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Part 2: network infrastructure

Lecture 7: Network forwarding and routing 

Lecture 8: Software defined networking 

Lecture 9: Programmable data plane 

Lecture 10: Cloud networking 

Lecture 11: Beyond networking
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Cloud network



Cloud computing

Elastic resources 

■ Expand and contract resources  

■ Pay-per-use, infrastructure on demand 

Multi-tenancy 

■ Multiple independent users, resource isolation 

■ Amortize the cost of the shared infrastructure 

Flexible service management 

■ Resilience: isolate failures of server and storage 

■ Workload migration: move work to other locations
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Source: fastmetrics

What is behind cloud computing?



Large-scale data centers
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Equinix’s AM4 data center @ Science ParkData center distribution in Europe



How does a data center look inside?
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Source: skanska

Equinix’s AM4 data center @ Science Park
Well organized & interconnected 

racks of servers!



How to connect these servers in a data center?
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Build a giant switch and connect 

all servers with the switch

What problems can you think of with such a design?



How to connect these servers in a data center?
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Build a giant switch and connect 

all servers with the switch

Switches have a limited port density and cannot scale to huge 

number of servers (recall the switching fabric design)



A dedicated network for the data center
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Line Bus Mesh

Ring Star Fully connected Tree

Tradeoff between connectivity and complexity



A typical data center network architecture
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A 3-tier tree architecture

Core switches (10Gbps)

Aggregation 

switches (10Gbps)

Top-of-rack (ToR) 

switches (1Gbps)

What if ToR switches go for 10Gbps or beyond?



Bottleneck in tree networks
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Less bandwidth

More bandwidth

How to quantitatively measure the connectivity?



Bisection bandwidth
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Bisection width

Bisection bandwidth

Full bisection bandwidth

The minimum number of links cut to divide the 

network into two halves

The total bandwidth of the above links

One half of nodes can communicate simultaneously 

with the other half of nodes



Oversubscription

Definition 

■ Ratio of worst-case required aggregate bandwidth among end-hosts to the total bisection bandwidth of the 

network topology 

■ Ability of hosts to fully utilize its uplink capabilities 

Examples 

■ 1:1 → All hosts can use full uplink capacity 

■ 5:1 → Only 20% of host bandwidth may be available 

Typical data center subscription ratio is 2.5:1 to 8:1
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What is the oversubscription ratio of the 

above topology?

1Gbps

10Gbps



Questions?



Motivation for data center network design

Commoditization in the data center 

■ Inexpensive, commodity servers and storage devices 

■ But the network is still highly specialized (using large-

fanout proprietary switches) 

Data center is not a “small Internet” 

■ One admin domain, not adversarial, limited policy 

routing, etc… 

Bandwidth is often the bottleneck 

■ Data-intensive workloads (big data, graph 

processing, machine learning)
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Large-fanout proprietary switch



Fat-tree
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ACM SIGCOMM 2008

Expand the tree topology with a “fat” root to increase the root connectivity



Fat-tree: design goals

Scalable interconnection bandwidth 

■ Full bisection bandwidth (1:1 oversubscription ratio) between all pairs of hosts 

Economies-of-scale 

■ Price/port constant with number of hosts 

■ Must leverage commodity merchant silicon 

Compatibility 

■ Support Ethernet and IP without host modifications 

Easy management 

■ Modular design, avoid manual management
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Fat-tree topology

A special instance of the Clos topology 

■ Clos networks are originally designed for telephone switches 

■ Emulate a single huge switch with many smaller switches 

■ Proposed in 1953 by Charles Klos 

■ Fat-tree was proposed by Leiserson in 1985
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IEEE TOC 1985



Fat-tree example
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A fat-tree network built from 4-port identical switches



Fat-tree example
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Support 16 hosts organized into 4 pods: 

- Each pod is 2-ary 2-tree 

- Fully bandwidth among hosts directly 

connected to the pod



Fat-tree example
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Full bisection bandwidth



Fat-tree scalability
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Suppose we use k-port switches, how many servers can we 

interconnect with fat-tree, and how many switches are needed?



Fat-tree scalability
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(5k2/4) k-port switches 

k3/4 servers

Fat-tree can scale to any link capacity at the edge: 10Gbps, 40Gbps, 100Gbps, …



Why this has not been done before?

Recall fat-tree was proposed in 1985!! 

Needs to be backward compatible with IP/Ethernet 

■ Existing routing and forwarding protocols do not work for fat-tree 

■ Scalability challenges with millions of end points 

Management 

■ Thousands of individual elements that must be programmed individually 

Cabling explosion at each level of fat-tree 

■ Tens of thousands of cables running across the data center
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Challenges with fat-tree

Backward compatible with IP/Ethernet 

■ Routing algorithms (such as OSPF2) will naively choose a single shortest path to use between subnets 

■ Leads to bottleneck quickly 

■ (k/2)2 shortest paths available, should use them all equally 

Complex wiring due to lack of high-speed ports

24

Hints: take advantage of the regularity of the fat-tree structure to 

simplify protocol design and improve performance



Addressing in fat-tree

Use 10.0.0.0/8 private address block 

Pod switches: 10.pod.switch.1 

■ Pod and switch between [0, k-1] based on 

the position 

Core switches: 10.k.j.i 

■ i and j denote core positions in (k/2)2 core 

switches 

Hosts: 10.pod.switch.id 

■ ID in [2, (k/2)+1] 

■ k < 256, does not scale indefinitely
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10.pod.switch.1

10.k.j.i

10.pod.switch.id

Why?



Forwarding

Two-level lookup table 

■ Prefixes used for forwarding intra-pod traffic 

■ Suffixes used for forwarding inter-pod traffic
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10.pod.switch.idHost IP:

Hosts in the same pod 

are forwarded based on 

the IP prefix

Hosts in different pods are 

forwarded based on the host ID

TCAM-based implementation



Routing

Prefixes in two-level lookup table prevent intra-pod traffic 

from leaving the pod 

Inter-pod traffic is handled by suffix table 

■ Suffixes based on host IDs, ensuring spread of traffic 

across core switches 

■ Prevent packet reordering by having static path 

Each host-to-host communication has a single static path 

■ Not perfect, but better than having a single static 

path between two subnets (as in OSPF)
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Routing

Core switches contain [10.pod.0.0/16, port] entries 

■ Statically forward inter-pod traffic on specific port 

Aggregation switches contain [10.pod.switch.0/24, port] entries 

■ Switch value is the edge switch number 

Assume a central entity with full knowledge of the topology 

generates these routing tables 

■ Also responsible for detecting switch failures and re-

routing traffic
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Core

Aggregation

ToR



Routing example
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(10.pod.switch.0/24, port) 

(0.0.0.id, port)

10.0.1.2 → 10.2.0.3

(10.pod.switch.0/24, port) 

(0.0.0.id, port)

(10.pod.0.0/16, port)



Flow collision
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Hard-coded traffic diffusion can lead to bad collisions 

→ performance bottleneck



Solutions to flow collisions

Equal-cost multi-path (ECMP) 

■ Static path between end-hosts → static path for each flow 

Flow scheduling 

■ Have a centralized scheduler to assign flows to paths 

(leveraging SDN)
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IP MACPortPayload

Hash

0

1

2

3

Next hop A

Next hop B

Next hop C

Next hop D

Hash bucket Next hops

Packet 

USENIX NSDI 2010



Fat-tree cabling solution
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Organize switches into pod racks leveraging the regular structure of fat-tree



Questions?



Unaddressed issues in fat-tree
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VM

No support for seamless VM migration: IP 

addresses are location-dependent and 

migration would break the TCP connection

Plug-and-play not possible: IP 

addresses have to be pre-assigned 

to both switches and hosts

It seems that the location-dependent IP address is the 

culprit. Any ideas from what you have learned?



L2 vs L3 data center network fabric

35

Technique Plug-and-play Scalability Small switch state
Seamless VM 

migration

Layer 2: flat MAC 

addresses

Layer 3: IP 

addresses



L2 vs L3 data center network fabric
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Technique Plug-and-play Scalability Small switch state
Seamless VM 

migration

Layer 2: flat MAC 

addresses

Layer 3: IP 

addresses

Broadcast

Location-dependent 

addresses mandate 

manual configuration

IP endpoint changes



Switch state: L2 vs L3

Commodity switches have ~640KB of low latency, power hungry, expensive on chip memory (e.g., TCAM) 

■ Can store 32-64K forwarding entries 

In a data center with 500K servers, there could be 10 million virtual endpoints that need to be addressed 

■ Flat address (MAC address) 

■ Hierarchical address (IP address)
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10 million address 

mappings

~100MB on-chip 

memory
~150x over the limit

100-1000 address mappings 

(using prefix/suffix matching)
~10KB of memory

easily accommodated in 

today’s switches



PortLand

Main idea: separate node location from node identifier 

■ Host IP: node identifier 

■ Pseudo MAC (PMAC): node location 

Fabric manager 

■ Maintains IP → PMAC mapping for ARP 

■ Facilitates fault tolerance 

PMAC sufficient for positional forwarding
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ACM SIGCOMM 2009



PortLand design
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Plug-and-play + small switch state

PMAC: pod.position.port.vmid

Switches self-discover location by exchanging 

Location Discovery Messages (LDMs): 

■ Tree-level/role: based on neighbor 

identify 

■ Pod number: fetch from the Fabric 

manager 

■ Position number: aggregation switches 

help ToR switches choose unique 

position number



Fabric manager
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ARP mappings

Network map

Soft state: no need for 

manual  configurations

ECMP at the core



PortLand workflow
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Step 3: Packet is forwarded on the network using the PMAC

Step 4: Destination edge switch 

rewrites PMAC to AMAC and forward 

the packet to the destination host

Step 1: source host issues an ARP

Step 2: Edge switch 

intercepts the ARP to the 

FM to get the PMAC



PortLand workflow
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Step 3: Packet is forwarded on the network using the PMAC

Step 4: Destination edge switch 

rewrites PMAC to AMAC and forward 

the packet to the destination host

Hardware support: 

- No modification needed for hosts 

- PMAC <> AMAC translation on edge switches 

- Other switches forward based on prefix-matching on PMAC

Step 1: source host issues an ARP

Step 2: Edge switch 

intercepts the ARP to the 

FM to get the PMAC



PortLand workflow
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Step 1: source host issues an ARP

Step 2: Edge switch 

intercepts the ARP to the 

FM to get the PMAC

Step 3: Packet is forwarded on the network using the PMAC

Step 4: Destination edge switch 

rewrites PMAC to AMAC and forward 

the packet to the destination host

In case of no matching entry, the FM 

broadcasts the ARP request
How does the FM populate 

the IP-PMAC table?



PortLand workflow
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How does the FM populate 

the IP-PMAC table?

Recall learning switch: an IP-PMAC entry is forwarded to 

the FM every time the edge switch sees a new IP



Questions?



Evolution of Google’s cloud networking
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Jupiter

Challenge: flat bandwidth profile across all servers 

■ Simple job scheduling (remove locality) 

■ Save significant resources via better bin-packing 

■ Allow application scaling
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ACM SIGCOMM 2015

Traffic in Google data center



Ideas behind Jupiter

Merchant silicon: general purpose, commodity priced, 

off the shelf switching components 

Clos topologies: Accommodate low radix switch chips to 

scale nearly arbitrarily by adding stages 

Centralized control / management: e.g., SDN-based 

→ Scales out building wide 1.3Pbps 

■ Enables 40Gbps to hosts 

■ External control servers 

■ OpenFlow
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Data center backbone
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How to interconnect the geographically distributed data centers?



Why a data center backbone?

Data centers deployed across the world 

■ Serve content with geographic locality 

■ Replicate content for fault tolerance 

Need a network to connect these data centers to one another 

■ Not on the public Internet, why? 

■ Cost-effective network for high volume traffic 

■ Application-specific variable in SLO 

■ Bursty/bulk traffic (not smooth/diurnal) 
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Google data center backbone

Two separate backbones 

■ B2: Carries Internet facing traffic → growing faster than the Internet 

■ B4: Inter-data center traffic → more traffic than B2, growing faster than B2 

Unlike compute and storage, networking cost/bit does not naturally decrease with size 

■ Quadratic complexity in pairwise interactions and broadcast overhead of all-to-all communication requires 

more expensive equipment 

■ Manual management and configuration of individual elements 

■ Complexity of automated configuration to deal with non-standard vendor configuration APIs
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SDN to the rescue



B4: Google’s software defined WAN
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ACM SIGCOMM 2013



B4 site: SDN architecture
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OF agent

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Silicon

OF agent

Master SDN controller
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Protocol Protocol Protocol
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Heartbeat

Site B

Site C

Traditional WAN integrated with SDN: still speaks legacy protocols like BGP



B4 site: traffic engineering control plane
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More about Google’s cloud networking suite
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ACM SIGCOMM 2018 USENIX NSDI 2018



Cloud networking research landscape
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Architecture 

Topology, addressing, 

rack-scale computing 

(Fat-tree, BCube, DCell, 

VL2, PortLand, Jellyfish)

RDMA 

Congestion control, 

flow control 

(TIMELY, GFC, DCQCN, 

IRN)

Transport 

Congestion control, 

flow scheduling 

(DCTCP, pFabric, 

JumpQueue, HPCC)

Energy efficiency 

Traffic engineering, 

flow scheduling 

(ElasticTree, Flattened-

Butterfly)



Questions?



Summary

Lecture 10: Cloud networking 

■ Data centers 

■ Data center network architecture 

■ Fat-tree architecture 

■ L2 vs. L3 addressing 

■ PortLand architecture 

■ Google’s cloud networking 

■ Google’s WAN B4
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Next week: beyond networking
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Let us talk about video


