
An Introduction to
RDMA Networking

Animesh Trivedi
a.trivedi@vu.nl

https://animeshtrivedi.github.io/

mailto:a.trivedi@vu.nl
https://animeshtrivedi.github.io/

It is an Advanced Topic

● Networking knowledge

● Operating system knowledge

● CPU and architecture knowledge

● Low-level implementation details …

Agenda

1. A closer look at the socket networking

2. Challenges with the classical/socket networking

3. The idea of User-space networking

4. Remote Direct Memory Access (RDMA) technology

a. Performance

5. RDMA applications

6. Hands on experiments

A Basic Cloud Service Setup

Over the Internet
The Cloud

A closely installed setup with
1000s of machines connected with
high-performance network (e.g.,
the DAS-5 platform)

Google, Facebook, Microsoft and
other big companies have large
data center installation where they
run services like Youtube, Search,
Social platforms etc.

Example - (Rough) Datacenter Regions

How does our network work?

The Layered Model

Physical

Data Link

Network

Transport

Application

Modularity:

The Layered Model - Protocols

Physical

Data Link

Network

Transport

Ethernet

IP

TCP/UDP

Some examples, but they
are not the only one

Application

How do applications use the network?

We use a network application programming interface (or API)

One example is a Socket interface

…

How do applications use the network?

We use a network application programming interface (or API)

One example is a Socket interface

… Physical

Data Link

Network

Transport

Application

History : Socket Interface

● One of the first implementations in the 4.2BSD Unix (1983)

○
○
○
○

 Modern derivatives: WinSock, BSD socket, POSIX socket, more

● First reference RFC #147 (

● Follows the UNIX philosophy

○ Everything is a file (the socket is a file descriptor)

https://tools.ietf.org/html/rfc147

1983!

History : Socket Interface

● One of the first implementations in the 4.2BSD Unix (1983)

○
○
○
○

 Modern derivatives: WinSock, BSD socket, POSIX socket, more

● First reference RFC #147 (

● Follows the UNIX philosophy

○ Everything is a file (the socket is a file descriptor)

https://tools.ietf.org/html/rfc147

History : Socket Interface

● One of the first implementations in the 4.2BSD Unix (1983)

○
○
○
○

 Modern derivatives: WinSock, BSD socket, POSIX socket, more

● First reference RFC #147 (

● Follows the UNIX philosophy

○ Everything is a file (a socket is a file descriptor)

https://tools.ietf.org/html/rfc147

Socket Interface - The Unofficial Standard
●

○

●

○

●

○

●

○

●

○

Not a complete list. There are OS specific (e.g., Linux) specific extensions.

Socket - A Highly Successful Abstraction
● Socket is a very successful abstraction

○ A UNIX file with a bunch of basic functions

○ Applications are shielded away from managing anything but just “what to

send” and “where to receive”

■

■

● Worked extremely well all these years supporting different classes of applications

○ Web servers, video streaming, messaging applications,

_your_favorite_application

But Wait...

● where are the rest of the networking layers?

● what happens after calling send / recv functions?

● who is running the TCP state machine?

● who is managing the TCP window and retransmission?

● who is doing IP routing?

● who is doing the MAC layer management?

● ...and so many more question

The Answer is …

The Operating System

●

Why?

●
●

All Together - sending a message

 Application

All Together - sending a message

 Application

socket buffer

SCTP UDP

IP

Ethernet
Device driver

TCP

Bit encoding and stuff

message

segments

packet

frame
DMA

RX/TX queues

All Together - receiving a message

 Application

socket buffer

SCTP UDP

IP

Ethernet
Device driver

TCP

Bit encoding and stuff

message

segments

packet

frame
DMA

Almost the same
- But in the other direction
- More difficult

- Asynchronous nature of receive
- Interrupts and polling

There are more, and much more details (networking is _NOT_ the only thing
that the OS is doing)

- Process, memory, storage, user management

Key Message: There is a bit of work involved in doing network operations!

Agenda

1. A closer look at the socket networking

2. Challenges with the classical/socket networking

3. The idea of User-space networking

4. Remote Direct Memory Access (RDMA) technology

a. Performance

5. RDMA applications

6. Hands on experiments

What is the Challenge?
● Everything runs on the CPU

○ Applications, threads, processes

○ the operating system kernel

● But the CPU is not getting any faster

○ CPU was getting faster due to Moore’s Law

● But the network speeds are…

○ 1 to 10, and now 100 Gbps

○ 200 and 400 Gbps are now available

○ Be careful - we are focussing on a closely installed datacenter setup

Shifting Performance Bottlenecks

transmission receptionin network

time

Shifting Performance Bottlenecks

transmission receptionin network

Slowing down of Moore’s law

time

100 Mbps

1 Gbps

10 Gbps

40 Gbps

100 Gbps

1,000 Gbps

Shifting Performance Bottlenecks

transmission receptionin network

Slowing down of Moore’s law

time

Relative time/overheads

Hardware Trends

Trend 1: Network is getting faster

Trend 2: CPUs are not (but network parallelization is hard)

“Network performance is increasingly a software/CPU factor”

 1980s late 2010s Today

Bandwidth

Latency

CPU

How Bad Does it Look?

Delay calculation:

(1μsec x 1 switch) + (1μsec x 2 NICs) + (2 OSes x 4.8 μsec) + (2 meters * 5 nsecs) = 12.61 μsec (out of

which 76.1% is OS/software cost)

Component Delay

Switch ~1 μsec

NIC ~1 μsec

OS processing 3.4 - 6.2 μsec

Speed of light 5 nsec/meter

Packet Rates

The smallest frame size on Ethernet is : 84 bytes (including all overheads)

● at 10 Gbps -> 67.2 ns between packets (14.88 Mpps)

● at 100 Gbps -> 6.72 ns between packets (148.8 Mpps)

Think about it, for a typical CPU

● L1$ = 1 ns, L2$ = 5 ns, LLC$ = 30 - 40 ns, DRAM = 60 - 100 ns

● How many cache misses can you afford on a 100 Gbps network?

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.netfilter.org/hawk/presentations/devconf2016/net_stack_challenges_100G_Feb2016.pdf

● Socket is an application-level interface - it does not say anything about lower layer

protocols

● However, its simplistic design restricts many optimization opportunities to reduce

the amount of work done for a network operation:

○ Ties to the OS “process” abstraction

■ Everything (i.e. the socket file) belongs to a process

■ multiplexing, security, isolation

○ When to do copy, when to do DMA - OS must decide on behalf of processes

○ Is the “file byte-stream” the right interface than “messages”

○ When to notify application about I/O completions and network events and how

○ Blocking, non-blocking, synchronous, asynchronous I/O interfaces

Agenda

1. A closer look at the socket networking

2. Challenges with the classical/socket networking

3. The idea of User-space networking

4. Remote Direct Memory Access (RDMA) technology

a. Performance

5. RDMA applications

6. Hands on experiments

Remote Direct Memory Access (RDMA)

Idea 1: User-space Networking

Idea 1: User-space Networking

User-space networking

Idea 1: User-space Networking

User-space networking

Idea 2: Kernel Bypass

User-space networking

Kernel Bypass

New Abstraction?

New Abstraction?

Control operations

Data operation

Idea: control data
abstractions

Putting All Together - User-Space Networking

a
c

b

a
c

b c

Putting All Together - User-Space Networking

a
c

b

a
c

b c

Putting All Together - User-Space Networking

a
c

b

a
c

b c

Putting All Together - User-Space Networking

a
c

b

a
c

b c

Putting All Together - User-Space Networking

a
c

b

a
c

b c

Putting All Together - User-Space Networking

a
c

b

What new abstractions, objects, do you see here?

a
c

b c

Agenda

Timeline of a send/recv Exchange

1. 1.

2.

4.
5.

Two-sided message exchange between processes

3.

Timeline of a send/recv Exchange

1. 1.

2.

4.
5.

Two-sided message exchange between processes
Can we eliminate server entirely?

3.

The Idea of Remote Direct Memory Access
● Imagine, if all buffers are known up front to everyone

● A client/peer can initiate a network transfer by itself

○ “One-sided” operations (instead of two-sided where 2 peers are involved)

● An RDMA WRITE specifies:

○ Which local/client buffer data should be read from

○ Which remote/server buffer data should be written to

● An RDMA READ specifies:

○ Which remote/server buffer data should be read from

○ Which local/client buffer data should be written into

RDMA READ Operation

1.

5.

Example one-sided RDMA READ operation

2.

4.

RDMA WRITE Operation

1.

4.

Example one-sided RDMA WRITE operation

lbuf rbuf

RDMA: Architectural View

RDMA: Architectural View

RDMA: Architectural View

RDMA: Architectural View

RDMA: Architectural View

1

RDMA: Architectural View

1

2

RDMA: Architectural View

1

2

3
4

RDMA: Architectural View

1

2

3
4

5

RDMA: Architectural View

1

2

3
4

5

6

RDMA: Architectural View

RDMA capable network = network + endhost

A Brief History
● 1980s: a long history of high-performance networking research

○ Building networked multi-processor systems/supercomputers

○ Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

○ Goal was to connect and integrate CPUs via network as efficiently as possible

● 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads

○ Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAlink (see the Top500 list from 2000s)

● Late-2000s: CPU performance falters and the focus is back on high-performance networking

○ Ethernet (the most popular interconnect) improved to match the performance (and the price)

○ RDMA (the idea), DPDK, SPDK, user-space packet processing, user-space OSes, etc.

A Brief History
● 1980s: a long history of high-performance networking research

○ Building networked multi-processor systems/supercomputers

○ Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

○ The goal was to connect and integrate CPUs via network as efficiently as possible

● 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads

○ Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAlink (see the Top500 list from 2000s)

● Late-2000s: CPU performance falters and the focus is back on high-performance networking

○ Ethernet (the most popular interconnect) improved to match the performance (and the price)

○ RDMA (the idea), DPDK, SPDK, user-space packet processing, user-space OSes, etc.

A Brief History
● 1980s: a long history of high-performance networking research

○ Building networked multi-processor systems/supercomputers

○ Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

○ The goal was to connect and integrate CPUs via network as efficiently as possible

● 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads

○ Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAlink (see the Top500 list from 2000s)

● Late-2000s: CPU performance falters and the focus is back on high-performance networkin

○

○

A Brief History
● 1980s: a long history of high-performance networking research

○ Building networked multi-processor systems/supercomputers

○ Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

○ The goal was to connect and integrate CPUs via network as efficiently as possible

● 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads

○ Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAlink (see the Top500 list from 2000s)

● Late-2000s: CPU performance falters and the focus is back on high-performance networking

○ Ethernet improved significantly and caught up Infiniband performance

● Today commodity: InfiniBand, RoCE, iWARP, OminiPath support RDMA networking stacks

● Today supercomputers: TOFU interconnect (Fujitsu), Sunway, CRAY Aries and Gemini, Bull BXI (Atos), IBM...

○ https://www.top500.org/statistics/list/

https://www.top500.org/statistics/list/

In the Layer Model

A Survey of End-System Optimizations for High-Speed Networks, ACM Computing Surveys (CSUR) Surveys Homepage
archive Volume 51 Issue 3, July 2018. https://dl.acm.org/citation.cfm?doid=3212709.3184899

Image reference: https://fakecineaste.blogspot.com/2018/02/

https://dl.acm.org/citation.cfm?doid=3212709.3184899
https://fakecineaste.blogspot.com/2018/02/

Key Items to Understand

● There is no ONE RDMA API like socket

● There is no ONE RDMA framework - you can write your own from scratch!
○ Each interconnect provider can give its own (MLX)

○ Often wrapped under another high-level API like MPI

○ A (pseudo) standard stack is Open-Fabric Alliance (OFA)

● The RDMA idea is independent of the networking technology and the

programming interfaces used
○ Infiniband, iWARP, RoCE - all support RDMA operations on top of different networking

layers

Agenda

Performance

●

●

●

Performance

Performance

Performance

Where do the Performance Gains come from?
●

○

●

○

●

○

●

○

○

●

Agenda

Where can you use RDMA?

Over the Internet
- Mbps to Gbps
- 1-10s of msec of RTT

Inside a datacenter
- 100s of Gbps
- 1-10s of usec RTTs

Where can you use RDMA?

Over the Internet
- Mbps to Gbps
- 1-10s of msec of RTT

Inside a datacenter
- 100s of Gbps
- 1-10s of usec RTTs

- Shared memory
- Key-Value stores
- Caches
- RPCs
- Sync/locking
- File systems
- Services

RDMA Design Space

Example - Sequencer Throughput

The design space is large, and performance margins are 1-2 orders of magnitude

Workload-level Acceleration

Network profile of vanilla Spark

Optimized Network profile of Spark

Challenges with RDMA
● Debugging

○ Operation failed, connection down, what went wrong?
○ Logging and introspection can be hard, e.g., log4j, printf -> string manipulation@10s of

usec!
● Performance

○ Takes a while to get used to the new way of writing code - event driven, lots of
resources

○ Performance isolation (e.g., local PCIe vs remote NIC traffic BUG)
○ Quality of service, traffic management, firewall, filtering, compliance

● Fragility
○ In the cloud (performance vs. flexibility, e.g. VM migration)
○ Correctness and verification (e.g., 32 bit ADD circuit on 64-bit addresses in one RNIC)
○ Small eco-system and vendors

End Summary

● NICs are getting faster, but the CPU is not

○ CPU/software governs the performance, not the networking devices
○ Next-generation of programmable devices are coming (NICs, GPUs, FPGAs, storage, etc.)

● New ways of doing network I/O are being explored

○ The idea of User-space networking, kernel bypassing, and separating data from control paths
○ New interfaces (not socket) and ways of doing networking - e.g., RDMA operations

● Applications of RDMA networking in distributed systems/data centers

○ Large design space, and lots of new applications
○ Apache Crail project - accelerating data sharing in distributed systems (www.crail.io)
○ Challenges with deployments at scale

http://www.crail.io

Recommended Reading

Animesh Trivedi, End-to-End Considerations in the Unification of
High-Performance I/O, PhD thesis, ETH Zurich, January, 2016.

https://doi.org/10.3929/ethz-a-010651949

Chapter 2, Evolution of High-Performance I/O

Chapter 3, Remote Direct Memory Access (example and details)

https://doi.org/10.3929/ethz-a-010651949

Things to Know about RDMA Programming

● There are more than one ways to get started with working with RDMA

○ We are using the OFA OFED environment

● There is a bit of a setup involved before getting started

○ Setting up the kernel modules and user-space libraries

● For historical reasons functions are (often) prefixed by

● I recommend (for now) to stick with the RDMA CM interfaces ()

○ But there more, feel free to peak around or ask me

Follow instructions at : https://github.com/animeshtrivedi/blog/blob/master/post/2019-06-26-siw.md

https://github.com/animeshtrivedi/blog/blob/master/post/2019-06-26-siw.md

So How Do I Program RDMA?

●
●
●

○

●
●
●
●
●
●

Let's have a look at the code now

https://github.com/animeshtrivedi/rdma-example.git

https://github.com/animeshtrivedi/rdma-example.git

client server

Is to replicate the same “ ” steps at the server side

Can sockets be used over RDMA to hide its complexity?

