
Input / Output (I/O)
Systems Architecture

Animesh Trivedi
a.trivedi@vu.nl

1

mailto:a.trivedi@vu.nl

Reading at home

● Chapter 3 and 7 from Carl Hamacher and Zvonko Vranesic, Computer
Organization, 6th edition, McGraw-Hill Education, 2011. ISBN-13:
978-0073380650

● Operating Systems: Three Easy Pieces, Chapter 36 - I/O Devices (section
36.1 till 36.6) http://pages.cs.wisc.edu/~remzi/OSTEP/file-devices.pdf

2

http://pages.cs.wisc.edu/~remzi/OSTEP/file-devices.pdf

What is I/O - Input/Output
So far, in the course we have seen how the CPU does data processing, and
how the main memory subsystem helps

Where does this data come from? Where does it go?

One fundamental CPU capability is to communicate with the outside world

3

Inside your computer

By JulianVilla26 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=84225711 4

So many possibilities to
connect different “external”
devices or components to
your computer!

On a practical side: Linux commands

https://opensource.com/article/19/9/linux-commands-hardware-informatio
n

lspci -tv : shows your PCIe tree inside the system

lsusb : shows all the connected USB root and devices

lscpu : CPU topology (a single CPU is not a single CPU)

lshw : all hardware information about your system

5

https://opensource.com/article/19/9/linux-commands-hardware-information
https://opensource.com/article/19/9/linux-commands-hardware-information

Example command: lsusb

6

The basic idea of a devices

I/O devices can:

● Provide data input to the CPU by putting data in the memory
○ From the sensors, voice commands, keyboard, mouse …

● Output the data from the CPU (from the memory)
○ To a display monitor, printer, actuators …

Some can do both: network, storage, touch screen…

Often in a single computer there are a mix of external (keyboard, mouse) and
internal devices (WiFi, storage)

7

Devices come in a variety of shapes and sizes

8

Keyboard/mouse - as fast as we can type 10-100s bytes/sec (once in a while)

Bluetooth - headset, speakers ~ 10-100 Megabits/sec (regular)

Storage - 10-10,000 MBytes/sec with latencies in 10-1,000 microseconds
(high-speed)

Ethernet/Infiniband - 100-200 Gbps with 1-2 microseconds (very
high-speed)

CPU - nanoseconds clock

How do we do I/O then?

When thinking about I/O, there are a few interesting problems:

1. How do we connect devices to the CPU and memory (or the computer)?

2. How do we identify and address devices?

3. How do we communicate with devices?

4. How do devices transfer data between computer and themselves?

5. [...]

9

Connecting Devices

10

The idea of a bus, revisited

A bus is a communication system that connects
multiple components

● Can be internal or external

Each bus has a way to

● Connect components (including devices)
● Give an address to connected components
● Send commands - i.e., a request to initiate an I/O operation
● Do data transfers between devices and memory

Can you think of examples of a bus already?
11

A single, shared bus structure

12

CPU Memory

Mouse Keyboard Disk ...

Can work, but

● Different devices have different speeds - how to take turns
● Cost - high speed links to slow devices is a waste
● New devices - how to expand to connect to new devices

Often, there are multiple buses

CPU to Memory connections, often known as the Front Side Bus (FSB)

● More buses inside to connect other high performance components

I/O Buses:

● Peripheral Component Interconnect Express (PCIe): point-to-point
● Universal Serial Bus (USB): point-to-point
● Storage: SAS, SCSI
● For displays: HDMI, DVI, VGA, …

Internal and external buses: distance, speed, cost, and expandability

13

A typical setup

14

North Bridge
(memory controller)

CPU

South
Bridge

Internal bus

USB

diskmouse

KB

Graphics

Front-side Bus

Memory busPCIe

PCI

A more modern setup

15

I/O Chip

DMI bus

USB disk

mouse KB

Memory busQPI/HT

PCIe

Integrated
Memory Controller

CPU

CPUCPU
CPU

Sensors, WiFi, clock, power, …

Bus: basic components

A bus (or also known as interconnect) generally has:

● Data Lines: used for transmitting data

● Address Lines: used for addressing or identifying from which device

● Control Lines: send commands (R/W), activate/schedule transfers

A bus has a set of rules called a bus protocol, that needs to be followed by

the connected devices for a successful data transfer (taking turns, etc.)

During data transfer, one device becomes the master (often the CPU)

16

From the device side

Devices are attached to a bus through an interface that has:

● Address decoder: for detecting if its address is being called for I/O

● Data registers: to store incoming and outgoing data (also device buffers)

● Status and control registers: to get commands and report device status

Often devices are connected electronically,

but a wireless setup is also possible. In that

case, there is some device component that

is connected inside the computer.
17https://www.pinterest.com/pin/414401603184159650/

https://www.pinterest.com/pin/414401603184159650/

Putting together

18

Command /
Status

Address
decoder

Data
Registers

Device-internal implementation logic
microcontroller, memory, etc.

Address lines
Data lines
Control lines

Not a single line,
but a collection of lines

A simple example

19

1010

Address lines
Data lines
Control lines

1000

device_1

device_0

CPU

A simple example

20

1010

Address lines
Data lines
Control lines

1000

device_1

device_0

CPU Addr = 1000
1

W=1

A simple example

21

1010

Address lines
Data lines
Control lines

1000

device_1

device_0

CPU Addr = 1000
1

2

2

It’s me

Not me

W=1

A simple example

22

1010

Address lines
Data lines
Control lines

1000

device_1

device_0

CPU Addr = 1000
1

2

2

It’s me

Not me

W=1

3 W=1, i.e., write

A simple example

23

1010

Address lines
Data lines
Control lines

1000

device_1

device_0

CPU Addr = 1000
1

2

2

It’s me

Not me

W=1

3 W=1, i.e., write4

10101...

Data available 4

Design choices with a bus

24

Goals: performance, standardization, flexibility (v1, v2, …), cost,
expandability

Design choices:

● Clocking: yes (synchronous) or not (asynchronous)
● Bus width in bits : serial or parallel bus
● Point-to-point or multiplexing (shared) bus
● Switching: how/when bus control is acquired and released
● Arbitration: which device gets the bus next

Synchronous bus

All devices derive timing from a control line called the bus clock

Clock is a special line which has a defined pattern with a rate or frequency

A 1 GHz clock frequency will have 109 such cycles per second

25

0V

5V

time

Synchronous bus

All devices derive timing from a control line called the bus clock

26

Bus clock

Address
Command

Data

Clock cycle

1010101…

1010101…

t0 t1 t2

Synchronous bus

What does the clock cycle depend on:

● Maximum propagation delay: (t1 - t0) should be longer than the bus length. For
example:
speed of light (~300,000,000 m/s)
bus distance of 30cm
Propagation time => 10-9 sec, so the clock cannot be more than 1 GHz

● We also need to consider the time it takes for a device to respond to a signal (add
to the frequency above, and calculate again)
○ So if a device takes 10 nanoseconds to respond, then...
○ ...1 + 10 = 11 nsec, or inversely (maximum) 90.9 MHz clock frequency

Maintaining the clock over a distance at a high-frequency is challenging
27

Asynchronous transfer

28

Master ready

Address
Command

Data

Device ready

Serial vs. parallel data line design

Parallel buses can transmit more data in a single
cycle, but maintaining clocking information and
low interference on multiple links over a distance is
a challenging task

Serial interface

- Simple to implement
- Different encoding (8/10B) can be used to

synchronize clocks implicitly
- Preferred design today

29

https://upload.wikimedia.org/wikipedia/commo
ns/a/a6/Parallel_and_Serial_Transmission.gif

https://upload.wikimedia.org/wikipedia/commons/a/a6/Parallel_and_Serial_Transmission.gif
https://upload.wikimedia.org/wikipedia/commons/a/a6/Parallel_and_Serial_Transmission.gif

A more modern setup

30

I/O Chip

DMI bus

USB disk

mouse KB

Memory busQPI/HT

PCIe

North Bridge
(memory controller)

CPU

CPUCPU
CPU

Sensors, WiFi, clock, power, …

Modern buses: USB

Universal Serial Bus

● Simple low-cost, easy to use interconnect
● Wide variety of devices
● Plug-n-play mode

USB 1.0, 2.0, and 3.0 standards

- Backwards compatible
- 3.0 supports up to 5 Gigabits/s data transfer
- Needs a bit of memory and logic in devices

31

Modern buses: USB

There is a root complex and each device has a unique USB address (7bits)

There are three types of traffic schedules

- Asynchronous: any time (e.g., keyboard)
- Isochronous: regular interval (e.g., sound sampling)
- Bulk: mass storage devices (USB sticks)

The USB root complex uses:

- Point-to-point links (not a shared bus)
- Serial transmission with a schedule and device polling
- CPU _only_ sees the USB hub as a single device

32

USB device tree

33

Transmission
Schedule

Communicating With Devices

How does the CPU give commands to I/O devices?
How do I/O devices execute data transfers?

How does CPU know when I/O devices are done?

34

An abstract device

35

Status registers: show the current status of the device

Command registers: tell device to perform a certain task

Data registers: get or put data to/from the device

Command /
Status

Address
decoder

Data
Registers

Device-internal implementation logic
microcontroller, memory, etc.

How do you/the CPU program devices?

The CPU executes a series of instructions

There are two strategies:

1. Special CPU instructions to identify I/O operations explicitly

2. Memory-mapped I/O

Both are used, but today memory-mapped I/O are more common.

36

1. Doing I/O - using special instructions

Using special I/O instructions (also known as Port-mapped I/O)

- Device/registers are enumerated, and given a special port address

- Special instructions for I/O (the bus knows it will go the device). E.g.,

in/out instructions on x86

- Simple to implement

- That also means that you have to write it in assembly, compilers cannot
generate this automatically

37

IN AL 19H // 8 bits are saved to register AL from the I/O port “19H” (fixed!)
OUT DX EAX // 32 bits are written to port number in DX register (16 bits, variable)

2. Doing I/O - Memory-mapped I/O

Memory-mapped I/O

- All device interfaces are mapped to a “memory location”
- Certain memory address ranges are reserved for this purpose
- From the CPU point of view no difference between accessing memory or

a device register
- Just use any instruction that is used to access data

- movl 0xABCD 0x1234
- Luckily, a compiler can do this for you!

- Needs a bit of a priori setup

38

Port-Mapped vs. Memory-Mapped I/O

39

CPU

Memory I/O space

2 different address spaces

0x0000

0xFFFF

0xFF

read/write from memory

CPU

Memory
0x0000

0xFFFF

0x00FF
read/write from memory

keyboard

display

Single address spaces

Example: In Linux (sudo cat /proc/iomem)

40

Memory mapped
addresses for devices

Notice how memory
addresses are also
there

How does data get transferred?

Option 1: The CPU does it all, easy and simple (assume memory-mapped I/O)

41

1. while (STATUS == BUSY)
 ; // wait until device is not busy

2. write data to DATA register

3. write command to COMMAND register (the device executes the
command - write data)

4. while (STATUS == BUSY)
; // wait until device is done with your request

How does data get transferred?

Option 1: The CPU does it all, easy and simple (assume memory-mapped I/O)

42

1. while (STATUS == BUSY)
 ; // wait until device is not busy

2. write data to DATA register

3. write command to COMMAND register (the device executes the
command - write data)

4. while (STATUS == BUSY)
; // wait until device is done with your request

How does data get transferred?

Option 1: The CPU does it all, easy and simple

The CPU is typically very faster than a device (disks ~ms, network ~usecs,
CPU ~ns)

Waste of CPU resources

43

Can we do better?

Repeated checking of a device
status by a CPU in a loop is
called “polling”

Interrupts: let the device tell the CPU

Option 2: The device can generate an interrupt when I/O is finished

44

CPU
device

Start the data transfer

Its done!

The CPU has a special circuit and interface to raise interrupts

Interrupts: let the device tell the CPU

Option 2: The device can generate an interrupt when I/O is finished

Interrupt is a special case or exception, where the CPU is notified to:

- Please stop whatever you were doing
- Check what has happened around

Exception is a broader term, which includes software exceptions as well, e.g.
segmentation fault.

45

Interrupt

interrupt

What happens when there is an interrupt

1. Device raises interrupt request
2. Processor interrupts program in

execution
3. Interrupts are disabled
4. Device is informed of acceptance and, as

a consequence, lowers interrupt
5. Interrupt is handled by service routine
6. Interrupts are enabled
7. Execution of interrupted program is

resumed

46

instruction_0
instruction_1
instruction_2
instruction_3

instruction_5
instruction_6
instruction_7
…

Interrupt Service
Routine (ISR)

{ … } ;

Logically ISR are the same as calling a function call in the code, but there are subtle differences

Who called an interrupt?

47

CPU

dev_1 dev_2 dev_3

Interrupt = [int_1] OR [int_2] OR [int_3] …

Check each device one by one
- Check if their status register has interrupt (IRQ) bit set
- Might have multiple devices that need servicing

Vectored interrupts : Interrupts with numbers

Each device is assigned a unique interrupt number

With interrupt, the number is put on a data line
48

CPU

dev_1 dev_2 dev_3

Interrupt = [int_1] OR [int_2] OR [int_3] …

Interrupt number

Invoking ISRs with vectored interrupts

49

1 0x0000FDEA

2 0xFFF2EBA

3 0x33F76633

4 0x44DD66AA

5 0xBBCCDDEE

… …

CPU

Interrupt number

ISR: Read keyboard

ISR: new bluetooth device

ISR: new USB drive

Interrupt vector table - IVT (each CPU has one!)

address of function to call

Example: IRQs in Linux (cat /proc/interrupts)

50

Example: IRQ in Linux

51

IRQ
numbers

How
many

Which CPU? Which device?

Interrupt vs. Polling

Interrupt breaks the current program flow, and jumps to the ISR execution
(this jumping takes time!)

Interrupts are good for slow devices: when the ISR setup time is less than the
device I/O servicing time . Otherwise, a very high speed device can freeze a
system with interrupts. This is called Interrupt Livelock or Interrupt Storm

Polling is good for high-speed devices, which can finish I/O at a similar pace
as the CPU. No need to generate interrupts

A hybrid strategy: start with interrupt, then switch to polling based on the
load and speed of the device

52

How does data get transferred?

53

1. while (STATUS == BUSY)
 ; // wait until device is not busy

2. write data to DATA register

3. write command to COMMAND register (the device executes the
command - write data)

4. while (STATUS == BUSY)
; // wait until device is done with your request

Who does this?

Polling and interrupts

Freeing the CPU from copying data
The CPU is faster than the I/O devices

CPU copying data is also very inefficient

But if there is a data copy engine that can transfer data between devices and memory,
how will it look?

54

Copying

Direct Memory Access (DMA)
Modern high-speed bulk transfer devices (storage, network) have a DMA engine in
them

CPU programs the DMA engine

DMA engine does the data transfer

DMA engine either (1) generates an interrupt; (2) CPU can poll and check

55

DMA architectural view

56

CPU
Address
Length

R/W

1. CPU programs the DMA engine
of the storage device

Data

memory

DMA architectural view

57

CPU
Address
Length

R/W

1. CPU programs the DMA engine
of the storage device

Data

memory

2. Internal processing

DMA architectural view

58

CPU
Address
Length

R/W

1. CPU programs the DMA engine
of the storage device

Data

memory

3. DMA transfer from the device

2. Internal processing

DMA architectural view

59

CPU
Address
Length

R/W

1. CPU programs the DMA engine
of the storage device

Data

memory

3. DMA transfer from the device

4. Interrupt to the CPU

2. Internal processing

DMA architectural view

60

CPU
Address
Length

R/W Data

memory

Competition on the memory bus between the CPU and the DMA engine can lead
to slow CPU memory access. Thus, the DMA engine steals CPU’s memory cycles -
also called Cycle Stealing

DMA architectural view

61

CPU
Address
Length

R/W Data

memory
CPU Caches

Question: What happens if the CPU has some data cached in CPU caches?

DMA recap

Extra intelligence in devices (there are also standalone chips) to access
memory

Frees the CPU from doing bulk data transfers from devices to memory

Delivers very high bulk data performance

Can interfere with the CPU memory access (but with modern systems with
very high memory bandwidth, it is less of an issue)

System implementation can choose to keep caches coherent (x86) or not
(ARM)

62

How modern is this modern setup?

63

I/O Chip

DMI bus

USB disk

mouse KB

Memory busQPI/HT

PCIe

North Bridge
(memory controller)

CPU

CPUCPU
CPU

Sensors, WiFi, clock, power, …

64
https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys
-system-review/index.html

https://docs.oracle.com/cd/E28853_01/html/E28856/z4
0010911519112.html

https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys-system-review/index.html
https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys-system-review/index.html
https://docs.oracle.com/cd/E28853_01/html/E28856/z40010911519112.html
https://docs.oracle.com/cd/E28853_01/html/E28856/z40010911519112.html

Reality is a bit different

65

https://www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf

(only 5,100 pages)

https://www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf

Summary: You should know …

The idea of the system bus

Address, commands, status interfaces and signalling lines

Synchronous, asynchronous, serial and parallel links*

Port-mapped and memory-mapped I/O techniques

Interrupts, DMA, and polling

* Read from the backup slides at the end
66

References
● Chapter 3, 7, and 8.10 Carl Hamacher and Zvonko Vranesic, Computer

Organization, 6th edition, McGraw-Hill Education, 2011. ISBN-13:
978-0073380650

● Operating Systems: Three Easy Pieces, Chapter 36 - I/O Devices (section 36.1 till
36.6) http://pages.cs.wisc.edu/~remzi/OSTEP/file-devices.pdf

67

http://pages.cs.wisc.edu/~remzi/OSTEP/file-devices.pdf

Backup

68

Synchronous bus

All devices derive timing from a control line called the bus clock

Clock is a special line which has a defined pattern with a rate or frequency

A 1 GHz clock frequency will have 109 such cycles per second

69

0V

5V

time

Synchronous bus

All devices derive timing from a control line called the bus clock

70

Bus clock

Address
Command

Data

Clock cycle

1010101…

1010101…

t0 t1 t2

Synchronous bus

What does the clock cycle depend on:

● Maximum propagation delay: (t1 - t0) should be longer than the bus length. For
example:
speed of light (~300,000,000 m/s)
bus distance of 30cm
Propagation time => 10-9 sec, so the clock cannot be more than 1 GHz

● We also need to consider the time it takes for a device to respond to a signal (add
to the frequency above, and calculate again)
○ So if a device takes 10 nanoseconds to respond, then...
○ ...1 + 10 = 11 nsec, or inversely (maximum) 90.9 MHz clock frequency

71

A realistic timing diagram with clock delays

72

Bus clock

Address
Command

Data

Address
Command

Data

M
as

te
r V

ie
w

D
ev

ic
e

How to do multi-cycle data transfer

How to tell the bus master that the data is available? How to tell the bus
master that there is a multiple cycle transfer?

Use the control signal from the device, keep the signal 1 while a transfer is happening

73

Clock

Address

Command

Data

Control

Asynchronous transfer

74

Another way of doing data transfer is without clocks

Simplified design: no need to ensure that all devices _must_ see the clock
around the same time (with bounded delays)

Synchronization is done using master and device “readiness” signals with a
handshake protocol

● The bus master sets the control lines up after putting the address and
command

● The “right” device responds by setting its ready control line
● When both lines are ready, the transfer can be initiated

Asynchronous transfer

75

Master ready

Address
Command

Data

Device ready

Synchronous vs. asynchronous buses

Synchronous

+ Fast
- Clock management

Asynchronous

+ Easy management with devices with different speeds
- Longer handshake protocol (4x steps in a single transaction)

- Master ready
- Device ready
- Device done
- Master done

76

Bus arbitration

There can be multiple devices trying to talk simultaneously

There is a bus arbiter - either using addresses, or first-come-first-service
basis, or a daisy chaining

77

Example: PCIe

Peripheral Component Interconnect Express (PCIe) - serial, point-to-point

Most popular modern bus to connect devices

Developed by Intel, Dell, HP, IBM

Structure: multi-lane connectivity (x1, x2, x4, x16, x32)

78

By V4711This W3C-unspecified vector image was created with Adobe
Illustrator. - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=37527913

PCIe specification tells what these different pins do
https://en.wikipedia.org/wiki/PCI_Express#Pinout

https://en.wikipedia.org/wiki/PCI_Express#Pinout

PCIe bandwidth calculation example

79

https://en.wikipedia.org/wiki/PCI_Express#History_and_revisions

https://en.wikipedia.org/wiki/PCI_Express#History_and_revisions

Wider buses (multiple parallel bit lines)

+ More bandwidth
- More expensive and more susceptible to skew

Multiplexed: address and data on same lines/or devices sharing buses

+ Cheaper
- Less bandwidth

Shared or multiplexed bus

80

B0
B1
B2
B3

B0 B1 B2 B3

