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Reading at home

● Chapter 3 and 7 from Carl Hamacher and Zvonko Vranesic, Computer 
Organization, 6th edition, McGraw-Hill Education, 2011. ISBN-13: 
978-0073380650

● Operating Systems: Three Easy Pieces, Chapter 36 - I/O Devices (section 
36.1 till 36.6) http://pages.cs.wisc.edu/~remzi/OSTEP/file-devices.pdf   
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What is I/O - Input/Output 
So far, in the course we have seen how the CPU does data processing, and 
how the main memory subsystem helps 

Where does this data come from? Where does it go?

One fundamental CPU capability is to communicate with the outside world 
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Inside your computer 

By JulianVilla26 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=84225711 4

So many possibilities to 
connect different “external” 
devices or components to 
your computer!



On a practical side: Linux commands

https://opensource.com/article/19/9/linux-commands-hardware-informatio
n 

lspci -tv : shows your PCIe tree inside the system 

lsusb : shows all the connected USB root and devices 

lscpu : CPU topology (a single CPU is not a single CPU) 

lshw : all hardware information about your system 
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Example command: lsusb
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The basic idea of a devices 

I/O devices can: 

● Provide data input to the CPU by putting data in the memory 
○ From the sensors, voice commands, keyboard, mouse … 

● Output the data from the CPU (from the memory)
○ To a display monitor, printer, actuators … 

Some can do both: network, storage, touch screen… 

Often in a single computer there are a mix of external (keyboard, mouse) and 
internal devices (WiFi, storage) 
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Devices come in a variety of shapes and sizes
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Keyboard/mouse - as fast as we can type 10-100s bytes/sec (once in a while)

Bluetooth - headset, speakers ~ 10-100 Megabits/sec (regular) 

Storage - 10-10,000 MBytes/sec with latencies in 10-1,000 microseconds 
(high-speed) 

Ethernet/Infiniband - 100-200 Gbps with 1-2 microseconds (very 
high-speed)

CPU - nanoseconds clock 



How do we do I/O then? 

When thinking about I/O, there are a few interesting problems: 

1. How do we connect devices to the CPU and memory (or the computer)?

2. How do we identify and address devices? 

3. How do we communicate with devices? 

4. How do devices transfer data between computer and themselves?

5. [...] 
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Connecting Devices
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The idea of a bus, revisited

A bus is a communication system that connects 
multiple components 

● Can be internal or external 

Each bus has a way to 

● Connect components (including devices) 
● Give an address to connected components 
● Send commands - i.e., a request to initiate an I/O operation 
● Do data transfers between devices and memory

Can you think of examples of a bus already?
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A single, shared bus structure 
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CPU Memory

Mouse Keyboard Disk ...

Can work, but 

● Different devices have different speeds - how to take turns 
● Cost - high speed links to slow devices is a waste
● New devices - how to expand to connect to new devices



Often, there are multiple buses 

CPU to Memory connections, often known as the Front Side Bus (FSB) 

● More buses inside to connect other high performance components 

I/O Buses:

● Peripheral Component Interconnect Express (PCIe): point-to-point
● Universal Serial Bus (USB): point-to-point
● Storage: SAS, SCSI 
● For displays: HDMI, DVI, VGA, … 

Internal and external buses: distance, speed, cost, and expandability 

13



A typical setup
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A more modern setup
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Bus: basic components

A bus (or also known as interconnect) generally has: 

● Data Lines: used for transmitting data 

● Address Lines: used for addressing or identifying from which device 

● Control Lines: send commands (R/W), activate/schedule transfers

A bus has a set of rules called a bus protocol, that needs to be followed by 

the connected devices for a successful data transfer (taking turns, etc.) 

During data transfer, one device becomes the master (often the CPU)
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From the device side 

Devices are attached to a bus through an interface that has: 

● Address decoder: for detecting if its address is being called for I/O 

● Data registers: to store incoming and outgoing data (also device buffers)

● Status and control registers: to get commands and report device status 

Often devices are connected electronically, 

but a wireless setup is also possible. In that 

case, there is some device component that 

is connected inside the computer.
17https://www.pinterest.com/pin/414401603184159650/
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Putting together 

18

Command / 
Status 

Address
decoder

Data
Registers

Device-internal implementation logic
microcontroller, memory, etc.

Address lines
Data lines
Control lines

Not a single line, 
but a collection of lines



A simple example
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A simple example
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CPU Addr = 1000
1

W=1



A simple example
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A simple example
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A simple example
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Data available 4



Design choices with a bus
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Goals: performance, standardization, flexibility (v1, v2, …), cost, 
expandability 

Design choices: 

● Clocking: yes (synchronous) or not (asynchronous) 
● Bus width in bits : serial or parallel bus 
● Point-to-point or multiplexing (shared) bus
● Switching: how/when bus control is acquired and released 
● Arbitration: which device gets the bus next



Synchronous bus

All devices derive timing from a control line called the bus clock 

Clock is a special line which has a defined pattern with a rate or frequency

A 1 GHz clock frequency will have 109 such cycles per second
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Synchronous bus

All devices derive timing from a control line called the bus clock 
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Bus clock

Address 
Command

Data

Clock cycle

1010101… 

1010101… 

t0 t1 t2



Synchronous bus

What does the clock cycle depend on: 

● Maximum propagation delay: (t1 - t0) should be longer than the bus length. For 
example: 
speed of light (~300,000,000 m/s)
bus distance of 30cm 
Propagation time => 10-9 sec, so the clock cannot be more than 1 GHz

● We also need to consider the time it takes for a device to respond to a signal (add 
to the frequency above, and calculate again)
○ So if a device takes 10 nanoseconds to respond, then...
○ ...1 + 10 = 11 nsec, or inversely (maximum) 90.9 MHz clock frequency 

Maintaining the clock over a distance at a high-frequency is challenging 
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Asynchronous transfer 
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Master ready 

Address 
Command

Data

Device ready 



Serial vs. parallel data line design

Parallel buses can transmit more data in a single 
cycle, but maintaining clocking information and 
low interference on multiple links over a distance is 
a challenging task  

Serial interface

- Simple to implement 
- Different encoding (8/10B) can be used to 

synchronize clocks implicitly 
- Preferred design today 
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https://upload.wikimedia.org/wikipedia/commo
ns/a/a6/Parallel_and_Serial_Transmission.gif
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A more modern setup
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Modern buses: USB

Universal Serial Bus 

● Simple low-cost, easy to use interconnect 
● Wide variety of devices 
● Plug-n-play mode 

USB 1.0, 2.0, and 3.0 standards 

- Backwards compatible 
- 3.0 supports up to 5 Gigabits/s data transfer 
- Needs a bit of memory and logic in devices 
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Modern buses: USB

There is a root complex and each device has a unique USB address (7bits)

There are three types of traffic schedules

- Asynchronous: any time (e.g., keyboard) 
- Isochronous: regular interval (e.g., sound sampling) 
- Bulk: mass storage devices (USB sticks) 

The USB root complex uses: 

- Point-to-point links (not a shared bus) 
- Serial transmission with a schedule and device polling 
- CPU _only_ sees the USB hub as a single device 
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USB device tree
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Transmission 
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Communicating With Devices

How does the CPU give commands to I/O devices?
How do I/O devices execute data transfers?

How does CPU know when I/O devices are done?

34



An abstract device
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Status registers: show the current status of the device 

Command registers: tell device to perform a certain task 

Data registers: get or put data to/from the device 

Command / 
Status 

Address
decoder

Data
Registers

Device-internal implementation logic
microcontroller, memory, etc.



How do you/the CPU program devices?

The CPU executes a series of instructions 

There are two strategies: 

1. Special CPU instructions to identify I/O operations explicitly 

2. Memory-mapped I/O

Both are used, but today memory-mapped I/O are more common.  
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1. Doing I/O - using special instructions

Using special I/O instructions (also known as Port-mapped I/O)  

- Device/registers are enumerated, and given a special port address 

- Special instructions for I/O (the bus knows it will go the device). E.g., 

in/out instructions on x86 

- Simple to implement 

- That also means that you have to write it in assembly, compilers cannot 
generate this automatically
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IN       AL  19H // 8 bits are saved to register AL from the I/O port “19H”  (fixed!) 
OUT  DX  EAX // 32 bits are written to port number in DX register (16 bits, variable) 



2. Doing I/O - Memory-mapped I/O 

Memory-mapped I/O 

- All device interfaces are mapped to a “memory location”
- Certain memory address ranges are reserved for this purpose
- From the CPU point of view no difference between accessing memory or 

a device register 
- Just use any instruction that is used to access data 

- movl 0xABCD 0x1234
- Luckily, a compiler can do this for you!

- Needs a bit of a priori setup 
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Port-Mapped vs. Memory-Mapped I/O
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CPU

Memory I/O space 

2 different address spaces

0x0000

0xFFFF

0xFF

read/write from memory

CPU

Memory 
0x0000

0xFFFF

0x00FF
read/write from memory

keyboard

display

Single address spaces



Example: In Linux (sudo cat /proc/iomem)

40

Memory mapped 
addresses for devices 

Notice how memory 
addresses are also 
there



How does data get transferred? 

Option 1: The CPU does it all, easy and simple  (assume memory-mapped I/O)
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1. while (STATUS == BUSY)
     ; // wait until device is not busy

2. write data to DATA register

3. write command to COMMAND register (the device executes the 
command - write data)

4. while (STATUS == BUSY)
; // wait until device is done with your request



How does data get transferred? 

Option 1: The CPU does it all, easy and simple  (assume memory-mapped I/O)
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1. while (STATUS == BUSY)
     ; // wait until device is not busy

2. write data to DATA register

3. write command to COMMAND register (the device executes the 
command - write data)

4. while (STATUS == BUSY)
; // wait until device is done with your request



How does data get transferred? 

Option 1: The CPU does it all, easy and simple  

The CPU is typically very faster than a device (disks ~ms, network ~usecs, 
CPU ~ns)

Waste of CPU resources 
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Can we do better?

Repeated checking of a device 
status by a CPU in a loop is 
called “polling” 



Interrupts: let the device tell the CPU

Option 2: The device can generate an interrupt when I/O is finished 
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CPU
device

Start the data transfer 

Its done!

The CPU has a special circuit and interface to raise interrupts 



Interrupts: let the device tell the CPU

Option 2: The device can generate an interrupt when I/O is finished 

Interrupt is a special case or exception, where the CPU is notified to: 

- Please stop whatever you were doing 
- Check what has happened around

Exception is a broader term, which includes software exceptions as well, e.g. 
segmentation fault.   
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Interrupt 



interrupt

What happens when there is an interrupt 

1. Device raises interrupt request
2. Processor interrupts program in 

execution
3. Interrupts are disabled
4. Device is informed of acceptance and, as 

a consequence, lowers interrupt
5. Interrupt is handled by service routine
6. Interrupts are enabled
7. Execution of interrupted program is 

resumed
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instruction_0
instruction_1
instruction_2
instruction_3

instruction_5
instruction_6
instruction_7
… 

Interrupt Service 
Routine (ISR)

{ … } ; 

Logically ISR are the same as calling a function call in the code, but there are subtle differences



Who called an interrupt? 
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CPU

dev_1 dev_2 dev_3

Interrupt = [int_1] OR [int_2] OR [int_3] … 

Check each device one by one 
- Check if their status register has interrupt (IRQ) bit set 
- Might have multiple devices that need servicing 



Vectored interrupts : Interrupts with numbers

Each device is assigned a unique interrupt number 

With interrupt, the number is put on a data line 
48

CPU

dev_1 dev_2 dev_3

Interrupt = [int_1] OR [int_2] OR [int_3] … 

Interrupt number



Invoking ISRs with vectored interrupts 
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1 0x0000FDEA

2 0xFFF2EBA

3 0x33F76633

4 0x44DD66AA

5 0xBBCCDDEE

… … 

CPU

Interrupt number 

ISR: Read keyboard 

ISR: new bluetooth device 

ISR: new USB drive  

Interrupt vector table - IVT (each CPU has one!)

address of function to call



Example: IRQs in Linux (cat /proc/interrupts)
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Example: IRQ in Linux
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IRQ 
numbers

How 
many

Which CPU? Which device?



Interrupt vs. Polling 

Interrupt breaks the current program flow, and jumps to the ISR execution 
(this jumping takes time!) 

Interrupts are good for slow devices: when the ISR setup time is less than the 
device I/O servicing time . Otherwise, a very high speed device can freeze a 
system with interrupts. This is called Interrupt Livelock or Interrupt Storm

Polling is good for high-speed devices, which can finish I/O at a similar pace 
as the CPU. No need to generate interrupts  

A hybrid strategy: start with interrupt, then switch to polling based on the 
load and speed of the device 
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How does data get transferred? 
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1. while (STATUS == BUSY)
     ; // wait until device is not busy

2. write data to DATA register

3. write command to COMMAND register (the device executes the 
command - write data)

4. while (STATUS == BUSY)
; // wait until device is done with your request

Who does this?

Polling and interrupts



Freeing the CPU from copying data 
The CPU is faster than the I/O devices 

CPU copying data is also very inefficient 

But if there is a data copy engine that can transfer data between devices and memory, 
how will it look? 
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Copying



Direct Memory Access (DMA) 
Modern high-speed bulk transfer devices (storage, network) have a DMA engine in 
them

CPU programs the DMA engine 

DMA engine does the data transfer 

DMA engine either (1) generates an interrupt; (2) CPU can poll and check 
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DMA architectural view 
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DMA architectural view 
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DMA architectural view 
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DMA architectural view 
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CPU
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1. CPU programs the DMA engine 
of the storage device

Data
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3. DMA transfer from the device

4. Interrupt to the CPU

2. Internal processing



DMA architectural view 
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CPU
Address
Length 

R/W Data

memory

Competition on the memory bus between the CPU and the DMA engine can lead 
to slow CPU memory access. Thus, the DMA engine steals CPU’s memory cycles - 
also called Cycle Stealing



DMA architectural view 
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CPU
Address
Length 

R/W Data

memory
CPU Caches

Question: What happens if the CPU has some data cached in CPU caches?



DMA recap

Extra intelligence in devices (there are also standalone chips) to access 
memory 

Frees the CPU from doing bulk data transfers from devices to memory  

Delivers very high bulk data performance 

Can interfere with the CPU memory access (but with modern systems with 
very high memory bandwidth, it is less of an issue) 

System implementation can choose to keep caches coherent (x86) or not 
(ARM)
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How modern is this modern setup?
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https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys
-system-review/index.html

https://docs.oracle.com/cd/E28853_01/html/E28856/z4
0010911519112.html

https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys-system-review/index.html
https://www.tweaktown.com/reviews/7058/intel-server-r2208wt2ys-system-review/index.html
https://docs.oracle.com/cd/E28853_01/html/E28856/z40010911519112.html
https://docs.oracle.com/cd/E28853_01/html/E28856/z40010911519112.html


Reality is a bit different 
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https://www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf 

(only 5,100 pages)

https://www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf


Summary: You should know … 

The idea of the system bus 

Address, commands, status interfaces and signalling lines

Synchronous, asynchronous, serial and parallel links* 

Port-mapped and memory-mapped I/O techniques 

Interrupts, DMA, and polling 

* Read from the backup slides at the end 
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978-0073380650

● Operating Systems: Three Easy Pieces, Chapter 36 - I/O Devices (section 36.1 till 
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Backup
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Synchronous bus

All devices derive timing from a control line called the bus clock 

Clock is a special line which has a defined pattern with a rate or frequency

A 1 GHz clock frequency will have 109 such cycles per second
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Synchronous bus

All devices derive timing from a control line called the bus clock 
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Bus clock
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Synchronous bus

What does the clock cycle depend on: 

● Maximum propagation delay: (t1 - t0) should be longer than the bus length. For 
example: 
speed of light (~300,000,000 m/s)
bus distance of 30cm 
Propagation time => 10-9 sec, so the clock cannot be more than 1 GHz

● We also need to consider the time it takes for a device to respond to a signal (add 
to the frequency above, and calculate again)
○ So if a device takes 10 nanoseconds to respond, then...
○ ...1 + 10 = 11 nsec, or inversely (maximum) 90.9 MHz clock frequency 
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A realistic timing diagram with clock delays
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How to do multi-cycle data transfer

How to tell the bus master that the data is available? How to tell the bus 
master that there is a multiple cycle transfer? 

Use the control signal from the device, keep the signal 1 while a transfer is happening
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Asynchronous transfer 
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Another way of doing data transfer is without clocks 

Simplified design: no need to ensure that all devices _must_ see the clock 
around the same time (with bounded delays)

Synchronization is done using master and device “readiness” signals with a  
handshake protocol 

● The bus master sets the control lines up after putting the address and 
command 

● The “right” device responds by setting its ready control line 
● When both lines are ready, the transfer can be initiated 



Asynchronous transfer 
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Synchronous vs. asynchronous buses 

Synchronous 

+ Fast 
- Clock management 

Asynchronous 

+ Easy management with devices with different speeds 
- Longer handshake protocol (4x steps in a single transaction) 

- Master ready 
- Device ready 
- Device done 
- Master done 
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Bus arbitration 

There can be multiple devices trying to talk simultaneously 

There is a bus arbiter - either using addresses, or first-come-first-service 
basis, or a daisy chaining  
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Example: PCIe 

Peripheral Component Interconnect Express (PCIe) - serial, point-to-point

Most popular modern bus to connect devices 

Developed by Intel, Dell, HP, IBM 

Structure: multi-lane connectivity (x1, x2, x4, x16, x32) 

78

By V4711This W3C-unspecified vector image was created with Adobe 
Illustrator. - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=37527913

PCIe specification tells what these different pins do 
https://en.wikipedia.org/wiki/PCI_Express#Pinout 

https://en.wikipedia.org/wiki/PCI_Express#Pinout


PCIe bandwidth calculation example
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https://en.wikipedia.org/wiki/PCI_Express#History_and_revisions 

https://en.wikipedia.org/wiki/PCI_Express#History_and_revisions


Wider buses (multiple parallel bit lines) 

+ More bandwidth
- More expensive and more susceptible to skew

Multiplexed: address and data on same lines/or devices sharing buses 

+ Cheaper
- Less bandwidth

Shared or multiplexed bus
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