
Advanced Network Programming (ANP)
XB_0048

Introduction
Animesh Trivedi

Autumn 2020, Period 1

1

Expectations...
This course builds on prior knowledge from multiple courses. So please
refresh your knowledge of

● Computer Organization (XB_40009) : CPU, devices, interrupts, memory architecture
● Operating Systems (X_405067): Kernel and userspace, processes, synchronization
● Computer Networks (X_400487): Protocols, Layer models, TCP/IP basic
● Programming (XB_40011): knowledge of C/C++

Please refresh your knowledge of these topics, or consult course slides, and
online resources.

2

Why you should care about networking
Obviously, you need to pass your exams !
but...

3

Why you should care about networking

4

9. The Internet, 1960s

Why care about networking - Personal

5
We live in an interconnected world - essential for survival !

Why care about networking - Society

6

Why care about networking - Society

7

Why care about networking - Society

8

Why care about networking - Society

9

What is this course about

10

● Learn about low-level networking internals

○ What happens when you call

○ Design and code a “real” stack

● Part 1: Challenges with end host networking - Animesh

○ Stalled CPU, 100+ Gbps networking

○ Cutting-edge research

● Part 2: Challenges inside data centers - Lin

○ How to manage a network of 1M servers

https://www.techrepublic.com/blog/10-things/10-stupid-things-people-do-in-their-data-centers/

Part 1 and part 2

11

…..

Part 1:

Cloud &
Data center

Part 2:

What are data centers?

12

● Large installation of servers in one place
● Connected with high-performance networks
● Efficient cooling and power delivery

https://www.google.com/about/datacenters/
https://www.equinix.nl/locations/netherlands-colocation/amsterdam-data-centers/

There is one in the mountains in Switzerland ;)

13

https://www.swissdatabackup.ch/en/mount10/swiss-fort-knox/
https://websitehostreview.com/10-most-incredible-data-centers-on-earth/

Layout of upcoming lectures - Part 1
Sep 1st, 2020 (today): Introduction and networking concepts

Sep 3rd, 2020 (this Tuesday): Networking concepts (continued)

Sep 8th, 2020 : Linux networking internals

Sep 10th 2020: Multicore scalability

Sep 15th 2020: Userspace networking stacks

Sep 17th 2020: Introduction to RDMA networking

14

Project: Build your own networking stack!

15

https://www.networkcomputing.com/data-centers/moving-stack
https://i.pinimg.com/originals/30/5b/fe/305bfea090b95b94218d9892aefc7e88.png
https://wiki.nix-pro.com/view/Packet_journey_through_Linux_kernel

ANP netstack project overview

16

TCP
client

TCP
server

NIC NIC

Linux kernel
netstack

Linux kernel
netstack

Basic server client example given

1. Client connect to the TCP server
2. Sends a buffer with a predefined

pattern
3. The server receives the buffer and

checks the pattern
4. The servers sends the same buffer

back to the client
5. The client receives the buffer and

checks the pattern - they _must_
match

6. Close the connection from the client
side

ANP netstack project overview

17

TCP
client

TCP
server

NIC NIC

Linux kernel
netstack

Linux kernel
netstack

VM

The BSD socket API

1. () : expects a file descriptor
2. () : TCP 3-way handshake
3. () : TCP transmission, ACKs
4. () : TCP reception, ACKs
5. () : 3-way shutdown

ANP netstack project overview

18

TCP
client

TCP
server

NIC NIC

Linux kernel
netstack

Linux kernel
netstack

ANP netstack

TAP device

IP forwarding rules VM

Your code as
a shared library

Why we chose to build this way?
● Develop assignment in the Linux kernel networking stack

○ Mature, battle tested over 30+ years
○ However, extremely complex and steep learning curve
○ You are encouraged to have a look whenever in doubt ;)

● Develop assignment in the userspace
○ Easy to develop, full flexibility (just another userspace program)
○ Needs boilerplate code, which we provide
○ Not just a toy example - userspace networking stack, co-developed with an

application is the way current networking research is conducted
■ Completely customizable and can be co-developed (what does this mean

becomes clear later)
○ Run an unmodified TCP server client application ← very important !

19

Why we chose to build this way?
● Develop assignment in the Linux kernel networking stack

○ Mature, battle tested over 30+ years
○ However, extremely complex and steep learning curve
○ You are encouraged to have a look whenever in doubt ;)

● Develop assignment in the userspace
○ Easy to develop, full flexibility (just another userspace program)
○ Needs boilerplate code, which we provide
○ Not just a toy example - userspace networking stack, co-developed with an

application is the way current networking research is conducted
■ Completely customizable and can be co-developed (what does this mean

becomes clear later)
○ Run an unmodified TCP server client application ← very important !

20

ANP project milestones
1. Welcome to the machine (Tue, 8 Sep 2020 before the lecture) : canvas quiz

Individual: Get the given infrastructure up and run the arping command (5 points)

2. Hey you (Tue, 15th Sep 2020) : canvas quiz
Individual: Implement the ICMP protocol - get the “ping” command working (5 points)

3. Is anyone out there? (Tue, 29th Sep 2020) : interview
Group: Establish the 3-way handshake with the TCP server (15 points)

4. Careful With That Data, Eugene (Tue 13th Oct 2020) : interview
Group: Transmit data, receive data, and close the connection (15 points)

5. Another Graph in the Wall (Tue Oct 20th 2020) : canvas submission
Group: design and run an experiment to measure latency profile (10 points) 21

On Canvas - read the project handbook

22

Warning

This is an experimental course

● You are a part of the experiment
● We will build upon your feedback

This is a coding-heavy course

● If you have not done C/C++ programming this may be a tough course
○ Use of structs, pointers, file I/O, thread synchronization, locks

● Start coding early, there will be plenty of surprises

There's a relatively little flexibility with the deadlines (as they all dependent on each other)

23

https://www.redbubble.com/i/art-board-print/Coding-in-Progress-by-D3mon98/36978034.7Q6GI

But equally rewarding
● See your stack in action when communicating with the standard Linux

networking stack

● Build your own networking protocol

● Unlimited number of customization

and bonuses possible

● Learn everything about

(in)famous TCP/IP stack

● Solve crazy small challenges

24

Recap: The layered model

25
Physical

Data Link

Network

Transport

Application L5/7:

L4:

L3:

L2:

L1:

Modularity:

Recap: The layered model - Protocols

26
Physical

Data Link

Network

Transport

Ethernet

IP

TCP/UDP

Some examples, but they
are not the only one

Application

ETH trailer

IP

TCP

The layered model -
Protocols headers and encapsulation

27
Physical

Data Link

Network

Transport

Ethernet

IP

TCP/UDP

Application data

data

TCP data

IP TCP data

Protocol headers

How do applications use the network?

We use a network application programming interface (or API)

One example is a Socket interface

28

…

…

How do applications use the network?

We use a network application programming interface (or API)

One example is a Socket interface

29

Physical

Data Link

Network

Transport

Application

History : Socket interface

● One of the first implementations in the 4.2BSD Unix (1983)

○ It is 36 years old
○ In 1983: Microsoft Word is first released
○ In 1983: Mario Bros. was first released as a Nintendo arcade game
○ In 1983: First mobile phones from Motorola

 Modern derivatives: WinSock, BSD socket, POSIX socket, more

● First reference RFC #147 (

● Follows the UNIX philosophy

○ Everything is a file (the socket is a file descriptor)

30

https://tools.ietf.org/html/rfc147

1983!

31

History : Socket interface

● One of the first implementations in the 4.2BSD Unix (1983)

○ It is 36 years old
○ In 1983: Microsoft Word is first released
○ In 1983: Mario Bros. was first released as a Nintendo arcade game
○ In 1983: First mobile phones from Motorola

 Modern derivatives: WinSock, BSD socket, POSIX socket, more

● First reference RFC #147 (

● Follows the UNIX philosophy

○ Everything is a file (the socket is a file descriptor)

32

https://tools.ietf.org/html/rfc147

History : Socket interface

● One of the first implementations in the 4.2BSD Unix (1983)

○ It is 36 years old
○ In 1983: Microsoft Word is first released
○ In 1983: Mario Bros. was first released as a Nintendo arcade game
○ In 1983: First mobile phones from Motorola

 Modern derivatives: WinSock, BSD socket, POSIX socket, more

● First reference RFC #147 (

● Follows the UNIX philosophy

○ Everything is a file (a socket is a file descriptor)

33

https://tools.ietf.org/html/rfc147

History : Socket interface

● One of the first implementations in the 4.2BSD Unix (1983)

○ It is 36 years old
○ In 1983: Microsoft Word is first released
○ In 1983: Mario Bros. was first released as a Nintendo arcade game
○ In 1983: First mobile phones from Motorola

 Modern derivatives: WinSock, BSD socket, POSIX socket, more

● First reference RFC #147 (

● Follows the UNIX philosophy

○ Everything is a file (a socket is a file descriptor)

34

What is an RFC? Request for Comments

is a publication from the Internet Society (ISOC)/
the Internet Engineering Task Force (IETF)

About any number of topics: protocols, behavior,
semantics, tutorials, do and don’t…and poems
(968), bizarre protocols (see: The Infinite
Monkey Protocol Suite (IMPS), 2795)

They are identified by numbers

TCP (793), ICMP (792), IP (791), UDP (768), ARP
(826), DNS (1034), HTTP(2068)

https://tools.ietf.org/html/rfc147
https://en.wikipedia.org/wiki/List_of_RFCs
https://tangentsoft.net/rfcs/humorous.html

Quick recap: Socket API (see tutorial in Files in Canvas)

a. Returns a file descriptor as an integer
b. File descriptor, a process-local integer to identify any open file or socket
c. Unique within a process

a. Proceed to setup a connection with a server_addr and attach to “fd”
b. For TCP, here runs the 3-way handshake protocol

a. Does data transmission operation
b. Return values

i. Less than zero: then there was error, check errno
ii. More than zero, but less than size: only some part of data was accepted for TX
iii. Equal to size: all of it was transmitted

4. Similarly for ()
5. (fd): close the connection 35

Socket interface - The unofficial standard
● Setting up and managing connections

○

● Network operations

○ (or and may also be

used)

● Address/hostname management

○ and to resolve IPv4 host names and addresses

● Select activity and readiness of a socket for I/O

○

● Setting up extra options

○ and
36Not a complete list. There are OS specific (e.g., Linux) specific extensions.

Socket - A highly successful abstraction
● Socket is a very successful abstraction

○ A UNIX file with a bunch of basic functions

○ Applications are shielded away from managing anything but just “what to send”

and “where to receive”

■

■

● Worked extremely well all these years supporting different classes of applications

○ Web servers, video streaming, messaging applications,

_your_favorite_application
37

But wait...
● where are the rest of the networking layers?

● what happens after calling send / recv functions?

● who is running the TCP state machine?

● who is managing the TCP window and retransmission?

● who is doing IP routing?

● who is doing the MAC layer management?

● ...and so many more question

38

The answer is …
The Operating System

● Linux, Windows, Open/Free/NetBSD, Minix - whatever you are running

Why?

● Network connectivity is an important shared resource for all
● Every networking application benefits from a common implementation

39

(?)

Application

A packet’s journey - (simplified) Receiving path

40

Network Interface
Controller (NIC)

1

2

device driver

IP processing

TCP UDP ICMP

3

4

A new packet arrives from the network

Notify the operating system
All network cards have device drivers

Perform network processing
figure out which application
queue data into the queue

Consume data
when application
calls recv()

Operating
Systems

stream

datagrams end-host

A packet’s journey - (simplified) Sending path

41

Network Interface
Controller (NIC)

4

3

device driver

IP processing

TCP UDP ICMP

Application

2

1

Packet is transmitted on the network

Tell the device driver to transmit
the packet

Perform data packet building
● TCP header
● IP header
● which device

Queue data
when application
calls send()

Operating
Systems

stream

datagrams

Still many unanswered questions here
Think of the receive path. This is more complicated than the sending path (can
you think of why?)

1. How to transfer data between a network controller and the end host
2. How to notify the end host about network packet reception

a. Do you need to tell the end host about a packet transmission?

3. How to build a packet with multiple protocols and headers
4. How much time/steps it takes to receive data? 1 bytes, 1 kB, 1 MB, or 1

GB?
5. ...and many many many more questions.

Lets answer some of them, one by one and introduce the key ideas
42

43

Transferring data between the end host and the NIC

Transferring data between NIC and end-Host

44

core0

core1

coreN

LLC

DRAM (Memory)

I/O
Controller

On broad
memory

Logic

Network PHY

Connector Data packet

ideas? Network Interface
Controller (NIC)

Transferring data between NIC and end-Host

45

core0

core1

coreN

LLC

DRAM (Memory)

I/O
Controller

On broad
memory

Logic

Network PHY

Connector

Strategy 1:

● CPU does polling (red)
○ PIO: Special instructions
○ Memory-mapped I/O

● CPU does data copy (green)

Works, but
● Waste of CPU cycles
● High load on the CPU

cannot do anything else

Transferring data between NIC and end-Host

46

core0

core1

coreN

LLC

DRAM (Memory)

I/O
Controller

On broad
memory

Logic

Network PHY

Connector

Strategy 2:

● Direct Memory Access
○ Program (blue)
○ Data copy (green)

● Interrupts
○ Notify (red)

DMA

program the DMA engine, tell where to deposit data (addr, length)

Works (close to what we have)

Challenges here?

47

When should a NIC interrupt about packet reception or transmission?

interrupt

What happens when there is an interrupt

1. Device raises interrupt request
2. Processor interrupts program in

execution
3. Interrupts are disabled
4. Device is informed of acceptance and, as

a consequence, lowers interrupt
5. Interrupt is handled by service routine
6. Interrupts are enabled
7. Execution of interrupted program is

resumed

48

instruction_0
instruction_1
instruction_2
instruction_3

instruction_5
instruction_6
instruction_7
…

Interrupt Service
Routine (ISR)

{ … } ;

Interrupt storm (or Interrupt livelocks)
Imagine a situation where a CPU is constantly receiving interrupts:

1. The CPU gets an interrupt
2. It processes interrupts by executing ISR
3. Start normal processing …
4. Interrupt again

No “actual” work progress can be made.

● The system is alive, but is “locked” and cannot do any actual work : livelock
● In comparison: “deadlock” - just waiting for some resource

Interrupt storms often happens on the receive path because a NIC/system cannot control
when to receive the packet (but it controls when to transmit)

49

Apollo 11 : The Moon Mission - The First Interrupt Storm

50

https://www.discovermagazine.com/the-sciences/apollo-11s-1202-alarm-explained

With network interrupts
If there is interrupt every time a packet is received, how frequently there might
be an in interrupt for small packets :

64 bytes (+20 headers, min packet size on ETH) of data :

1 Gbps = 84 * 8 / 100 * 10^6 = 0.6 microseconds (barely manageable)

10 Gbps = 84 * 8 / 10 * 10^9 = 67.2 nanoseconds (close to a DRAM access)

100 Gbps = 84 * 8 / 100 * 10^9 = 6.72 nanosecond ! (less than a DRAM access)

At these rates the CPU will just take interrupts, and do nothing else
If it cannot keep up, then packets will be dropped

51

Interrupt storm mitigations
1. Interrupt coalescing

a. Don’t generate interrupt on every packet, but “n” packets to amortize the cost of taking
interrupt

b. A typical value depends upon (a) NIC buffering capacity; (b) network speed; and (c)
accepted delay due to batching of “n” packets

2. Polling
a. Disable interrupts all together, and use CPU polling to check for new packet arrivals

3. Hybrid : a mix of these two
a. In practice, a hybrid strategy of these two are used
b. Interrupts -> Polling -> Interrupts
c. There is a threshold, when the rate exceed then switch to polling, then to interrupts

52

Linux Tools - ethtool -c

53

Important tool - gives you a lot of information about a network
device

● -c and -C are the flags to check for coleasing setting
● Can set threshold when to generate interrupt

○ Timeout
○ Number of packets
○ Adaptive, high and low threshold

54

How to build a packet with data, header, and trailer?

Building Packets with Headers and Trailers

55

Typically you tell the NIC, please transmit or receive data from (address, length)
Problem: needs that data is contiguous in physical memory

Data

void * va_1 = kalloc(data_size);
where do you put TCP, IP, and ETH headers?

Building Packets with Headers and Trailers

56

Typically you tell the NIC, please transmit or receive data from (address, length)
Problem: needs that data is contiguous in physical memory

Data

void * va_1 = kalloc(data_size);
where do you put TCP, IP, and ETH headers?

void * va_2 = kalloc(data_size + TCP header);
memcpy(va_2, va_1, data_size);
Then repeat for all protocol header, IP and ETH

DataTCP

copy!

Building Packets with Headers and Trailers

57

Typically you tell the NIC, please transmit or receive data from (address, length)
Problem: needs that data is contiguous in physical memory

Data

void * va_1 = kalloc(data_size);
where do you put TCP, IP, and ETH headers?

void * va_2 = kalloc(data_size + TCP header);
memcpy(va_2, va_1, data_size);
Then repeat for all protocol header, IP and ETH

DataTCP

copy!

● Lots of data copies (you can program DMA for each segment, but defeats the
purpose of DMA to have less CPU interaction in data movement)

● CPU occiped, and waste of CPU
● Poor performance (more copies ⇒ low bandwidth, high latency, low ops/secs)
● Similarly think about on the receive path : you need to strip headers

Scatter-Gather I/O Capabilities
Instead of one address, one length, pass a list of address if length to the DMA engine

58

data IP
header

TCP
header

ETH
header

ETH
trailer

v1,L1 v2,L2 v3,L3 v4,L4 v5,L5

Scatter-Gather I/O Capabilities
Instead of one address, one length, pass a list of address if length to the DMA engine

59

data IP
header

TCP
header

ETH
header

ETH
trailer

v1,L1 v2,L2 v3,L3 v4,L4 v5,L5

1. (v4,L4) //ETH header
2. (v2,L2) // IP header
3. (v3,L3) // TCP header
4. (v1,L1) // data
5. (v5,L5) // ETH trailer

Program
the
DMA
engine
once!

DMA Engine with
SGE capabilities

Scatter-Gather I/O Capabilities
Instead of one address, one length, pass a list of address if length to the DMA engine

60

data IP
header

TCP
header

ETH
header

ETH
trailer

v1,L1 v2,L2 v3,L3 v4,L4 v5,L5

DMA Engine with
SGE capabilities

1. (v4,L4) //ETH header
2. (v2,L2) // IP header
3. (v3,L3) // TCP header
4. (v1,L1) // data
5. (v5,L5) // ETH trailer

Program
the
DMA
engine
once!

dataIP
header

TCP
header

ETH
header

ETH
trailer

A single packet is built and transmitted from multiple disjoint locations.

Linux Tool: ethtool -k

61

Recap - Lecture 1
From this lecture you should know

1. Basic course administrative information
2. Refresh the idea of socket networking
3. What happens when you send or receive a data packet
4. Where is networking stack implemented
5. What is a interrupt storm
6. What is a scatter-gather I/O

Next lecture, we will continue with the basics …
62

