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Reading at home

e Chapter 3 and 7 from Carl Hamacher and Zvonko Vranesic, Computer
Organization, 6th edition, McGraw-Hill Education, 2011. ISBN-13:
978-0073380650

e Operating Systems: Three Easy Pieces, Chapter 36 - I/O Devices (section
36.1 till 36.6) http://pages.cs.wisc.edu/~remzi/OSTEP/file-devices.pdf



http://pages.cs.wisc.edu/~remzi/OSTEP/file-devices.pdf

What is I/O - Input/Output

So far, in the course we have seen how the CPU does data processing, and
how the main memory subsystem helps

Where does this data come from? Where does it go?

One fundamental CPU capability is to communicate with the outside world




Inside your computer
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So many possibilities to
connect different “externa
devices or components to
your computer!
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By JulianVilla26 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=84225711



On a practical side: Linux commands

https://opensource.com/article/19/9/linux-commands-hardware-informatio
N

Ispci -tv : shows your PCle tree inside the system
Isusb : shows all the connected USB root and devices
Iscpu : CPU topology (a single CPU is not a single CPU)

Ishw : all hardware information about your system


https://opensource.com/article/19/9/linux-commands-hardware-information
https://opensource.com/article/19/9/linux-commands-hardware-information

Example command: Isusb

atr@atr-XPS-13:~
®4.Port 1: Dev 1, Class=root _hub, Driver=xhci_hcd/2p, 10000M
Port 1: Dev 25, If ©, Class=Hub, Driver=hub/7p, 5000M
| __ Port 2: Dev 26, If 0, Class=Vendor Specific Class, Driver=r8152, 5000M
®3.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/2p, 486M
®2.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/6p, 10000M
®1.Port 1: Dev 1, Class=root _hub, Driver=xhci_hcd/12p, 4806M
Port 5: Dev If 1, Class=Video, Driver=uvcvideo, 480M
Port 5: Dev If Class=Video, Driver=uvcvideo, 480M

0,
Port 7: Dev If 0, Class=Wireless, Driver=btusb, 12M
1,

Port 7: Dev If Class=Wireless, Driver=btusb, 12M
Port 9: Dev 39, If 0, Class=Hub, Driver=hub/7p, 486M
Port 5: Dev 40, If 3, Class=Audio, Driver=snd-usb-audio, 486M
Port 5: Dev 40, If 1, Class=Audio, Driver=snd-usb-audio, 486M
| __ Port 5: Dev 40, If 2, Class=Audio, Driver=snd-usb-audio, 486M
| _ Port 5: Dev 40, If O, Class=Audio, Driver=snd-usb-audio, 480M
Port 6: Dev 41, If 0, Class=Hub, Driver=hub/4p, 480M
| __ Port 4: Dev 43, If 0, Class=Human Interface Device, Driver=usbhid, 1.5M
| __ Port 4: Dev 43, If 1, Class=Human Interface Device, Driver=usbhid, 1.5M
| __ Port 7: Dev 42, If 0, Class=Human Interface Device, Driver=usbhid, 1.5M
atr@atr-Xps-13:~$ ||




The basic idea of a devices

|/O devices can:

e Provide data input to the CPU by putting data in the memory
o From the sensors, voice commands, keyboard, mouse ...

e Output the data from the CPU (from the memory)
o To adisplay monitor, printer, actuators ...

Some can do both: network, storage, touch screen...

Often in a single computer there are a mix of external (keyboard, mouse) and
internal devices (WiFi, storage)



Devices come in a variety of shapes and sizes

Keyboard/mouse - as fast as we can type 10-100s bytes/sec (once in a while)
Bluetooth - headset, speakers ~ 10-100 Megabits/sec (regular)

Storage - 10-10,000 MBytes/sec with latencies in 10-1,000 microseconds
(high-speed)

Ethernet/Infiniband - 100-200 Gbps with 1-2 microseconds (very
high-speed)

CPU - nanoseconds clock



How do we do |I/O then?

When thinking about 1/O, there are a few interesting problems:

How do we connect devices to the CPU and memory (or the computer)?
How do we identify and address devices?
How do we communicate with devices?

How do devices transfer data between computer and themselves?

[...]
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Connecting Devices
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The idea of a bus, revisited

A bus is a communication system that connects
multiple components

e Can be internal or external

Each bus has a way to

Connect components (including devices)

Give an address to connected components

Send commands - i.e., a request to initiate an I/O operation
Do data transfers between devices and memory

Can you think of examples of a bus already?
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A single, shared bus structure

CPU

Memory

N

Mouse

Keyl:;oa rd

Disk

Can work, but

Different devices have different speeds - how to take turns
Cost - high speed links to slow devices is a waste
New devices - how to expand to connect to new devices
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Often, there are multiple buses

CPU to Memory connections, often known as the Front Side Bus (FSB)

e More buses inside to connect other high performance components
I/O Buses:

Peripheral Component Interconnect Express (PCle): point-to-point
Universal Serial Bus (USB): point-to-point

Storage: SAS, SCSI|

For displays: HDMI, DVI, VGA, ...

Internal and external buses: distance, speed, cost, and expandability

13



A typical setup
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A more modern setup

CPU

QPI/HT

CPU

Integrated

Memory Controller
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1/O Chip

i

Sensors, WiFi, clock, power, ...

USB

mouse

disk

KB
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Bus: basic components

A bus (or also known as interconnect) generally has:

e Data Lines: used for transmitting data
e Address Lines: used for addressing or identifying from which device

e Control Lines: send commands (R/W), activate/schedule transfers

A bus has a set of rules called a bus protocol, that needs to be followed by

the connected devices for a successful data transfer (taking turns, etc.)

During data transfer, one device becomes the master (often the CPU)
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From the device side

Devices are attached to a bus through an interface that has:

e Address decoder: for detecting if its address is being called for 1/O
e Data registers: to store incoming and outgoing data (also device buffers)

e Status and control registers: to get commands and report device status

b) Pin layout for USB 3.0 connec tor
Ground USB 3.0 receive

Often devices are connected electronically,

but a wireless setup is also possible. In that

case, there is some device component that -

pins (two)

USB 1.1/2.0 signal lines

Is connected inside the computer.

Ground

https://www.pinterest.com/pin/414401603184159650/ 17



https://www.pinterest.com/pin/414401603184159650/

Putting together

Address lines 7
Data lines ®
Control lines
Address [ Data | Command/ §
Registers decoder Status

Device-internal implementation logic

microcontroller, memory, etc.

Not a single line,
but a collection of lines
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A simple example

CPU

Address lines

device_1

1000

Data lines
Control lines

1010

device_ O
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A simple example

CPU |~ addr= 1000 l device 1
W=1 1000 1
Address lines » l
Data lines ® o
Control lines
1010 | | i

device_ O
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A simple example

CPU |~ Addr = 1000 l device 1
w=1 e 1000 | i
It’s me l
Address lines o
Data lines ® o
Control lines L
Not me e * +

{ 1010 | | | }
device_ O




A simple example

CPU

W=1

Address lines

Addr = 1000

device_1

o

1000

|

It’s me

e W=1, i.e., write

Data lines

Control lines L

Not me e

t 1

1010

|

device_ O
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A simple example

CPU

W=1

Address lines

Addr = 1000

device_1

10101... |

|

e W=1, i.e., write

S Z
|

Data lines

Control lines L

4

| a Data available

Not me e

t 1

1010

|

device_ O
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Design choices with a bus

Goals: performance, standardization, flexibility (v1, v2, ...), cost,
expandability

Design choices:

Clocking: yes (synchronous) or not (asynchronous)

Bus width in bits : serial or parallel bus

Point-to-point or multiplexing (shared) bus

Switching: how/when bus control is acquired and released
Arbitration: which device gets the bus next

24



Synchronous bus

All devices derive timing from a control line called the bus clock
Clock is a special line which has a defined pattern with a rate or frequency

A 1 GHz clock frequency will have 10° such cycles per second

LI

oVv

time
25



Synchronous bus

All devices derive timing from a control line called the bus clock

Bus clock

Address
Command

Data

Clock cycle

Y

Time

1010101...

A

1010101...

tO

tl

t2
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Synchronous bus

What does the clock cycle depend on:

e Maximum propagation delay: (t1 - tO) should be longer than the bus length. For
example:
speed of light (~300,000,000 m/s)
bus distance of 30cm
Propagation time => 1079 sec, so the clock cannot be more than 1 GHz

e We also need to consider the time it takes for a device to respond to a signal (add
to the frequency above, and calculate again)
o So if a device takes 10 nanoseconds to respond, then...
o ..1+10=11 nsec, orinversely (maximum) 90.9 MHz clock frequency

Maintaining the clock over a distance at a high-frequency is challenging -



Asynchronous transfer

— = Time

Address

A

Command

Master ready

.

Device ready

|_"_

Data

Bus cycle
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Serial vs. parallel data line design

Parallel buses can transmit more data in a single

Parallel interface example

Receiving side Transmitting side
cycle, but maintaining clocking information and o7 o005
low interference on multiple links over a distance is ps L L o,
a challenging task [3)% i 0 §§
A 0 ol

Serial interface

- Simple to implement

- Different encoding (8/10B) can be used to
synchronize clocks implicitly

- Preferred design today

Serial interface example (MSB first)

Receiving Transmitting
side {MSB) {LSB) side

4 \

D7 D6 D5 D4 D3 D2 D1 DO
prl 0 1100080 1 Do

)

https://upload.wikimedia.org/wikipedia/commo

ns/a/a6/Parallel and Serial Transmission.qif
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https://upload.wikimedia.org/wikipedia/commons/a/a6/Parallel_and_Serial_Transmission.gif
https://upload.wikimedia.org/wikipedia/commons/a/a6/Parallel_and_Serial_Transmission.gif

A more modern setup

CPU

QPI/HT

CPU

North Bridge
(memory controller)

Memory bus

PCle

HH‘DMIbus

1/O Chip

mouse

i

Sensors, WiFi, clock, power, ...

USB |

disk

KB
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Modern buses: USB

Universal Serial Bus

e Simple low-cost, easy to use interconnect
e Wide variety of devices
e Plug-n-play mode

USB 1.0, 2.0, and 3.0 standards

- Backwards compatible
- 3.0 supports up to 5 Gigabits/s data transfer
- Needs a bit of memory and logic in devices

31



Modern buses: USB

There is a root complex and each device has a unique USB address (7bits)
There are three types of traffic schedules

- Asynchronous: any time (e.g., keyboard)
- Isochronous: regular interval (e.g., sound sampling)
- Bulk: mass storage devices (USB sticks)

The USB root complex uses:

- Point-to-point links (not a shared bus)
- Serial transmission with a schedule and device polling
- CPU _only_ sees the USB hub as a single device

32



USB device tree

atr@atr-XPS-13:~
Host computer : 04.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/2p, 10006M
Port 1: Dev 25, If O, Class=Hub, Driver=hub/7p, 5000M
|__ Port 2: Dev 26, If 0, Class=Vendor Specific Class, Driver=r8152, 5000M
03.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/2p, 486M
02.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/6p, 10006M
01.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/12p, 486M
Port 5: Dev If 1, Class=Video, Driver=uvcvideo, 480M
Port 5: Dev If 0, Class=Video, Driver=uvcvideo, 480M
Port 7: Dev If ®, Class=Wireless, Driver=btusb, 12M
Port 7: Dev 3, If 1, Class=Wireless, Driver=btusb, 12M
Dev 39, If 0, Class=Hub, Driver=hub/7p, 486M
5: Dev 40, If 3, Class=Audio, Driver=snd-usb-audio, 480M
5: Dev 40, If 1, Class=Audio, Driver=snd-usb-audio, 480M
Dev 40, If 2, Class=Audio, Driver=snd-usb-audio, 486M
5: Dev If 0, Class=Audio, Driver=snd-usb-audio, 486M
6: Dev If 0, Class=Hub, Driver=hub/4p, 486M
__ Port 4: 43, If 0, Class=Human Interface Device, Driver=usbhid, 1.5M
|__ Port 4: 43, If 1, Class=Human Interface Device, Driver=usbhid, 1.5M
|__ Port 7: Dev If ®, Class=Human Interface Device, Driver=usbhid, 1.5M
atr@atr-xps-13:~$ I

Transmission
Schedule

/0 /O /0 /0
device device device device

1/0 /0
device device
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Communicating With Devices

How does the CPU give commands to |/O devices?
How do |I/O devices execute data transfers?
How does CPU know when |/O devices are done?

34



An abstract device

Address [ Data - Command/ h
Registers decoder Status

Device-internal implementation logic
microcontroller, memory, etc.

Status registers: show the current status of the device
Command registers: tell device to perform a certain task

Data registers: get or put data to/from the device



How do you/the CPU program devices?

The CPU executes a series of instructions
There are two strategies:
1. Special CPU instructions to identify |/O operations explicitly

2. Memory-mapped I/O

Both are used, but today memory-mapped |I/O are more common.

36



Doing /O - using special instructions

Using special I/O instructions (also known as Port-mapped 1/0O)

- Device/registers are enumerated, and given a special port address
- Special instructions for 1/O (the bus knows it will go the device). E.g.,

in/out instructions on x86

IN AL 19H // 8 bits are saved to register AL from the 1/O port “19H" (fixed!)
OUT DX EAX// 32 bits are written to port number in DX register (16 bits, variable)

- Simple to implement

- That also means that you have to write it in assembly, compilers cannot
generate this automatically

37



PADoing I/O - Memory-mapped I/O

Memory-mapped I/O

All device interfaces are mapped to a “memory location”

Certain memory address ranges are reserved for this purpose

From the CPU point of view no difference between accessing memory or
a device register

Just use any instruction that is used to access data
- movl OXABCD 0x1234
- Luckily, a compiler can do this for you!

Needs a bit of a priori setup

38



Port-Mapped vs. Memory-Mapped I/O

read/write from memory
A >
OxFF
keyboard |

T | |
display | |
\\\\\ | |
CPU | : :

OXFFFF

0x0000

/O space Memory

2 different address spaces

read/write from memory

CPU

L

Single address spaces

OXFFFF

OxOOFF

0x0000

Memory



Example: In Linux (sudo cat /proc/iomem

Memory mapped
addresses for devices

Notice how memory
addresses are also
there

atr@atr-XPS-13:~$ sudo cat /proc/iomem

00000000-00000fff :
00001000-0009dfff :
0009e000-000%efff :
0009f000-0009f fff

000a0000-000fffff :

00030000-000bffff
000c0000-000c3fff :
000c4000-000c7fff
000c8000-000cbfff :
000ccO00-000cffff
000d0000-000d3fff :
000d4000-000d7fff
000d8000-000dbfff :
000dc000-000dffff
000f0000-000fffff :

00100000 -2c8d1fff
2c8d2000-2c8d2fff
2c8d3000-2c8d3fff
2c8d4000-3d1a0fff
3d1a1000-3dcOefff
3dcOfee0-3dc8bfff
3dc8c000-3dd56fff :

3dce5000-3dceSfff

3dd57000-3fe22fff
3fe23000-3fffefff
3ffffeee-3fffffff :
40000000-47FFFFff :
40200000-45F7ffff

48000000-48df T
48e00000-4F7F T

4b800000-4f7fFfff

47800000-dF FFFFFF :

4f800000-4f800fff

Reserved
System RAM
Reserved
System RAM
Reserved
PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
System ROM
System RAM
ACPI Non-volatile Storage
Reserved
System RAM
Reserved
ACPI Tables
ACPI Non-volatile Storage
USBC0O0O:00
Reserved
Unknown E820 type
System RAM
Reserved
INTOEOC:00
System RAM
Reserved

Graphics Stolen Memory
PCI Bus 0000:00
0000:00:15.0

4f800000-4f8001ff : 1pss_dev
4f800000-4f8001ff : 1lpss_dev

4f800200-4f8002ff : 1lpss_priv

4f800800-4f800fff : 1dma64.0
4f800800-4f800fff : 1dma64.0

4f801000-41801fff

0000:00:15.1

4f801000-4f8011ff : 1lpss_dev
4f801000-4f8011ff : 1pss_dev

4f801200-4f8012ff : 1lpss_priv

4f801800-4f801fff : i1dma64.1
4f801800-4f801fff : i1dma64.1

50000000-5FFFFff :
60000000-a9ffFFFff :

0000:00:02.0
PCI Bus 0000:03

60000000-a0fFffff : PCI Bus 0000:04
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How does data get transferred?

Option 1: The CPU does it all, easy and simple (assume memory-mapped 1/0)

1. while (STATUS == BUSY)
. // wait until device is not busy

2. write data to DATA register

3. write command to COMMAND register (the device executes the
command - write data)

4. while (STATUS == BUSY)
- // wait until device is done with your request

41



How does data get transferred?

Option 1: The CPU does it all, easy and simple (assume memory-mapped 1/0)

1. while (STATUS == BUSY)
. // wait until device is not busy

2. write data to DATA register

3. write command to COMMAND register (the device executes the
command - write data)

4.  while (STATUS == BUSY)

- // wait until device is done with your request

42



How does data get transferred?

Option 1: The CPU does it all, easy and simple

~—— Repeated checking of a device
status by a CPU in a loop is

CPU 1 1 1 1 1 1 1 1 1 1 called upollingn
Disk 1 1 1 1 1

The CPU is typically very faster than a device (disks ~ms, network ~usecs,
CPU ~ns)

Waste of CPU resources

43



Interrupts: let the device tell the CPU

Option 2: The device can generate an interrupt when 1/0O is finished

Start the data transfer

/—N device

CPU \/
|

ts done!

The CPU has a special circuit and interface to raise interrupts



Interrupts: let the device tell the CPU

Option 2: The device can generate an interrupt when 1/0O is finished

Disk TEIEIEAEE AN

Interrupt
Interrupt is a special case or exception, where the CPU is notified to:

- Please stop whatever you were doing
- Check what has happened around

Exception is a broader term, which includes software exceptions as well, e.g.
segmentation fault.
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What happens when there is an interrupt

1. Device raises interrupt request
2. Processor interrupts program in

instruction_0O
instruction_1

instruction_2 execution
instruction 3 3. Interrupts are disabled
Interrupt Service 4. Device is informed of acceptance and, as
m Routine (ISR) )
: a consequence, lowers interrupt
instruction 5 {...}; 5. Interrupt is handled by service routine
instruction 6 6. Interrupts are enabled

7. Execution of interrupted program is
resumed

instruction_7

Logically ISR are the same as calling a function call in the code, but there are subtle differences
46



Who called an interrupt?

Interrupt = [int_1] OR [int_2] OR [int_3] ...

CPU

dev_1 dev_2 dev_3

Check each device one by one
- Check if their status register has interrupt (IRQ) bit set
- Might have multiple devices that need servicing



Vectored interrupts : Interrupts with numbers

Interrupt = [int_1] OR [int_2] OR [int_3] ...
CPU ’ ’ ’

dev_1 dev_2 dev_3

Interrupt number

Each device is assigned a unique interrupt number

With interrupt, the number is put on a data line



Invoking ISRs with vectored interrupts

address of function to call

OxOOOOFDEA

OxFFF2EBA

CPU

Ox33F76633

Interrupt number

Ox44DD66AA

o H W N -

OxBBCCDDEE

ISR: Read keyboard

ISR: new bluetooth device

ISR: new USB drive

Interrupt vector table - IVT (each CPU has one!)

49



Example: IRQs in Linux (cat /proc/interrupts

atr@atr-XPS-13:~$ cat /proc/interrupts

CPUO CPU1 CPU2
0
0
0

(@)
el
[=
w
(=]
o
(=
~

-I0-APIC 2-edge timer

-10-APIC 1-edge 18042

-10-APIC 8-edge rtco

-10-APIC 9-fasteoi acpi

-I0-APIC  12-edge 18042

-I0-APIC  14-fasteol  INT34BB:00

-I0-APIC 16-fasteoi  1dma64.0, 12c_designware.@

-I0-APIC 17-fasteoi 1idma64.1, i2c_designware.1

-I0-APIC 39-fasteoi  ELAN2934:00

-10-APIC 51-fasteoi DELLO8AF:00
DMAR-MSI 0-edge dmar@
DMAR-MSI 1-edge dmaril
IR-PCI-MSI 458752-edge PCIe PME, pcie-dpc
IR-PCI-MSI 471040-edge PCIe PME, pcie-dpc
IR-PCI-MSI 475136-edge PCIe PME, pcie-dpc, pciehp
IR-PCI-MSI 483328-edge PCIe PME, pcie-dpc
IR-PCI-MSI 2113536-edge pciehp
IR-PCI-MSI 2162688-edge pciehp
IR-PCI-MSI 57671680-edge nvme®q0d, nvmedql
IR-PCI-MSI 327680-edge xhci_hcd
IR-PCI-MSI 29884416-edge xhci_hcd
IR-PCI-MSI 57671681-edge nvmedq2
IR-PCI-MSI 57671682-edge nvmedq3
IR-PCI-MSI 57671683-edge nvme0q4
IR-PCI-MSI 57671684-edge nvme@q5
IR-PCI-MSI 57671685-edge nvme0q6
IR-PCI-MSI 57671686-edge nvmedq7
IR-PCI-MSI 57671687-edge nvme0q8
IR-PCI-MSI 524288-edge rtsx_pci
IR-PCI-MSI 2621440-edge thunderbolt
IR-PCI-MSI 2621441-edge thunderbolt
IR-PCI-MSI 32768-edge 1915
IR-PCI-MSI 1048576-edge ath10k_pci
IR-PCI-MSI 360448-edge mei_me
IR-PCI-MSI 514048-edge snd _hda intel:card®

8
0
0
0
0
0
0
0
0
7
0
0
0
0
0
0
0
0
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Which CPU?

Example: IRQ in Linux Which device?

atr@atr- (PS-13:~$8 cat /proc/interrunts

CPUO CPU1 CPU2
v
(<]
0

o
©
(=
<

-I0-APIC 2-edge timer

-10-APIC 1-edge 18042

-10-APIC 8-edge rtco

-10-APIC 9-fasteoi acpi

-I0-APIC  12-edge 18042

-I0-APIC  14-fasteol  INT34BB:00

-I0-APIC 16-fasteoi  1dma64.0, 12c_designware.@

-I0-APIC 17-fasteoi 1idma64.1, i2c_designware.1

-I0-APIC 39-fasteoi  ELAN2934:00

-10-APIC 51-fasteoi DELLO8AF:00
DMAR-MSI 0-edge dmar@
DMAR-MSI 1-edge dmaril
IR-PCI-MSI 458752-edge PCIe PME, pcie-dpc
IR-PCI-MSI 471040-edge PCIe PME, pcie-dpc
IR-PCI-MSI 475136-edge PCIe PME, pcie-dpc, pciehp
IR-PCI-MSI 483328-edge PCIe PME, pcie-dpc
IR-PCI-MSI 2113536-edge pciehp
IR-PCI-MSI 2162688-edge pciehp
IR-PCI-MSI 57671680-edge nvme®q0d, nvmedql
IR-PCI-MSI 327680-edge xhci_hcd
IR-PCI-MSI 29884416-edge xhci_hcd
IR-PCI-MSI 57671681-edge nvmedq2
IR-PCI-MSI 57671682-edge nvmedq3
IR-PCI-MSI 57671683-edge nvme0q4
IR-PCI-MSI 57671684-edge nvme@q5
IR-PCI-MSI 57671685-edge nvme0q6
IR-PCI-MSI 57671686-edge nvmedq7
IR-PCI-MSI 57671687-edge nvme0q8
IR-PCI-MSI 524288-edge rtsx_pci
IR-PCI-MSI 2621440-edge thunderbolt
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Interrupt vs. Polling

Interrupt breaks the current program flow, and jumps to the ISR execution
(this jumping takes time!)

Interrupts are good for slow devices: when the ISR setup time is less than the
device |I/O servicing time . Otherwise, a very high speed device can freeze a
system with interrupts. This is called Interrupt Livelock or Interrupt Storm

Polling is good for high-speed devices, which can finish I/O at a similar pace
as the CPU. No need to generate interrupts

A hybrid strategy: start with interrupt, then switch to polling based on the
load and speed of the device
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How does data get transferred?

Who does this?

1. while (STATUS == BUSY)
. // wait until device is not busy

2. write data to DATA register

3. write command to COMMAND register (the device executes the

command - write data)

4. while (STATUS == BUSY)
. // wait until device is done with your request

Polling and interrupts
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Freeing the CPU from copying data

The CPU is faster than the I/O devices

CPU copying data is also very inefficient

But if there is a data copy engine that can transfer data between devices and memory,
how will it look?

Copying

CPU |1 |11 ]| 1]1]|c|c|c By 1 1

Disk T 2] & | |3




Direct Memory Access (DMA)

Modern high-speed bulk transfer devices (storage, network) have a DMA engine in
them

CPU programs the DMA engine
DMA engine does the data transfer

DMA engine either (1) generates an interrupt; (2) CPU can poll and check

CPU |1 |1 | 1] 1] 1 e 1 | 1

DMA c|c | c

Disk 1 (11111
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DMA architectural view

1. CPU programs the DMA engine

of the storage device

memaory

C/\ Address
PU Length
R/W

Data
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DMA architectural view

1. CPU programs the DMA engine

of the storage device

2. Internal processing

/_\;

Address

CPU

Length

R/W

-

Data

memaory
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DMA architectural view

1. CPU programs the DMA engine

of the storage device

memaory

2. Internal processing

/\.

Address

CPU

Length

R/W

-

Data

3. DMA transfer from the device

)
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DMA architectural view

1. CPU programs the DMA engine

of the storage device

2. Internal processing

/\.

Address

CPU

Length

~_

R/W

-

Data

4. Interrupt to the CPU

|

memaory

<

3. DMA transfer from the device
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DMA architectural view

memaory

/\.

Cl‘PU\_/ Address “O
<

Competition on the memory bus between the CPU and the DMA engine can lead
to slow CPU memory access. Thus, the DMA engine steals CPU’s memory cycles -

also called Cycle Stealing 60



DMA architectural view

memaory

Address
S Length | 4=p Q

.

Question: What happens if the CPU has some data cached in CPU caches?
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DMA recap

Extra intelligence in devices (there are also standalone chips) to access
memory

Frees the CPU from doing bulk data transfers from devices to memory
Delivers very high bulk data performance

Can interfere with the CPU memory access (but with modern systems with
very high memory bandwidth, it is less of an issue)

System implementation can choose to keep caches coherent (x86) or not
(ARM)
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How modern is this modern setup?

CPU

QPI/HT

CPU

I

Il

North Bridge
(memory controller)

Memory bus

PCle

DMI bus

1/O Chip

USB

i

Sensors, WiFi, clock, power, ...

mouse

disk

KB
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Figure 1-2. OMAP4460 Block Diagram
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Summary: You should know ...

The idea of the system bus

Address, commands, status interfaces and signalling lines

Port-mapped and memory-mapped I/O techniques

Interrupts, DMA, and polling

* Read from the backup slides at the end
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Synchronous bus

All devices derive timing from a control line called the bus clock
Clock is a special line which has a defined pattern with a rate or frequency

A 1 GHz clock frequency will have 10° such cycles per second

LI

oVv

time
69



Synchronous bus

All devices derive timing from a control line called the bus clock

Bus clock

Address
Command

Data

Clock cycle

Y

Time

1010101...

A

1010101...

tO

tl

t2
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Synchronous bus

What does the clock cycle depend on:

Maximum propagation delay: (t1 - tO) should be longer than the bus length. For
example:

speed of light (~300,000,000 m/s)

bus distance of 30cm

Propagation time => 1079 sec, so the clock cannot be more than 1 GHz

We also need to consider the time it takes for a device to respond to a signal (add

to the frequency above, and calculate again)
o So if a device takes 10 nanoseconds to respond, then...
o ..1+10=11 nsec, orinversely (maximum) 90.9 MHz clock frequency
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A realistic timing diagram with clock delays

— = Time
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Data
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How to do multi-cycle data transfer

How to tell the bus master that the data is available? How to tell the bus
master that there is a multiple cycle transfer?

Use the control signal from the device, keep the signal 1 while a transfer is happening

Clock _: I_: L:_| H :_
Address X X
Command X X

Data C__ [
Control 11




Asynchronous transfer

Another way of doing data transfer is without clocks

Simplified design: no need to ensure that all devices _must_ see the clock
around the same time (with bounded delays)

Synchronization is done using master and device “readiness” signals with a
handshake protocol

e The bus master sets the control lines up after putting the address and
command

e The “right” device responds by setting its ready control line

e When both lines are ready, the transfer can be initiated
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Asynchronous transfer

— = Time

Address

A

Command

Master ready

.

Device ready

|_"_

Data

Bus cycle
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Synchronous vs. asynchronous buses

Synchronous

+ Fast
- Clock management

Asynchronous

+ Easy management with devices with different speeds

- Longer handshake protocol (4x steps in a single transaction)
- Master ready
- Device ready
- Device done
- Master done
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Bus arbitration

There can be multiple devices trying to talk simultaneously

There is a bus arbiter - either using addresses, or first-come-first-service
basis, or a daisy chaining

BR1 BR2
L ; e %
Master 1 A.r bltc?r Master 2
circuit
BG1 BG2

Bus

I/0O device 1 N 1/0O device n




Example: PCle

Peripheral Component Interconnect Express (PCle) - serial, point-to-point

Most popular modern bus to connect devices ‘ PCI Express device A {

Developed by Intel, Dell, HP, IBM

Structure: multi-lane connectivity (x1, X2, x4, X16, X32) - —

<+—— Link

PCl Express device B

By V4711This W3C-unspecified vector image was created with Adobe
Illustrator. - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=37527913

PCle specification tells what these different pins do
https://en.wikipedia.org/wiki/PCl Express#Pinout
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PCle bandwidth calculation example

PCI Express Line Transfer Throughput!!
version irothiced code ratel! x1 X2 x4 x8 x16

1.0 2003 | 8b/10b 25GT/s| 250MB/s | 0.500 GB/s | 1.00 GB/s 2.0 GB/s 4.0 GB/s
2.0 2007 | 8b/10b 50GT/s| 500MB/s | 1.000GB/s 2.00GB/s 4.0 GB/s 8.0 GB/s
3.0 2010 | 128b/130b 8.0GT/s 9846 MB/s| 1969 GB/s 3.94GB/s| 7.88GB/s| 15.75 GB/s
4.0 2017 | 128b/130b | 16.0 GT/s | 1969 MB/s | 3.938 GB/s | 7.88 GB/s | 15.75 GB/s | 31.51 GB/s
5.0 2019 | 128b/130b | 32.0 GT/sll | 3938 MB/s | 7.877 GBIs | 15.75 GB/s | 31.51 GB/s | 63.02 GB/s
6.0 (planned) 2021 | 128b/130b | 64.0 GT/s | 7877 MB/s | 15.754 GB/s | 31.51 GB/s | 63.02 GB/s | 126.03 GB/s

https://en.wikipedia.org/wiki/PClI

Express#History and revisions
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Shared or multiplexed bus

BO

Wider buses (multiple parallel bit lines) =

B3
+ More bandwidth

- More expensive and more susceptible to skew
Multiplexed: address and data on same lines/or devices sharing buses

+ Cheaper

- Less bandwidth BO Bl B2 B3




