Advanced Network Programming (ANP)
XB_0048

Introduction

Animesh Trivedi
Autumn 2020, Period 1

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

Expectations...

This course builds on prior knowledge from multiple courses. So please
refresh your knowledge of

Computer Organization (XB_40009) : CPU, devices, interrupts, memory architecture
Operating Systems (X_405067): Kernel and userspace, processes, synchronization
Computer Networks (X_400487): Protocols, Layer models, TCP/IP basic
Programming (XB_40011): knowledge of C/C++

Please refresh your knowledge of these topics, or consult course slides, and
online resources.

Why you should care about networking

Seee.,

KEEP

CALM

AND

PASS
THE EXAM

Why you should care about networking

—_

—_

© W o N o A W N

Printing press, 1430s

Electricity, late 19th century
Penicillin, 1928

Semiconductor electronics, 1950s
Optical lenses, 13th century

Paper, second century

Internal combustion engine, ~1860
Vaccination, 1796

The Internet, 1960s

Steam engine, 1712

The 50 Greatest
Breakthroughs Since the
Wheel

Why did it take so long to invent the wheelbarrow? Have we hit peak
innovation? What our list reveals about imagination, optimism, and the

Why care about networking - Personal

nnnnnnnnn ty. Sponu‘nmy

Esteem
Self-Esteem, Confidence,

Achievement

E

tin‘der

Friendship, Family

/ Safety and Security

iological needs (survival)
r, Water, Food, Sleep,

2 Q)
o [INTERN

yelp

We live in an interconnected world - essential for survival !

Why care about networking - Society

Gemelde COVID-19 patiénten
Per 100.000 inwoners per gemeente tot en met 2

US-ELECTION 2016

Why care about networking - Society

Gemelde COVID-19 patiénten

US-ELECTION 2016

REPUBLICAN DEMOCRATS AWAITING

https://cheezburger.com/8763535360 7

Why care about networking - Society

Gemelde COVID-19 patiénten

US-ELECTION 2016

REPUBLICAN DEMOCRATS AWAITING
P

TRUMP

Republican

276

Why care about networking - Society

Gemelde COVID-19 patiénten
T T S

US-ELECTION 2016

REPUBLICAN DEMOCRATS AWAITING
P = P
@

the social Petyvork \\

BOSSA S
Wﬂﬁlff FR(I

Nnicira
BAREFCO!
NETWORKS

q\. AN EAS 9
LN [N 9]
~ ~

What is this course about

e Learn about low-level networking internals
o What happens when you call send(data)

o Design and code a “real” stack
e Part 1: Challenges with end host networking - Animesh
o Stalled CPU, 100+ Gbps networking

o Cutting-edge research

e Part 2: Challenges inside data centers - Lin

o How to manage a network of 1M servers

https://www.techrepublic.com/blog/10-things/10-stupid-things-people-do-in-their-data-centers/ 10

https://www.techrepublic.com/blog/10-things/10-stupid-things-people-do-in-their-data-centers/

Part 1 and part 2

V U VUNIVERSITY
N° AMSTERDAM

Application

Transport

Network

Data Link

Physical

D000

What happens when a packet leaves your computer?

Cloud &
Data center

Part 1: End-host networking Stack
How do you build and process network data?

~

Application

Transport

Network

Data Link

Physical

Part 2: Network Infrastructure

11

What are data centers?

AMS8
e Large installation of servers in one place e

e Connected with high-performance networks
e Efficient cooling and power delivery

Amsterdam-Noord

| A10

Amsterdam

s G o | \ | AM3/AM4
£ /9
\ AM6

Southeast Campus
Campus Cross Connect

9=

H
|
N\
3
N

https://www.google.com/about/datacenters/

https://www.equinix.nl/locations/netherlands-colocation/amsterdam-data-centers/

12

https://www.google.com/about/datacenters/
https://www.equinix.nl/locations/netherlands-colocation/amsterdam-data-centers/

There is one in the mountains in Switzerland ;)

Various communication| ——
‘connections by Glass fibre connection
radio and optical to multple providers

ol West Central US UK South
fsence (EMP) Vs Gorlon Canada Central Ireland WesKEurope
The Dalles, OR N
| Central US Canada East) Germany Northeast
“\ \ Westus2 Oregon. - L4 North Europe, , ~_Frankfurt Beijing

o s . Calfornia gy o) North Central US UK West Germany Central chinaNorth, o/ “Seou_lapan East
y, | oS S X ® - St. Ghislain, Belgium ‘/
4 = West US \AWS GovCIoud/, ~_N. Virginia Tokyo, lao _Tokyo
2 apan West

2. EastUs West India y
South Central US ohio/ EastUS2 mal . @ China et

2% . East Asia
Mumbai - South India Changhua County, Taiwan

Berkeley County, SC, US Gov Virginia
Southeast Asia

floor space for
customer servers > '

Singapore

Multpurpose rooms
o wark
séo Paulo

Australia East

@ syane
Australia Southeast S

)]
amazon) Google CloudPlatform

&8 Microsoft Azure

|
forseveral weeks web services
®

Atomia

https://www.swissdatabackup.ch/en/mount10/swiss-fort-knox/
https://websitehostreview.com/10-most-incredible-data-centers-on-earth/

https://www.swissdatabackup.ch/en/mount10/swiss-fort-knox/
https://websitehostreview.com/10-most-incredible-data-centers-on-earth/

Layout of upcoming lectures - Part 1

Sep 1st, 2020 (today): /ntroduction and networking concepts -
Sep 3rd, 2020 (this Tuesday): Networking concepts (continued)

Sep 8th, 2020 : Linux networking internals

Sep 10th 2020: Multicore scalability

Sep 15th 2020: Userspace networking stacks

Sep 17th 2020: /ntroduction to RDMA networking

14

Project: Build your own networking stack!

:-‘;‘,;'_-ﬁ % ‘ '§|
— Sov how are things I'm OK with Layer 4.
— going with your issues 2 It's Layer 7 that provokes an
> |~ concerning the OSI Model? intense feeling of insecurity.

https://i.pinimg.com/originals/30/5b/fe/305bfea090b95b94218d9892aefc/7e88.png https://www.networkcomputing.com/data-centers/moving-stack
https://wiki.nix-pro.com/view/Packet journey through Linux kernel

15

https://www.networkcomputing.com/data-centers/moving-stack
https://i.pinimg.com/originals/30/5b/fe/305bfea090b95b94218d9892aefc7e88.png
https://wiki.nix-pro.com/view/Packet_journey_through_Linux_kernel

ANP netstack project overview

TCP

server client
Linux kernel Linux kernel
netstack netstack
NIC NIC
192.168.1.1 192.168.1.2

Basic server client example given

Client connect to the TCP server
Sends a buffer with a predefined
pattern

The server receives the buffer and
checks the pattern

The servers sends the same buffer
back to the client

The client receives the buffer and
checks the pattern - they _must_
match

Close the connection from the client
side

16

ANP netstack project overview

TCP
server

||

Linux kernel
netstack

NIC
192.168.1.1

TCP
el The BSD socket API
A /
S — —— | 1. socket(): expects a file descriptor
- 2. connect(): TCP 3-way handshake
Linux kernel 3. send(): TCP transmission, ACKs
netstack 4. recv(): TCP reception, ACKs
5. close(): 3-way shutdown
NIC
192.168.1.2
VM

17

ANP netstack project overview

TCP
server

||

$LD_LIBRARY_PRELOAD

[—]

Linux kernel
netstack

NIC
192.168.1.1

T.CP ANP netstack
client
10.0.0.4
Linux kernel
netstack
NIC TAP device
192.168.1.2 10.0.0.5

IP forwarding rules

VM

\

Your code as

a shared library

18

Why we chose to build this way?

e Develop assignment in the Linux kernel networking stack
o Mature, battle tested over 30+ years
o However, extremely complex and steep learning curve
o You are encouraged to have a look whenever in doubt ;)

19

Why we chose to build this way?

e Develop assignment in the Linux kernel networking stack
o Mature, battle tested over 30+ years
o However, extremely complex and steep learning curve
o You are encouraged to have a look whenever in doubt ;)

e Develop assignment in the userspace
o Easy to develop, full flexibility (just another userspace program)
o Needs boilerplate code, which we provide
o Not just a toy example - userspace networking stack, co-developed with an
application is the way current networking research is conducted
m Completely customizable and can be co-developed (what does this mean
becomes clear later)
o Run an unmodified TCP server client application < very important !

20

ANP project milestones

1.

Welcome to the machine (Tue, 8 Sep 2020 before the lecture) : canvas quiz
Individual: Get the given infrastructure up and run the arping command (5 points)

Hey you (Tue, 15th Sep 2020) : canvas quiz
Individual: Implement the ICMP protocol - get the “ping” command working (5 points)

Group formation
Is anyone out there? (Tue, 29th Sep 2020) : interview

Group: Establish the 3-way handshake with the TCP server (15 points)

Careful With That Data, Eugene (Tue 13th Oct 2020) : interview
Group: Transmit data, receive data, and close the connection (15 points)

Another Graph in the Wall (Tue Oct 20th 2020) : canvas submission
Group: design and run an experiment to measure latency profile (10 points)

21

On Canvas - read the project handbook

VU

Advanced Network Programming (ANP) Course Project
Handbook

P1, 2020 (XB_0048)
Version: 1.0

Animesh Trivedi (a.trivedi@vl.nl) and Lin Wang (lin.wang@vu.nl)

22

Warning

]

Coding in progress

This is an experimental course

e You are a part of the experiment
e We will build upon your feedback

This is a coding-heavy course

e If you have not done C/C++ programming this may be a tough course
o Use of structs, pointers, file I/0, thread synchronization, locks
e Start coding early, there will be plenty of surprises

There's a relatively little flexibility with the deadlines (as they all dependent on each other)

https://www.redbubble.com/i/art-board-print/Coding-in-Progress-by-D3mon98/36978034.706Gl

23

https://www.redbubble.com/i/art-board-print/Coding-in-Progress-by-D3mon98/36978034.7Q6GI

But equally rewarding

e Seeyour stack in action when communicating with the standard Linux
networking stack

e Build your own networking protocol

e Unlimited number of customization
and bonuses possible

e Learn everything about
(in)famous TCP/IP stack

e Solve crazy small challenges

24

Recap: The layered model

Modularity: Layer by layer architecture where one layer provides service to

the next one

N\

Application

Transport

Network

Data Link

Physical

L5/7: Network access

L4: End-to-end delivery

L3: Global routing and best-effort delivery
L2: Link management / local area delivery

L1: Physical bits/voltage/current movement

25

Recap: The layered model - Protocols

N Application

Transport

Network

Data Link

Physical

TCP/UDP

IP

}Ethernet

Some examples, but they
are not the only one

26

The layered model -
Protocols headers and encapsulation

Protocol headers

N Application data
Transport TCP/UDP TCP™ e
Network IP Ip | TCP | data

Data Link ETH IP TCP data trailer
Ethernet

Physical

How do applications use the network?

We use a network application programming interface (or API)

One example is a Socket interface

int sock = socket(AF_INET, SOCK_STREAM, 0);
struct sockaddr_in serv_addr;

[...]
serv_addr.sin_family
serv_addr.sin_port =
[...]

connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr);
// send data

send(sock , “Hello World!”, 12, ...);

//recv data

recv(sock, buffer, 1024);

= AF_INET;
htons (PORT);

How do applications use the network?

We use a network application programming interface (or API)

One example is a Socket interface

int sock = socket(AF_INET, SOCK_STREAM, 0); | Application
struct sockaddr_in serv_addr; 1 -
[...] Transport
serv_addr.sin_family = AF_INET,;

serv_addr.sin_port = htons(PORT); Network
[...]

connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr); Data Link

// send data

send(sock , “Hello World!”, 12, ...);
//recv data

recv(sock, buffer, 1024);

Physical

29

History : Socket interface

One of the first implementations in the 4.2BSD Unix (1983)

30

https://tools.ietf.org/html/rfc147

1983 Women's Clothing

ICRESOF

Microsoft Word
Version 1,135

Tweed Handbag
00

* MARO BROS., BATTLE THE PESTS! TWO PLAYERS MAXE IT EASER

History : Socket interface

e One of the first implementations in the 4.2BSD Unix (1983)

It is 36 years old

In 1983: Microsoft Word is first released

In 1983: Mario Bros. was first released as a Nintendo arcade game
In 1983: First mobile phones from Motorola

O O O O

Modern derivatives: WinSock, BSD socket, POSIX socket, more

32

https://tools.ietf.org/html/rfc147

History : Socket interface

e One of the first implementations in the 4.2BSD Unix (1983)

It is 36 years old
In 1983: Microsoft Word is first released
In 1983: Mario Bros. was first released as a Nintendo arcade game

In 1983: First mobile phones from Motorola

O O O O

Modern derivatives: WinSock, BSD socket, POSIX socket, more

e Firstreference RFC #147 (The Definition of a Socket, 1971)
https://tools.ietf.org/html/rfc147 (only 2 pages)

e Follows the UNIX philosophy
o Everything is a file (a socket is a file descriptor)

33

https://tools.ietf.org/html/rfc147

mat is an RFC? Request for Comments \

H iSto ry . Soc kEt i nte rfa ce is a publication from the Internet Society (ISOC)/

the Internet Engineering Task Force (IETF)

About any number of topics: protocols, behavior,

e One of the first implementations in the 4,2BSD| semantics, tutorials, do and don't...and poems
(968), bizarre protocols (see: The Infinite

It is 36 years old Monkey Protocol Suite (IMPS), 2795)
In 1983: Microsoft Word is first released

In 1983: Mario Bros. was first released as a
In 1983: First mobile phones from Moto

They are identified by numbers

O O O O

TCP (793), ICMP (792), IP (791), UDP (768), ARP
(826), DNS (1034), HTTP(2068)

Modern derivatives: WinSock, B

https://en.wikipedia.org/wiki/List of RFCs
https://tangentsoft.net/rfcs/humorous.html

e Firstreference RFC #147 (The Definition of a So
https://tools.ietf.org/html/rfc147 (only 2 pages)

e Follows the UNIX philosophy

o Everything is a file (a socket is a file descriptor)

34

https://tools.ietf.org/html/rfc147
https://en.wikipedia.org/wiki/List_of_RFCs
https://tangentsoft.net/rfcs/humorous.html

Quick recap: Socket API (see tutorial in Files in Canvas)

1. int fd = socket(AF_INET, SOCK_STREAM, 0);
a. Returns afile descriptor as an integer
b. File descriptor, a process-local integer to identify any open file or socket
c. Unique within a process
2. int ret = connect(fd, (struct sockaddr*)&server addr, sizeof(server_addr));
a. Proceed to setup a connection with a server_addr and attach to “fd”
b. For TCP, here runs the 3-way handshake protocol
3. ret = send(fd, (void*) tx_buffer, (int) size, (int) flags);
a. Does data transmission operation
b. Return values
i. Less than zero: then there was error, check errno

ii. More than zero, but less than size: only some part of data was accepted for TX
iii. Equal to size: all of it was transmitted
4, Similarly for recv()

5. Close(fd): close the connection

35

Socket interface - The unofficial standard

e Setting up and managing connections
o socket(), bind(), listen(), connect(), accept(), close()
e Network operations
o send(), recv(), sendto(), and recvfrom() (orwrite() and read() may also be
used)
e Address/hostname management
o gethostbyname() and gethostbyaddr() to resolve IPv4 host names and addresses
e Select activity and readiness of a socket for 1/0
o select(), poll()
e Setting up extra options
o getsockopt() and setsockopt()

Not a complete list. There are OS specific (e.g., Linux) specific extensions.

36

Socket - A highly successful abstraction

e Socket is a very successful abstraction
o A UNIXfile with a bunch of basic functions
o Applications are shielded away from managing anything but just “what to send”

and “where to receive”
m send(int socketfd, void* buffer _address, size t length, int flags);

m recv(int socketfd, void* buffer_address, size t length, int flags);

e Worked extremely well all these years supporting different classes of applications
o Web servers, video streaming, messaging applications,

_your_favorite_application

37

But wait...

e where are the rest of the networking layers?

e what happens after calling send / recv functions?

e who is running the TCP state machine?

e who is managing the TCP window and retransmission?
e who is doing IP routing?

e who is doing the MAC layer management?

e ..and so many more question

38

The answer is ...

The Operating System

e Linux, Windows, Open/Free/NetBSD, Minix - whatever you are running

A Wmdows
P

e Network connectivity is an important shared resource for all
e Every networking application benefits from a common implementation

@ @j (7)

Why?

As we will see later, this is _NOT_ THE only way to arrange things
39

A packet’s journey - (simplified) Receiving path

. o '\
Consume data Application
when application A
D i datagrams
calls recv() {D - |EH_| |—H_| g)
D =
" stream > ;
TCP ICMP o
f\ 2
IP processing
Eerform ?et\r/]\{orr]k prcjlf:esjcsing \ Operating
o ata in AT device driver Systems)

gueue data into the queue

/ \ @ Notify the operating system

Network Interface All network cards have device drivers
Controller (NIC)

\ @ A new packet arrives from the network 40

A packet’s journey - (simplified) Sending path

Queue data Application
when application q
calls send() Elﬂl |—H_| |—H_| datagrams
D
. stream
TCP ICMP

\

Perform data packet building @ IP pracessing
e TCP header \, Operating
e which device
/ @ Tell the device driver to transmit

Network Interface the packet
Controller (NIC)

\ @ Packet is transmitted on the network

41

Still many unanswered questions here

Think of the receive path. This is more complicated than the sending path (can
you think of why?)

1.
2.

3.
4,

5.

How to transfer data between a network controller and the end host

How to notify the end host about network packet reception
a. Do you need to tell the end host about a packet transmission?

How to build a packet with multiple protocols and headers

How much time/steps it takes to receive data? 1 bytes, 1 kB, 1 MB, or 1
GB?

...and many many many more questions.

Lets answer some of them, one by one and introduce the key ideas

42

Transferring data between the end host and the NIC

43

Transferring data between NIC and end-Host

core0 < > DRAM (Memory)
corel LLC
@ A
coreN 1/0
Controller
ideas? Network Interface
b Logic Controller (NIC)

On broad
f broa Network PHY

Connector h. Data packet

X

memory

Transferring data between NIC and end-Host

coreO

corel

coreN

LLC

<

Strategy 1:

CPU does polling (red)

o PIO: Special instructions

o Memory-mapped I/O
CPU does data copy (green)

%

DRAM (Memory)

@A N
1/0
Cantroller
> : Works, but
Logic e Waste of CPU cycles
On broad e Highload on the CPU
memory Network PHY cannot do anything else

Connector

45

Transferring data between NIC and end-Host

core0

corel

coreN

program the DMA engine, tell where to deposit data (addr, length)

YA

LLC |]

Strategy 2:

Direct Memory Access

@)
O

Program (blue)

Data copy (green)

Interrupts

O

Notify (red)

170

Cantroller

DRAM (Memory)

—
@ AN

memory

On broad

!

~ Logic

Network PHY

Connector

Works (close to what we have)

Challenges here?

46

When should a NIC interrupt about packet reception or transmission?

47

What happens when there is an interrupt

1. Device raises interrupt request
2. Processor interrupts program in

instruction_0O
instruction_1

instruction_2 execution |
instruction_ 3) 3. Interrupts are disabled
Interrupt Service 4. Device is informed of acceptance and, as

Routine (ISR) .
a consequence, lowers interrupt

5. Interruptis handled by service routine

Interrupts are enabled

7. Execution of interrupted program is
resumed

i\

instruction_5
instruction_6
instruction_7

{...}

o

48

Interrupt storm (or Interrupt livelocks)

Imagine a situation where a CPU is constantly receiving interrupts:

1. The CPU gets an interrupt

3. Start normal processing ...
4. Interrupt again

No “actual” work progress can be made.

e The system is alive, but is “locked” and cannot do any actual work : livelock
e In comparison: “deadlock” - just waiting for some resource

Interrupt storms often happens on the receive path because a NIC/system cannot control

when to receive the packet (but it controls when to transmit)
49

Apollo 11 : The Moon Mission - The First Interrupt Storm

do ¥ B NN
< N

=)

-

https://www.discovermagazine.com/the-sciences/apollo-11s-1202-alarm-explained

50

https://www.discovermagazine.com/the-sciences/apollo-11s-1202-alarm-explained

With network interrupts

If there is interrupt every time a packet is received, how frequently there might
be an in interrupt for small packets :

64 bytes (+20 headers, min packet size on ETH) of data :

1Gbps =84*8/100*10"6 = 0.6 microseconds (barely manageable)

10 Gbps =84*8/10* 1079 = 67.2 nanoseconds (close to a DRAM access)
100 Gbps =84*8/100* 10N9 =6.72 nanosecond ! (less than a DRAM access)

At these rates the CPU will just take interrupts, and do nothing else
If it cannot keep up, then packets will be dropped

51

Interrupt storm mitigations

1. Interrupt coalescing
a. Don't generate interrupt on every packet, but “n” packets to amortize the cost of taking
interrupt
b. Atypical value depends upon (a) NIC buffering capacity; (b) network speed; and (c)
accepted delay due to batching of “n” packets

2. Polling

a. Disable interrupts all together, and use CPU polling to check for new packet arrivals

3. Hybrid: a mix of these two
a. Inpractice, a hybrid strategy of these two are used
b. Interrupts -> Polling -> Interrupts
c. Thereis athreshold, when the rate exceed then switch to polling, then to interrupts

52

Linux Tools - ethtool -c

ETHTOOL(8) System Manager's Manual ETHTOOL (8!
NAME

ethtool - query or control network driver and hardware settings atr@atr:~$ ethtool -c enp053
SYNOPSIS Coalesce parameters for enp0s3:

ethtool devname Adaptive RX: off TX: off

stats-block-usecs: 0

sample-interval: 0

ethtool --version pkt-rate-low: 0
pkt-rate-high: 0

ethtool -h|--help

ethtool -a|--show-pause devname

ethtool -A|--pause devname [autoneg on|off] [rx on|off] [tx on|off] rx-usecs: 0
rx-frames: 0
ethtool -c|--show-coalesce devname rx-usecs-irq: 0
ethtool -C|--coalesce devname [adaptive-rx on|off] [adaptive-tx on|off] [rx-usecs N] [rx-frames N] [rx-usecs-irq N] rx-frames-qu: 0
[tx-usecs-irq N] [tx-frames-irq N] [stats-block-usecs N] [pkt-rate-low N] [rx-usecs-low N] [rx-frames-low N] N]
[rx-usecs-high N] [rx-frames-high N] [tx-usecs-high N] [tx-frames-high N] [sample-interval N] tx-usecs: 0
<tx-frames: 0 pr—

tx-usecs-irq: 0
tx-frames-irq: 0

Important tool - gives you a lot of information about a network rx-usecs-low: 0
] rx-frame-low: 0O
deV|ce tx-usecs-low: 0O
e -cand-Care the flags to check for coleasing setting x=TTaRE Stom: 0
e (an set threshold when to generate interrupt rx-usecs-high: 0

. rx-frame-high: 0

O Timeout tx-usecs-high: 0

o Number of packets SH=TrEmE=HOh: 0

o Adaptive, high and low threshold atreatr:~s i 53

How to build a packet with data, header, and trailer?

54

Building Packets with Headers and Trailers

Typically you tell the NIC, please transmit or receive data from (address, length)
Problem: needs that data is contiguous in physical memory

Data

/

void * va_l = kalloc(data_size);
where do you put TCP, IP, and ETH headers?

55

Building Packets with Headers and Trailers

Typically you tell the NIC, please transmit or receive data from (address, length)
Problem: needs that data is contiguous in physical memory

copy!
Data TCP Data
void * va_l = kalloc(data_size); void * va_2 = kalloc(data_size + TCP header);,

where do you put TCP, IP, and ETH headers?
Then repeat for all protocol header, IP and ETH

56

Building Packets with Headers and Trailers

Typically you tell the NIC, please transmit or receive data from (address, length)
Problem: needs that data is contiguous in physical memory

copy!
Data TCP Data
void * va_l = kalloc(data_size); void * va_2 = kalloc(data_size + TCP header);,

where do you put TCP, IP, and ETH headers?

Then repeat for all protocol header, IP and ETH

Lots of data copies (you can program DMA for each segment, but defeats the
purpose of DMA to have less CPU interaction in data movement)

CPU occiped, and waste of CPU

Poor performance (more copies = low bandwidth, high latency, low ops/secs)
Similarly think about on the receive path : you need to strip headers

57

Scatter-Gather 1I/0 Capabilities

Instead of one address, one length, pass a list of address if length to the DMA engine

data [P TCP ETH ETH
header header header trailer
v1,L1 v2,L2 Vv3,L3 V4, L4 v5,L5

Scatter-Gather 1I/0 Capabilities

Instead of one address, one length, pass a list of address if length to the DMA engine

data [P TCP ETH ETH
header header header trailer
v1,L1 v2,L2 Vv3,L3 V4, L4 v5,L5

(v4,L4) //ETH head@ Program
(v2,L2) // IP header the
(v3,L3) // TCP header >PMA
(v1,L1) // data engine
(v5,L5) // ETH trailer/ once!

|

DMA Engine with
SGE capabilities

Lk wnN =

59

Scatter-Gather 1I/0 Capabilities

Instead of one address, one length, pass a list of address if length to the DMA engine

data P TCP ETH ETH
header header header trailer
v1,L1 v2,L2 Vv3,L3 V4, L4 v5,L5

j 1. (v4L4) //ETH header) Program
——— 2. (v2,L2)// IP header the

DMA Engine wit 3. (v3,L3)// TCP header »>PMA

SGE capabilities 4. (v1.L1)// data engine

\ 5. (v5,L5)// ETH trailer/ once!
ETH P TCP data ETH
header header header trailer

A single packet is built and transmitted from multiple disjoint locations. 50

Linux Tool: ethtool -k

atr@evelyn:~$ ethtool -k enp0s25

Features for enp0s25:

rx-checksumming: on

tx-checksumming: on
tx-checksum-ipv4: off [fixed]
tx-checksum-ip-generic: on
tx-checksum-ipv6: off [fixed]
tx-checksum-fcoe-crc: off [fixed]
tx-checksum-sctp: off [fixed]

scatter-gather: on
tx-scatter-gather: on
tx-scatter-gather-fraglist: off [fixed]

tcp-segmentation-offload: on
tx-tcp-segmentation: on
tx-tcp-ecn-segmentation: off [fixed]
tx-tcp-mangleid-segmentation: off
tx-tcpb-segmentation: on
udp-fragmentation-offload: off
generic-segmentation-offload: on
generic-receive-offload: on
large-receive-offload: off [fixed]
rx-vlan-offload: on
tx-vlan-offload: on

61

Recap - Lecture 1

From this lecture you should know

Basic course administrative information

Refresh the idea of socket networking

What happens when you send or receive a data packet
Where is networking stack implemented

What is a interrupt storm

What is a scatter-gather I/0O

o Uhs WN =

Next lecture, we will continue with the basics ...

62

