiter (1.3P)

Saturn

Watchtower

Firehose 1.1

Firehose 1.0

4 Post

Lo
g

 s
ca

le

Jupiter

Challenge: flat bandwidth profile across all servers

■ Simple job scheduling (remove locality)

■ Save significant resources via better bin-packing

■ Allow application scaling

47

ACM SIGCOMM 2015

Traffic in Google data center

Ideas behind Jupiter

Merchant silicon: general purpose, commodity priced,

off the shelf switching components

Clos topologies: Accommodate low radix switch chips to

scale nearly arbitrarily by adding stages

Centralized control / management: e.g., SDN-based

→ Scales out building wide 1.3Pbps

■ Enables 40Gbps to hosts

■ External control servers

■ OpenFlow

48

Data center backbone

49

How to interconnect the geographically distributed data centers?

Why a data center backbone?

Data centers deployed across the world

■ Serve content with geographic locality

■ Replicate content for fault tolerance

Need a network to connect these data centers to one another

■ Not on the public Internet, why?

■ Cost-effective network for high volume traffic

■ Application-specific variable in SLO

■ Bursty/bulk traffic (not smooth/diurnal)

50

Google data center backbone

Two separate backbones

■ B2: Carries Internet facing traffic → growing faster than the Internet

■ B4: Inter-data center traffic → more traffic than B2, growing faster than B2

Unlike compute and storage, networking cost/bit does not naturally decrease with size

■ Quadratic complexity in pairwise interactions and broadcast overhead of all-to-all communication requires

more expensive equipment

■ Manual management and configuration of individual elements

■ Complexity of automated configuration to deal with non-standard vendor configuration APIs

51

SDN to the rescue

B4: Google’s software defined WAN

52

ACM SIGCOMM 2013

B4 site: SDN architecture

53

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Master SDN controller

Protocol Protocol Protocol

Standby SDN controller

Protocol Protocol Protocol

Site A

Heartbeat

Site B

Site C

Traditional WAN integrated with SDN: still speaks legacy protocols like BGP

B4 site: traffic engineering control plane

54

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Master SDN controller

Protocol Protocol Protocol

Standby SDN controller

Protocol Protocol Protocol

Site A

Heartbeat

Site B

Site C

TE server (global

optimizer)

Bandwidth enforcerSDN gateway

Demand

Topology

PrefixesTE pathing

TE app TE app

Hosts

Demand collection

Admission control

More about Google’s cloud networking suite

55

ACM SIGCOMM 2018 USENIX NSDI 2018

Cloud networking research landscape

56

Architecture

Topology, addressing,

rack-scale computing

(Fat-tree, BCube, DCell,

VL2, PortLand, Jellyfish)

RDMA

Congestion control,

flow control

(TIMELY, GFC, DCQCN,

IRN)

Transport

Congestion control,

flow scheduling

(DCTCP, pFabric,

JumpQueue, HPCC)

Energy efficiency

Traffic engineering,

flow scheduling

(ElasticTree, Flattened-

Butterfly)

Questions?

Summary

Lecture 10: Cloud networking

■ Data centers

■ Data center network architecture

■ Fat-tree architecture

■ L2 vs. L3 addressing

■ PortLand architecture

■ Google’s cloud networking

■ Google’s WAN B4

58

Next week: beyond networking

59

Let us talk about video

