Advanced Network Programming

Cloud Networking

Lin Wang
Fall 2020, Period 1

VRIJE
UNIVERSITEIT
AMSTERDAM

VU%

Part 2: network infrastructure

Lecture 7: Network forwarding and routing

Cloud network

Lecture 8: Software defined networking
Lecture 9: Programmable data plane
Lecture 10: Cloud networking

Lecture 11: Beyond networking

Cloud computing

Elastic resources
= Expand and contract resources

s Pay-per-use, infrastructure on demand

Multi-tenancy
s Multiple independent users, resource isolation

s Amortize the cost of the shared infrastructure

Flexible service management
s Resilience: isolate failures of server and storage

= Workload migration: move work to other locations

<2 Dropbox

9@6

3 YouTube

® 200m

O

Source: fastmetrics

NETFLIX

Whatis behind cloud computing?

Large-scale data centers

Data center distribution in Europe Fquinix’s AM4 data center @ Science Park

How does a data center look inside?

Source: skanska

Well organized & interconnected

Equinix’s AM4 data center @ Science Park
racks of servers!

How to connect these servers in a data center?

=T>N Build a giant switch and connect

S
u all servers with the switch

What problems can you think of with such a design?

How to connect these servers in a data center?

=T>N Build a giant switch and connect

S
u all servers with the switch

Switches have a limited port density and cannot scale to huge
number of servers (recall the switching fabric design)

A dedicated network for the data center

R N N %/O

Line Bus Mesh

(2% & AN

Ring Star Fully connected Tree

Tradeoff between connectivity and complexity

A typical data center network architecture

A 3-tier tree architecture

Core switches (10Cbps) -ﬁ Q‘:ﬁ Core
Aggregation "
switches (10Gbps) T ?é? ﬁ Eﬁ ﬁ ——

Top-of-rack (ToR) — &

tch H / \ /[\ / \ / \ [\ [\ [\ [\
e 2088 SSEL S HHIES

Edge

What if ToR switches go for 10Cbps or beyond?

Bottleneck in tree networks

, N | C
Less bandwidth ﬁ /@ ore

«». sec ’, e ﬁ KRR ﬁ Aggregation

More bandwidth "~
DL E e S S

POLO LDES DD DOSE

How to quantitatively measure the connectivity?

10

Bisection bandwidth

Bisection width

Bisection bandwidth

Full bisection bandwidth

The minimum number of links cut to divide the

network into two halves

The total bandwidth of the above links

One half of nodes can communicate simultaneously

with the other half of nodes

11

Oversubscription

Definition

s Ratio of worst-case required aggregate bandwidth among end-hosts to the total bisection bandwidth of the

network topology

s Ability of hosts to fully utilize its uplink capabilities

10Gbps

Examples

= 1:1- All hosts can use full uplink capacity

s 5:1->0nly20% of host bandwidth may be available

Typical data center subscription ratio is 2.5:1 to 8:1 . o .
P P : What is the oversubscription ratio of the

above topology?

1Gbps

12

Questions?

Motivation for data center network design

Commoditization in the data center

= |nexpensive, commodity servers and storage devices

s Butthe networkis still highly specialized (using large- Large—fanou» foprietary switch
fanout proprietary switches)

Data centeris nota “small Internet” / \

s Oneadmindomain, notadversarial, limited policy ﬁ - ﬁ Aggregation
routing, etc... S © 0 S e

Bandwidth is often the bottleneck @@@@ @@ @@ @@@@ @@@@

» Data-intensive workloads (big data, graph

Core

processing, machine learning)

14

Fat-tree

Expand the tree topology with a “fat” root to increase the root connectivity

A Scalable, Commodity Data Center Network Architecture

Mohammad Al-Fares Alexander Loukissas Amin Vahdat
malfares@cs.ucsd.edu aloukiss@cs.ucsd.edu vahdat @ cs.ucsd.edu

Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0404

ABSTRACT

Today’s data centers may contain tens of thousands of computers
with significant aggregate bandwidth requirements. The network
architecture typically consists of a tree of routing and switching
elements with progressively more specialized and expensive equip-
ment moving up the network hierarchy. Unfortunately, even when
deploying the highest-end IP switches/routers, resulting topologies
may only support 50% of the aggregate bandwidth available at the
edge of the network, while still incurring tremendous cost. Non-
uniform bandwidth among data center nodes complicates applica-
tion design and limits overall system performance.

In this paper, we show how to leverage largely commodity Eth-

arnat cxarntrhac tn ciinnnart tha fiilll acaracata handuarndth Af ~Alnctarc

institutions and thousand-node clusters are increasingly common
in universities, research labs, and companies. Important applica-
tions classes include scientific computing, financial analysis, data
analysis and warehousing, and large-scale network services.
Today, the principle bottleneck in large-scale clusters is often
inter-node communication bandwidth. Many applications must ex-
change information with remote nodes to proceed with their local
computation. For example, MapReduce [12] must perform signif-
icant data shuffling to transport the output of its map phase before
proceeding with its reduce phase. Applications running on cluster-
based file systems [18, 28, 13, 26] often require remote-node ac-
cess before proceeding with their I/O operations. A query to a
web search engine often requires parallel communication with ev-

ACM SICCOMM 2008

15

Fat-tree: design goals

Scalable interconnection bandwidth

= Full bisection bandwidth (1:1 oversubscription ratio) between all pairs of hosts

Economies-of-scale
s Price/port constant with number of hosts

s Must leverage commodity merchantsilicon
Compatibility
s Support Ethernet and IP without host modifications

Easy management

= Modulardesign, avoid manual management

16

Fat-tree topology

A special instance of the Clos topology
s Clos networks are originally designed for telephone switches
s Emulate asingle huge switch with many smaller switches
s Proposed in1953 by Charles Klos

s Fat-tree was proposed by Leiserson in 1985

i

892

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, No. 10, OCTOBER]985

Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing

CHARLES E. LEISERSON, MEMBER, IEEE

Abstract — This paper presents a new class of universal routing
networks called fat-trees, which might be used to interconnect the
processors of a general-purpose parallel supercomputer. A fat-
tree routing network is parameterized not only in the number of
processors, but also in the amount of simultaneous commu-
nication it can support. Since communication can be scaled inde-
pendently from number of processors, substantial hardware can
be saved over, for example, hypercube-based networks, for such
parallel processing applications as finite-element analysis, but
without resorting to a special-purpose architecture.

Of greater interest from a theoretical standpoint, however, is a
proof that a fat-tree of a given size is nearly the best routing
network of that size. This universality theorem is proved using a
three-dimensional VLSI model that incorporates wiring as a di-
rect cost. In this model, hardware size is measured as physical
volume. We prove that for any given amount of communications
hardware, a fat-tree built from that amount of hardware can

further from the leaves. In physical structure, a fat-tree
resembles, and is based on, the tree of meshes graph due to
Leighton [12], [14]. The processors of a fat-tree are located
at the leaves of a complete binary tree, and the internal nodes
are switches. Going up the fat-tree, the number of wires
connecting a node with its father increases, and hence the
communication bandwidth increases. The rate of growth in-
fluences the size and cost of the hardware as well.

Most networks that have been proposed for parallel pro-
cessing are based on the Boolean hypercube, but these net-
works suffer from wirability and packaging problems and
require nearly order n*” physical volume to interconnect n
processors. In his influential paper on “ultracomputers™ [27],
Schwartz demonstrates that many problems can be solved

[EEE TOC 1985

17

Fat-tree example

Core

o)
=
Juid
<
o)
L
5
&)
<

Pod 3

Pod 2

Pod 1

Pod 0

A fat-tree network built from 4-port identical switches

18

Fat-tree example

Support 16 hosts organized into 4 pods: Core
- Each pod is 2-ary 2-tree wZ :
- Fully bandwidth among hosts directly

connected to the pod

...

= Aggregation

Edge

Fat-tree example

Core

Edge

20

Fat-tree scalability

10.2.0.2 10.2.0.3

Pod 2

Suppose we use k-port switches, how many servers can we
interconnect with fat-tree, and how many switches are needed?

Core

Edge

2

Fat-tree scalability

Core

Edge

Pod 0 Pod 1 k3[4 servers Pod 3

Fat-tree can scale to any link capacity at the edge: 10Gbps, 40Gbps, 100Gbps, ...

22

Why this has not been done before?

Recall fat-tree was proposed in 1985!!

Needs to be backward compatible with |P/Ethernet
s Existing routing and forwarding protocols do not work for fat-tree

s Scalability challenges with millions of end points

Manhagement

» Thousands of individual elements that must be programmed individually

Cabling explosion at each level of fat-tree

s Tensof thousands of cables running across the data center

23

Challenges with fat-tree

Backward compatible with IP/Ethernet
= Routingalgorithms (such as OSPF2) will naively choose a single shortest path to use between subnets
s leads to bottleneck quickly

s (k/2)2shortest paths available, should use them all equally

Complex wiring due to lack of high-speed ports

Hints: take advantage of the regularity of the fat-tree structure to
simplify protocol design and improve performance

24

Addressing in fat-tree

10.k.j.i
............. S— '1
............ ¢V
"""""""" — }"\

10.pod.switch.1 ,..,;

.....

Core

D | Aggregation

Edge

Use10.0.0.0/8 private address block

Pod switches: 10.pod.switch.1
= Pod and switch between [0, k-1] based on
the position
Core switches: 10.k.j.i

= jandjdenote core positionsin (k/2)2 core

switches

Hosts: 10.pod.switch.id
= IDin[2, (k/2)+1]

= k<256, does notscale indefinitely ~ Why?

25

Forwarding

Two-level lookup table Host IP: 10.pod.switch.id

s Prefixes used for forwarding intra-pod traffic

s Suffixes used for forwarding inter-pod traffic

Hosts in the same pod

are forwarded basedon Prefix | Output port
the IP prefix 10.2.0.0/24 0
10.2.1.0/24 1
0.0.0.0/0 —> Suffix Output port
0.0.0.2/8 2
0.0.0.3/8 3
RAM
TCAM
(102.0.X T T Hosts in different pods are
%, ™ Encoder o YRR . forwarded based on the host |D
X.X.X.3 11 10.4.1.2 3

TCAM-based implementation

Routing

Prefixes in two-level lookup table prevent intra-pod traffic
from leaving the pod
Inter-pod trafficis handled by suffix table

» Suffixes based on host IDs, ensuring spread of traffic

across core switches

» Prevent packet reordering by having static path

Fach host-to-host communication has a single static path

= Not perfect, but better than having a single static

path between two subnets (as in OSPF)

10.2.0.2 10.2.0.3

Pod 2

27

Routing

Core switches contain [10.pod.0.0/16, port] entries

s Statically forward inter-pod traffic on specific port

Aggregation switches contain [10.pod.switch.0/24, port] entries
s Switch value is the edge switch number

Assume a central entity with full knowledge of the topology

generates these routing tables

s Alsoresponsible for detecting switch failures and re-

routing traffic

10.2.0.2 10.2.0.3

Pod 2

28

Routing example

10.0.1.2>10.2.0.3

(10.pod.switch.0/24, port)
(0.0.0.id, port)

ooooooooooooooooooo

“
L 4
- b "
L 4

Pod 1

(10.pod.switch.0/24, port)
(0.0.0.id, port)

VR

10.p0d.0.0/16, port)

10.2.0.2 10.2.0.3

Pod 2

Core

Edge

29

Flow collision

Core 0

/2

T

Local
Collision

7
Vi
N

Core 1 Core 2

Downstream
@ / 4 Collision
\ .’ i | B : : . >
: .) . T \-. \

Agg 1 Agg 2

Hard-coded traffic diffusion can lead to bad collisions
> performance bottleneck

Core 3

©

Flow A B3
Flow B 4
Flow C
Flow D

30

Solutions to flow collisions

O —» Nexthop A
1 —» Nexthop B
2 > NexthopC

Packet Hash 3 > Next hop D

Payload | Port | IP |MAC

Hash bucket ~ Next hops

Equal-cost multi-path (ECMP)

Hedera: Dynamic Flow Scheduling for Data Center Networks

s Static path between end-hosts - static path for each flow Mohamad AlFares' Sivasankar Radhalrishnan

Barath Raghavan' Nelson Huang* Amin Vahdat*

*{malfares, sivasankar, nhuang, vahdat} @cs.ucsd.edu Ybarath@cs.williams.edu

*Department of Computer Science and Engineering Department of Computer Science

FI Ow SC h ed uI i n g University of California, San Diego Williams College

Abstract their software on commodity operating systems; there-

Todav’s data) ffor t d e band fore, the network must deliver high bandwidth without

p ; oday's data centers oller tremendous aggregale band- reqyjring software or protocol changes. Third, virtualiza-

» Have a centralized scheduler to assign flows to paths W 1o lusters of tens of (hOUaNds of MACHIES. o ecksmomn cutmonhy s oy cout Pt
However, because of limited port densities in even the

. . . . ing providers to efficiently multiplex customers across
highest-end switches, data center topologies typically

physical machines—makes it difficult for customers to

(| e V e r a g I n g S D N) ?OHSISt AOfAI?UIFi"r(A’?teAdA trees “Vlth many ?ﬂ}lﬁl'i?ft‘?a?s have guarantees that virtualized instances of applications

USENIX' NSDI 2010

Fat-tree cabling solution

48 machines 48 machines 48 machines

[:l —
| /—
|
= | =
—_ T — To core switch
== e 3y ——3 Secnt — -o-n
=0 =——1 =
48 machines 48 machines
% i —
— m
—
| — . !
| o—
| e—)
| — =
= =
=' f
N |

L]

| |

- From other pods
i 48 switch | ¢ 3| @ 2 2
48 machines ; - S . & 48 machines
) p—) pod rack | 3| ¢ 1 W
| m——— | e—
w r - r . = —_—
ST
| a— | c—
| — i =l
— t 5| & _ —_—
P ——— | |2 switch core rack — == |
—. l e |0
o————" C————3 seoo M|
K| e s

E 3 3
48 machines
| ol "
—
—
—
f—
— F
C— = -
— M

2
[[| 48 machines U t t d | R St t d
= = = nstructure = ructure
— 48x GigE links — —— — : 4 ‘
Gigk finks =1 — &l == T To core switch
48 machines 48 machines 48 machines

Organize switches into pod racks leveraging the regular structure of fat-tree

Questions?

Unaddressed i

ssues in fat-tree

No support for seamless VM migration: |P Plug-and-play not possible: |P

addresses are

ocation-dependent and addresses have to be pre-assigned

migration woulc

' break the TCP connection to both switches and hosts

't seems that the location-dependent IP address is the
culprit. Any ideas from what you have learned?

34

L2 vs L3 data center network fabric

Technique Plug-and-play

Layer 2: flat MAC
addresses

Layer 3: |P
addresses

Scalability

Small switch state

Seamless VM
migration

35

L2 vs L3 data center network fabric

Technique Plug-and-play Scalability
Layer 2: flat MAC
addresses
Broadcast
Layer 3: |P
addresses

Location-dependent
addresses mandate
manual configuration

Small switch state

Seamless VM
migration

|IP endpoint changes

Switch state: L2vs L3

Commodity switches have ~640KB of low latency, power hungry, expensive on chip memory (e.g., TCAM)

s Can store 32-64K forwarding entries

In a data center with 500K servers, there could be 10 million virtual endpoints that need to be addressed

s Flataddress (MAC address)

10 million address ~100MB on-chip

| ~150x over the limit
mappings memory

s Hierarchical address (IP address)

easily accommodated in
today’s switches

100-1000 address mappings

(using prefix/suffix matching) ~10KB of memory

37

PortLand

Main idea: separate node location from node identifier
s HostIP: node identifier

s Pseudo MAC (PMACQC): node location

Fabric manager
» Maintains I[P > PMAC mapping for ARP

s Facilitates fault tolerance

PMAC sufficient for positional forwarding

PortLand: A Scalable Fault-Tolerant Layer 2
Data Center Network Fabric

Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri,

Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat
Department of Computer Science and Engineering
University of California San Diego

{radhika, apambori, farrington, nhuang, smiri, sivasankar, vikram.s3, vahdat}@cs.ucsd.edu

ABSTRACT

This paper considers the requirements for a scalable, eas-
ily manageable, fault-tolerant, and efficient data center net-
work fabric. Trends in multi-core processors, end-host vir-
tualization, and commodities of scale are pointing to future
single-site data centers with millions of virtual end points.
Existing layer 2 and layer 3 network protocols face some
combination of limitations in such a setting: lack of scal-
ability, difficult management, inflexible communication, or
limited support for virtual machine migration. To some ex-
tent, these limitations may be inherent for Ethernet/IP style

rmratAanAla sxrhAn Fnrrina +A crrnnAant avhitransr fAanAlaciaa RTA

leading to the emergence of “mega data centers” hosting ap-
plications running on tens of thousands of servers [3]. For
instance, a web search request may access an inverted index
spread across 1,000+ servers, and data storage and analysis
applications may interactively process petabytes of informa-
tion stored on thousands of machines. There are significant
application networking requirements across all these cases.
In the future, a substantial portion of Internet communi-
cation will take place within data center networks. These
networks tend to be highly engineered, with a number of
common design elements. And yet, the routing, forwarding,
and management protocols that we run in data centers were

ACM SICCOMM 2009

PortLand design

Plug-and-play + small switch state

..
.

®

Fabric \ [P
Manager

’ PMAC

00:00:01:02:00:01

[P
10.5.1.2

00:19:B9:FA:88:E2

00219':B9:FA:88:E2

Tes
P

Switches self-discover location by exchanging
Location Discovery Messages (LDMs):

» Tree-level/role: based on neighbor
identify

s Pod number: fetch from the Fabric

manager

s Position number: aggregation switches

nelp ToR switches choose unigue

position number

39

Fabricmanager

-

>

ARP mappings

Network map

s

Soft state: no need for
manual configurations

1)

--

Fabric [P

PMAC

Manager 10,5, 1.2

00:00:01:02:00:01

...

IP : : o4
10.5.1.2 00

S\
A‘f\\\

AMAC

:19.:B9::88:E2 |

; \\\.. D
. SN — 5
. S
. N
hd ~
]

00:19:B9:FA:88:E2

ECMP at the core

40

PortLand workflow

Fabric
Manager

10.5.1.2 00:00:01:02:00:01

PMAC l @

..

@ intercepts the ARP to the

FM to get the PMAC

ath
| P P — ‘/4
A

Ny Ao
tep 2: Edge switch

\C | | PM.

Step 4: Destination edge switch
rewrites PMAC to AMAC and forward
the packet to the destination host

Step 1: sourc

€

h

ostissues an ARP

41

Hardware support:
PortLand workflow - No modification needed for hosts
- PMAC <> AMAC translation on edge switches
- Other switches forward based on prefix-matching on PMAC
Fabric |
Manager ‘ 10.151?1.2 | oo:oo?o¥€§00:01 l @

..

5'.: &) € “‘ Step 4: Destination edge switch
| ' | intercepts the ARP to the V4 Plﬁw rewrites PMAC to AMAC and forward
= ‘@ FM to get the PMAC ags:E2) oo:00:01: the packet to the destination host

Step 1: source host issues an ARP

42

PortLand workflow

In case of no matching entry, the FM

How does the FM populate
broadcasts the ARP request

the IP-PMAC table?

.................................

Fabric ‘ [P PMAC @
Manager 10.5.1.2

..

5'.: &) € “‘ Step 4: Destination edge switch
| ' | intercepts the ARP to the V4 Plﬁw rewrites PMAC to AMAC and forward
= ‘@ FM to get the PMAC ags:E2 oo:00:01: the packet to the destination host

Step 1: source host issues an ARP

43

PortLand workflow

How does the FM populate
the IP-PMAC table?

..

Fabric [P PMAC | @
Manager 10.5.1.2 00:00:01:02:00:01 :

00:19:B9:FA:88:E2 /' 00:00:0

o
&

Recall learning switch: an [P-PMAC entry is forwarded to
the FM every time the edge switch sees a new |P

Questions?

Evolution of Google’s cloud networking

Wwer

Watchto
Bisection bandwidth (bps) -

10001

DY - - b el "7, ! = .
i el el - - “ “al <)
X v N - 28 J o a) . .
13K X G P - L
M. - » - D) B e 1M - - ! _—
‘ SR s A SWSEER = - . ‘ 2 -
%) 1 -
Wy

101

_|

Log scale

04 05 06 07 08 09 10 11 12 13 14 Year

Jupiter

Challenge: flat bandwidth profile across all servers
s Simplejobscheduling (remove locality)

s Save significant resources via better bin-packing

50x Traffic generated by servers in our datacenters

1x

m Aggregate traffic - m

Time —»

s Allowapplication scaling

X Gbps / machine J
flat bandwidth

— L — — — — —_—

> — et ()) (bt () bt) Com—

P e e e [et [e g

»ﬁﬁﬁﬁﬁﬁﬂ

..

Datacenter

Jul ‘08 Jun ‘09 May ‘10 Apr‘ll Mar ‘12 Feb ‘13 Dec‘13 Nov°‘l4

Trafficin Coogle data center

Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Bannon,
Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kanagala, Jeff Provost,
Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hblzle, Stephen Stuart, and Amin Vahdat

Google, Inc.
jupiter-sigcomm@google.com

ABSTRACT

We present our approach for overcoming the cost, oper-
ational complexity, and limited scale endemic to dat-
acenter networks a decade ago. Three themes unify
the five generations of datacenter networks detailed in
this paper. First, multi-stage Clos topologies built from
commodity switch silicon can support cost-effective de-
plovment, of buildine-scale networks. Second. much of

abler for cloud computing. Bandwidth demands in the
datacenter are doubling every 12-15 months (Figure|1),
even faster than the wide area Internet. A number of re-
cent trends drive this growth. Dataset sizes are continu-
ing to explode with more photo/video content, logs, and
the proliferation of Internet-connected sensors. As a re-
sult, network-intensive data processing pipelines must
operate over ever-larger datasets. Next, Web services

S —

ACM SICCOMM 2015

47

|ldeas behind Jupiter

Merchantsilicon: general purpose, commodity priced,

off the shelf switching components

Clos topologies: Accommodate low radix switch chips to

scale nearly arbitrarily by adding stages N4 80858585 68680 8d 8o de 8o 8o

Centralized control / management: e.g., SDN-based e
pine Bloc

Centauri
Merchant |
bl 32x40G up [unjjjunjiuniing

>Scales out building wide1.3Pbps o | ook | R

16x40c el | AES e

............

32x40G down

128x40G down to 64 aggregation blocks

s Enables 40Cbps to hosts

T T T Aggregation Block (512x40G to 256 spine blocks)

l I I I [J A el A i e e R
_] L' MB.MB MB MB MB MB :MB MB

s [External control servers

256x10G down | P S

...............
[P

J
O B

Middle Block (MB) EI]III]

= OpenFlow

Data center backbone

How to interconnect the geographically distributed data centers?

49

Why a data center backbone?

Data centers deployed across the world
s Serve content with geographiclocality

s Replicate content for fault tolerance

Need a network to connect these data centers to one another
= Noton the publicInternet, why?
s Cost-effective network for high volume traffic
s Application-specific variable in SLO

= Bursty/bulk traffic (not smooth/diurnal)

Google

2

6 3 YouTube

android

50

Google data center backbone

Two separate backbones
s B2:Carries Internet facing traffic > growing faster than the Internet

s B4: Inter-data center traffic > more traffic than B2, growing faster than B2

Unlike compute and storage, networking cost/bit does not naturally decrease with size

» Quadratic complexity in pairwise interactions and broadcast overhead of all-to-all communication requires

more expensive equipment
» Manual management and configuration of individual elements

s Complexity of automated configuration to deal with non-standard vendor configuration APIs

SDN to the rescue

51

B4: Google’s software defined WA

e = B4: Experience with a Globally-Deployed
: Software Defined WAN

Caivrmna Sasomsdevan
: Lo Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
vt S I ANY'T Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
X 3 Urs Holzle, Stephgn Sltu?rt and Amin Vahdat
$ mr s tnane g - oogle, Inc.
ol LBy oo - N ~ £/ AT Compn ¥ 2 b4-sigcomm@google.com
neesy W wiih - Disassihe ™ .
~ W oilesa 7 Nakne) “:‘t;l.l Z " s OvmrTOE . . tl):u‘ S
Davom B e BT 2 5 s - : e e - ABSTRACT Such overprovisioning delivers admirable reliability at the very real
wbw-, “x.e'r e e ° o B Noww Yers Wenise » ’ < s o — .‘,' We present the design, implementation, and evaluation of B4, a pri- costs of 2-3x bandwidth over-provisioning and high-end routing
SRE R —— B al PO Y N s Y fot b vate WAN connecting Google’s data centers across the planet. B4 gear. faced with th heads for buildi
e WY euw Jap 2n < LN s . R has a number of unique characteristics: i) massive bandwidth re- . We v;re.rei age wit ese‘o}wller bea s oi bul dm'%l ahWAN‘connect-
4 R e ’ typersn 2 A R quirements deployed to a modest number of sites, ii) elastic traf- gllg mu tlpé ati‘ ’ce(rilters wit Sl\lNX[IiIntl)":h'ba'n widt {)eqm;emc?nts.
Zheaps 9 ., 3 - el SNBSS L fic demand that seeks to maximize average bandwidth, and iii) full owever, Googles data center exhibits a number of unique
";:‘."" e - * - i control over the edge servers and network, which enables rate limit- characteristics. First, we control the applications, servers, and the
P 19 g - Mg e S04 Buroga Tachrotnen NG Toln Al Spryet, Sovcorscs c-n‘enou»m' ing and demand measurement at the edge. These characteristics led II)‘ANS 'flll th,e way to the f:dg.e of the network. Second, our most
3 to a Software Defined Networking architecture using OpenFlow to andw1dth:1ntenswe applications p.erf(')rm large-scale data copies
Crangiha e control relatively simple switches built from merchant silicon. B4’s from one site to another.. These applications ben.eﬁt most .fr(.)m high
Gisrahing oL centralized traffic engineering service drives links to near 100% uti- levels of average bandW}dth and can ad?lpt. their tr 1 stssion raic
- A o VTt) A Limatine wlhile cnlittine amedioatine facre aemomee vasltinda mathe fa based on available capacity. They could similarly defer to higher pri-
s 59‘ s 2 Veon
Pl e . " 3 o

SR ACM SIGCOMM 2013

oA
......

“77) Phivpe nes

B4 site: SDN architecture
Traditional WAN integrated with SDN: still speaks legacy protocols like BGP

Site A

~

~

Protocol

Protocol

Protocol

OF agent OF agent

Silicon

Silicon

~

-
..........
-

Silicon

~

~

Protocol

Protocol

Protocol

Silicon

Silicon

Silicon

SiteB

SiteC

53

B4 site: traffic engineering control plane

Topology

TE pathing

optimizer)

TE server (global

Prefixes

|

Demand collection

Admission control

Protoco]

| Protoco

Protocol

-
...
-
-
-

Master SDN con

OF agent OF agent

Silicon

Silicon

...
-~
-~
-~
.....
......
L.

-

-
- -
- - -
- - - -
PA T e pE Y,
- .. —-

= - -~
.....
'.. - --

Sniserl PR e
—————————

y

="
- -
- -
- -

———————

-

--

- -

-

- - - -

... -.__. --
... -y -

.............

i

Silicon

SiteA

-

- L]
..........
-

- -
-

L P

-
-y
- -—__-
- -
—__— -
-

- -

S
~a
L]

-~ -
~.a

......

—"—
-="

Protocol

-
sssss
- ™
-

-
...
-~

-="
’

’

-y

’
L4
’
-
-

Silicon Silicon

: T ——
Standby SDN controller

OF agent § OF agent

Silicon

Demand .

SDN gateway —— > Bandwidth enforcer

SiteB

SiteC

More about Google’s cloud networking suite

B4 and After: Managing Hierarchy, Partitioning, and
Asymmetry for Availability and Scale in Google’s
Software-Defined WAN

Chi-Yao Hong Subhasree Mandal ~Mohammad Al-Fares Min Zhu Richard Alimi

Kondapa Naidu B. Chandan Bhagat

Sourabh Jain Jay Kaimal Shiyu Liang

Kirill Mendelev ~ Steve Padgett Faro Rabe Saikat Ray Malveeka Tewari
Matt Tierney Monika Zahn Jonathan Zolla Joon Ong Amin Vahdat
Google
b4-sigcomm@google.com

ABSTRACT

Private WANSs are increasingly important to the operation of
enterprises, telecoms, and cloud providers. For example, B4,
Google’s private software-defined WAN, is larger and grow-
ing faster than our connectivity to the public Internet. In this
paper, we present the five-year evolution of B4. We describe
the techniques we employed to incrementally move from
offering best-effort content-copy services to carrier-grade

PRGNS} P R} I F) [S T R SR 5 1 [S R

1 INTRODUCTION

B4 [18] is Google’s private backbone network, connecting
data centers across the globe (Figure 1). Its software-defined
network control stacks enable flexible and centralized con-
trol, offering substantial cost and innovation benefits. In
particular, by using centralized traffic engineering (TE) to
dynamically optimize site to site pathing based on utilization
and failures, B4 supports much higher levels of utilization

o Ol ______ 0 Ll L 1l

ACM SICCOMM 2018

Andromeda: Performance, Isolation, and Velocity at Scale
in Cloud Network Virtualization

Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman Gupta, Brian Fahs,
Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow, James Alexander Docauer, Jesse Alpert,
Jing Ai, Jon Olson, Kevin DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis,

Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata, Yossi Richter,
Uday Naik, and Amin Vahdat
Google, Inc.

Abstract

This paper presents our design and experience with An-
dromeda, Google Cloud Platform’s network virtualization
stack. Our production deployment poses several challeng-
ing requirements, including performance isolation among
customer virtual networks, scalability, rapid provisioning
of large numbers of virtual hosts, bandwidth and latency
largely indistinguishable from the underlying hardware,
and high feature velocity combined with high availability.

Andromeda is designed around a flexible hierarchy of

system together end to end. We developed Andromeda,
the network virtualization environment for Google Cloud
Platform (GCP). We use this experience to show how we
divide functionality across a global, hierarchical control
plane, a high-speed on-host virtual switch, packet proces-
sors, and extensible gateways.

This paper focuses on the following topics:

* The Andromeda Control plane is designed for agility,
availability, isolation, and scalability. Scale up and down
of compute and rapid provisioning of virtual infrastructure

USENIX' NSDI 2018

55

Cloud networking research landscape

Architecture Transport
Topology, addressing, Congestion control,
rack-scale computing flow scheduling

(Fat-tree, BCube, DCell, (DCTCP pFabric,
VL2, PortLand, Jellyfish) JumpQueue, HPCC)

RDMA

Congestion control,
flow control

(TIMELY, GFC, DCQCN,

IRN)

Energy efficiency

Traf

ICc engineering,

flow scheduling
(ElasticTree, Flattened-

Butterfly)

Questions?

Summary

Lecture 10: Cloud networking
s Data centers
s Data center network architecture
s [Fat-tree architecture
» L2vs. [3addressing
s Portland architecture

s Coogle’s cloud networking

s Coogle’'s WAN B4

.+ Phispoines

Next week: beyond networking

Let us talk about video

Video is almost

O/_ of the total downstream volume
58%

of traffic on the internet

NETFLIX O3 it

-

59

