An Introduction to
RDMA Networking

Animesh Trivedi
a.trivedi@vu.nl
https://animeshtrivedi.github.io/

mailto:a.trivedi@vu.nl
https://animeshtrivedi.github.io/

It is an Advanced Topic

e Networking knowledge
e Operating system knowledge
e CPU and architecture knowledge

e Low-level implementation details ...

Agenda

1. Acloser look at the socket networking

2. Challenges with the classical/socket networking

3. The idea of User-space networking

4. Remote Direct Memory Access (RDMA) technology
a. Performance

5. RDMA applications

6. Hands on experiments

A Basic Cloud Service Setup

Our focus

d [

Over the Internet

The Cloud

A closely installed setup with
1000s of machines connected with
high-performance network (e.g.,
the DAS-5 platform)

Google, Facebook, Microsoft and
other big companies have large
data center installation where they
run services like Youtube, Search,
Social platforms etc.

Example - (Rough) Datacenter Regions

Council Bluffs, IA

West Central US UK South

Canada Central Ireland
The Dalles, OR US Gov lowa " West Europe
Central US Canada East Germany Northeast
Oregon @ M ‘/_y—
West US 2 North Europe, Erankfurt Beijing
N. California North Central US UK West ~_Germany Central M. Jonl baniEaet

7 St. Ghislain, Belgium
/. AWS GovCloud N. Virginia
West US g Tokyo, Japan
East US West India Q
South Central US ohio East US 2 China East

o ‘ Central India
Berkeley County, SC ov Virginia) [} East Asia
Alvanizes South India Changhua County, Taiwan

Southeast Asia

Singapore

Sao Paulo

Australia East
Brasil South Janareiaroat
@ Sydne
Australia Southeast erey

BB Microsoft Azure “i"amazon) Google Cloud Platform
®

web services
®

Atomia

How does our network work?

The Layered Model

Modularity: Layer by layer architecture where one layer provides service to
the next one

"\ Application Network access
Transport End-to-end delivery
Network Global routing and best-effort delivery
Data Link Link management / local area delivery
L Physical Physical bits/voltage/current movement

The Layered Model - Protocols

N Application
Transport TCP/UDP
Network P Some examples, but they
Data Link are not the only one
Ethernet
Physical

How do applications use the network?

We use a network application programming interface (or API)

One example is a Socket interface

int sock = socket(AF_INET, SOCK _STREAM, 0);
struct sockaddr_in serv_addr;

[...]
serv_addr.sin_family
serv_addr.sin_port =
[...]

connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr);
// send data

send(sock , “Hello World!”, 12, ...);

//recv data

recv(sock, buffer, 1024);

= AF_INET;
htons (PORT);

How do applications use the network?

We use a network application programming interface (or API)

One example is a Socket interface

int sock = socket(AF_INET, SOCK _STREAM, 0);
struct sockaddr in serv_addr;

[...]
serv_addr.sin_family
serv_addr.sin_port =

[...]

= AF_INET;
htons (PORT);

connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr);

// send data

send(sock , “Hello World!”, 12, ...);
//recv data

recv(sock, buffer, 1024);

Application

1T

-

Transport

Network

Data Link

Physical

10

History : Socket Interface

One of the first implementations in the 4.2BSD Unix (1983)

11

https://tools.ietf.org/html/rfc147

1983 Women's Clothing

el
A —
——-
-— —a.
[]
| —
e
———

Microsoft Word
Version 1,135

* MARO BROS., BATTLE THE PESTS! TWO PLAYERS MAXE IT EASER

History : Socket Interface

e One of the first implementations in the 4.2BSD Unix (1983)

o Itis 36 years old

o In 1983: Microsoft Word is first released

o In 1983: Mario Bros. was first released as a Nintendo arcade game
o In 1983: First mobile phones from Motorola

Modern derivatives: WinSock, BSD socket, POSIX socket, more

13

https://tools.ietf.org/html/rfc147

History : Socket Interface

e One of the first implementations in the 4.2BSD Unix (1983)

o Itis 36 years old

o In 1983: Microsoft Word is first released

o In 1983: Mario Bros. was first released as a Nintendo arcade game
O

In 1983: First mobile phones from Motorola

Modern derivatives: WinSock, BSD socket, POSIX socket, more

e Firstreference RFC #147 (The Definition of a Socket, 1971)
https://tools.ietf.org/html/rfc147 (only 2 pages)

e Follows the UNIX philosophy
o Everything is a file (a socket is a file descriptor)

14

https://tools.ietf.org/html/rfc147

Socket Interface - The Unofficial Standard

e Seftting up and managing connections
o socket(), bind(), listen(), connect(), accept(), close()
e Network operations
o send(), recv(), sendto(), and recvfrom() (orwrite() and read() may also be used)
e Address/hostname management
o gethostbyname() and gethostbyaddr() to resolve IPv4 host names and addresses
e Select activity and readiness of a socket for /0O
o select(), poll()
e Setting up extra options

o getsockopt() and setsockopt()

Not a complete list. There are OS specific (e.g., Linux) specific extensions. .

Socket - A Highly Successful Abstraction

e Socket is a very successful abstraction
o A UNIXfile with a bunch of basic functions
o Applications are shielded away from managing anything but just “what to

send” and “where to receive”
m send(int socket, void* buffer_address, size t length, int flags);

m recv(int socket, void* buffer_address, size t length, int flags);

e Worked extremely well all these years supporting different classes of applications
o Web servers, video streaming, messaging applications,

_your_favorite_application

16

But Wait...

e Wwhere are the rest of the networking layers?

e what happens after calling send / recv functions?

e whois running the TCP state machine?

e who is managing the TCP window and retransmission?
e who is doing IP routing?

e who is doing the MAC layer management?

e ..and so many more question

17

The Answer is ...

The Operating System

e Linux, Windows, Open/Free/NetBSD, Minix - whatever you are running

A ER Windows

&

Why?

e Network connectivity is an important shared resource for all
e FEvery networking application benefits from a common implementation

As we will see later, this is _NOT_ THE only way to arrange things
18

All Together - sending a message

user-space Application U

kernel

hardware

19

All Together - sending a message

M system call, trap into the
user-space Appllcatlon [/ ' kernel space

socket buffer message copy into the
kernel buffer, memory alloc

SCTP UDP TCP / TCP segments, next
sequence number, ACKs

IP . resolve address and route,

IP packet fragmentation

Ethernet
kernel _ Device driver |
RX/TX queues *HHHHHH frame building, interrupt
"""""""" @‘DMA“"““ handling, DMA, device mng.
hardware

Bit encoding and stuff

20

All Together - receiving a message

Almost the same
- Butin the other direction
- More difficult
- Asynchronous nature of receive
- Interrupts and polling

There are more, and much more details (networking is _NOT_ the only thing
that the OS is doing)
- Process, memory, storage, user management

Key Message: There is a bit of work involved in doing network operations!

21

Agenda

+—Aclosertookatthe-socketretwerking

2. Challenges with the classical/socket networking
The idea of User-space networking

4. Remote Direct Memory Access (RDMA) technology
a. Performance

5. RDMA applications

6. Hands on experiments

22

What is the Challenge?

Intel Core 7 4 cores 4.2 GHz (Boost 10 45 GHz)

e FEverything runs on the CPU

o Applications, threads, processes | o TR A
o the operating system kernel A | I

e But the CPU is not getting any faster v —
o CPU was getting faster due to Moore’s Law

e But the network speeds are... W

T T T T T T T T T T T T T T T T T T T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

o 1to 10, and now 100 Gbps
o 200 and 400 Gbps are now available

o Be careful - we are focussing on a closely installed datacenter setup

23

Shifting Performance Bottlenecks

transmission

in network

reception

time

24

Shifting Performance Bottlenecks

Slowing down of Moore's law

100 Gbps

- 40 Gbps
L]

1,000 Gbps

time 25

Shifting Performance Bottlenecks

Slowing down of Moore's law

transmission in network reception

-

> Relative time/overheads

time

26

Hardware Trends

1980s late 2010s Today
Bandwidth 1 Mbps 10 Gbps 100/200 Gbps
Latency ~2.5ms ~50 - T00usec 1-2usec
CPU 10 MHz (2-4)x 3GHz nx 3 GHz

Trend 1: Network is getting faster
Trend 2: CPUs are not (but network parallelization is hard)

“Network performance is increasingly a software/CPU factor”

How Bad Does it Look?

Component Delay
Switch ~1 usec
NIC ~1 psec

OS processing | 3.4 -6.2 psec

Speed of light | 5 nsec/meter

Delay calculation:

(Tpsec x 1 switch) + (Tpsec x 2 NICs) + (2 OSes x 4.8 psec) + (2 meters * 5 nsecs) = 12.61 ysec (out of

which 76.1% is OS/software cost)

Peter et al., Arrakis: The Operating System is the Control Plane (USENIX OSDI 2016)
Rumble et al,, It's Time for Low Latency, (USENIX HotOS 2011)

switch

TN

serveri

server?

28

Packet Rates

The smallest frame size on Ethernet is : 84 bytes (including all overheads)

e at10Gbps ->67.2ns between packets (14.88 Mpps)
e at100 Gbps -> 6.72 ns between packets (148.8 Mpps)

Think about it, for a typical CPU

o L1$5=1ns,L2$=5ns, LLC$=30-40ns, DRAM =60-100ns

e How many cache misses can you afford on a 100 Gbps network?

https://people.eecs.berkeley.edu/~rcs/research/interactive latency.html
https://people.netfilter.org/hawk/presentations/devconf2016/net stack challenges 100G Feb2016.pdf

29

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.netfilter.org/hawk/presentations/devconf2016/net_stack_challenges_100G_Feb2016.pdf

s this all Socket's problem?

e Socket is an application-level interface - it does not say anything about lower layer

protocols

e However, its simplistic design restricts many optimization opportunities to reduce
the amount of work done for a network operation:
o Ties to the OS “process” abstraction
m Everything (i.e. the socket file) belongs to a process
m multiplexing, security, isolation
o When to do copy, when to do DMA - OS must decide on behalf of processes
o Isthe “file byte-stream” the right interface than “messages”
o When to notify application about I/0 completions and network events and how

o Blocking, non-blocking, synchronous, asynchronous 1/0 interfaces

30

Agenda

+—Aclosertookatthesocketretwerking
5 chal th theclassicatisod "
3. The idea of User-space networking

4. Remote Direct Memory Access (RDMA) technology

a. Performance
5. RDMA applications

6. Hands on experiments

31

Remote Direct Memory Access (RDMA)

ldea 1: User-space Networking

Application
user-space
Network
Stack
kernel |
Network ‘
Controller

(hardware)

33

ldea 1: User-space

Application
user-space
Network
Stack
kernel |
Network ‘
Controller
(hardware)

@ User-space networking :

Networking

Application

user-space net_stack_sw

o
> @
| : ;
kernel - multiplexing,
Network @ security
isolation

Controller net_stack_hw
(hardware)

Let the process manage its networking resources

34

ldea 1: User-space Networking

Application Application
user-space user-space net_stack_sw
Network :_ - _U o -;
Stack @ I
kernel | kernel e
Network ‘ Network @
Controller Controller net_stack_hw
(hardware) (hardware)

O

@ User-space networking : Let the process manage its networking resourcesoO

35

ldea 2: Kernel Bypass

Application Application
user-space user-space net_stack_sw @
Network :_ - _U o -;
Stack @ I
kernel | kernel e
Network ‘ Network @
Controller Controller net_stack_hw
(hardware) (hardware)

@ User-space networking : Let the process manage its networking resources

(2) Kernel Bypass - Access hardware/NIC resources directly from the user-space 36

New Abstraction?

What is the right abstraction? Socket?

send (int sockfd, void *buf, size_t len, int flags);

Application
1. Transmit the data
user-space 2. Allocate needed memory
3. Manage buffers
4. Schedule process (if necessary)
Network 5. And everything else ...
kernel Stack
Network
Controller

(hardware)

New Abstraction?

What is the right abstraction? Socket?

send (int sockfd void *b

if cize t lan int flag
MI, ~ = —c 1 II7 L™ Iluv

Application

Transmit the data Data operation
Allocate needed memory
Manage buffers

Schedule process (if necessary)

Control operations

(e
()]
D
N
()]
©
Q
o

N

1
>
D
f_*
[0)]
—
Q
?_
[9)]
=

4

gD owoN =

checks 1 ' And everything else ...
kernel e _!
Network
&%Tgv‘igi) net_stack_hw |dea: Make control and data operations explicit by

separating the data from the control abstractions.

" a8

needs new interfaces

Putting All Together - User-Space Networking

user-space

1. Allocate
memory buffers

(a) (o]
B

Checks and
page table
translations

39

Putting All Together - User-Space Networking

1. Allocate 2. Allocate data
memory buffers and control queues

@ (o]
user-space c |

HE H

Checks and
memory-mapped
1/0

HE H

40

Putting All Together - User-Space Networking

user-space

1. Allocate
memory buffers

(a) (o]
B

2. Allocate data
and control queues

HE H

3. Recv a message

recv bLQer 'c’
Ak

Memory-mapped
mm | writing of the recV’
request

}
2=

41

Putting All Together - User-Space Networking

1. Allocate 2. Allocate data 3. Recv a message 4. Get completion
memory buffers and control queues notification

(a) (b] — recv buffer ¢’ DONE
user-space c | E”EI |E| IE\EI <
B 1. Network

processing,

2. DMAtothe
= buffer ‘c’,
kernel 3. Notification to
. + the application
(a)/ b_! m [N
we R BH
1

42

Putting All Together - User-Space Networking

1. Allocate 2. Allocate data 3. Recv a message 4. Get completion 5. close
memory buffers and control queues notification

@ @ recv buffer ‘¢’ DONE disconnect

user-space c | EIEI |E| E\E < |E|

43

Putting All Together - User-Space Networking

What new abstractions, objects, do you see here?

DET

user-space c

B8 H

HE H

 » —

recv buffer ‘c’

DONE disconnect

> F

44

Agenda

F—AEOSEr100KHHRE-SOEKEEREEWORKHRE

I—HSEFSPaceREBNORRE

4. Remote Direct Memory Access (RDMA)
a. Performance

5. RDMA applications

6. Hands on experiments

45

time

Timeline of a send/recv Exchange

client server
1. RX(resp) l l 1. RX(req)
2. TX(re l
(req) ’ 3.

&

5. RX(resp)l

—

' 4. TX(resp

Two-sided message exchange between processes

TNk~ wON -

Req arrives

DMA the request
IRQ to schedule
Server processing
Data copies

DMA the resp. data
Send response

46

time

Timeline of a send/recv Exchange

client server
1. RX(resp) l l 1. RX(req)
2. TX(req) l

A

4. TX(resp

5. RX(resp)l

Two-sided message exchange between processes
Can we eliminate server entirely?

TN~ wN =

Req arrives

DMA the request
IRQ to schedule
Server processing
Data copies

DMA the resp. data
Send response

47

The Idea of Remote Direct Memory Access

e Imagine, if all buffers are known up front to everyone
e Aclient/peer caninitiate a network transfer by itself
o “One-sided” operations (instead of two-sided where 2 peers are involved)
e An RDMA WRITE specifies:
o Which local/client buffer data should be read from
o Which remote/server buffer data should be written to
e An RDMA READ specifies:
o Which remote/server buffer data should be read from

o Which local/client buffer data should be written into

48

time

RDMA READ Operation

client server

1. Read(lbuf, rbuf) l 2. R

$nad

Example one-sided RDMA READ operation

1.

Req arrives

6.
/.

DMA from rbuf
Send READ response

49

time

RDMA WRITE Operation

client server

1. WRITE(Ibuf, rbuf) l

E—y 2. Here js Ibuf content for rbuf
= please WRITE it to rbuf ,

4.DONE |

Example one-sided RDMA WRITE operation

1. Regarrives
6. DMA to rbuf
7. Send WRITE response

50

RDMA: Architectural View

Client

Server

DRAM

CPU

DRAM

CPU

NIC

NIC

51

RDMA: Architectural View

local buffer address “laddr”
(which you will pass in send/recv calls)

Client Server
DRAM CPU DRAM CPU
gy raddr P2
NIC NIC

remote buffer address (raddr)

52

RDMA: Architectural View

Client Server

DRAM CPU DRAM CPU

=i

buffer allocation and registration
with the network card

53

RDMA: Architectural View

Hey! Your content is stored in the
buffer at raddr’

Client Server

DRAM CPU DRAM CPU

=i

1.

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client

Server

DRAM
B odr

CPU

DRAM

raddr =

CPU

NIC

NIC

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request

Client

Server

DRAM
B odr

CPU

DRAM

raddr =

CPU

NIC

NIC

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request

Server: read local (raddr) - local
DMA operation

Server: TX data back to client NIC

Client

DRAM
B odr

CPU

NIC

Server
DRAM CPU
raddr =<1

M4
NG 3

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request

Server: read local (raddr) - local
DMA operation

Server: TX data back to client NIC

Client: local DMA to (laddr) buffer
in DRAM

Client Server
DRAM CPU DRAM CPU
B |5 ddr raddr =<
4
TS NG 3

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request 1 Client Server

Server: read local (raddr) - local

DMA operation DRAM CPU DRAM CPU

B |5 ddr 6 raddr

Server: TX data back to client NIC 4

e
5
Client: local DMA to (laddr) buffer NIC NIC

3

in DRAM

Client: interrupt the local CPU/OS
to notify completion about the
client's READ operation

RDMA: Architectural View

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request Client Server

Server: read local (raddr) - local

DMA operation DRAM CPU DRAM CPU

Server: TX data back to client NIC Fmmmm : e
' i

Client: local DMA to (laddr) buffer | NIC | I NIC

in DRAM b k

Client: interrupt the local CPU/OS
to notify completion about the
client's READ operation

RDMA capable network = network + endhost
60

A Brief History

1980s: a long history of high-performance networking research

o Building networked multi-processor systems/supercomputers
o Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

o Goal was to connect and integrate CPUs via network as efficiently as possible

DRAM

CPU

NIC

DRAM

CPU

NIC

DRAM

CPU

DRAM

CPU

NIC

NIC

61

A Brief History

e 1980s: a long history of high-performance networking research
o Building networked multi-processor systems/supercomputers
o Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

o The goal was to connect and integrate CPUs via network as efficiently as possible

| | . |
! DRAM || cpPU Single machine i
: e DRAM || CPU |
E N\ 7 NIC :
. = Y DRAM || CPU !
1| DRAM || CPU /‘ I
I - NIC !
! NIC |
I

62

A Brief History

e 1980s: a long history of high-performance networking research
o Building networked multi-processor systems/supercomputers
o Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

o The goal was to connect and integrate CPUs via network as efficiently as possible

e 1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads
o Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAIlink (see the Top500 list from 2000s)

63

A Brief History

1980s: a long history of high-performance networking research
o Building networked multi-processor systems/supercomputers
o Berkeley NOW, Stanford FLASH, Princeton SHRIMP, Cornell U-Net, HP labs Hamlyn

o The goal was to connect and integrate CPUs via network as efficiently as possible

1990s: but CPUs were getting fast, so these efforts finally focussed on HPC workloads
o Infiniband, Myrinet, QsNet (Quadrics), BlueGene, Cray, NUMAIlink (see the Top500 list from 2000s)

Late-2000s: CPU performance falters and the focus is back on high-performance networking
o Ethernet improved significantly and caught up Infiniband performance

Today commodity: /nfiniBand, RoCE, iWARP, OminiPath support RDMA networking stacks

Today supercomputers: TOFU interconnect (Fujitsu), Sunway, CRAY Aries and Gemini, Bull BXI (Atos), IBM...

o https://www.top500.org/statistics/list/

64

https://www.top500.org/statistics/list/

In the Layer Model

>
>

RDMA application/ULP

e —— |
{RDMA API (verbs) |

RDMA software stack

IB transport IB transport
protocol protocol

IB network layer IB network layer

_ Software

>

IB transport iWARP*

protocol

C

Typically hardware

Ethernet link layer Ethernet link layer

4
h
y

il

IB link layer Ethernet link layer

InfiniBand* RoCEv1* RoCEv2* iWARP

Key: IBTA IEEE/IETF

A Survey of End-System Optimizations for High-Speed Networks, ACM Computing Surveys (CSUR) Surveys Homepage
archive Volume 51 Issue 3, July 2018. https://dl.acm.org/citation.cfm?doid=3212709.3184899

Image reference: https://fakecineaste.blogspot.com/2018/02/

65

https://dl.acm.org/citation.cfm?doid=3212709.3184899
https://fakecineaste.blogspot.com/2018/02/

Key Items to Understand

e Thereis no ONE RDMA API like socket

e Thereis no ONE RDMA framework - you can write your own from scratch!

o Eachinterconnect provider can give its own (MLX)
o Often wrapped under another high-level API like MPI
o A (pseudo) standard stack is Open-Fabric Alliance (OFA)

e The RDMA idea is independent of the networking technology and the

programming interfaces used

o Infiniband, iWARP, RoCE - all support RDMA operations on top of different networking

layers

66

a. Performance

5. RDMA applications

6. Hands on experiments

67

Performance

What does RDMA promise to deliver?

e On 100 Gbps RoCE network
e Dual-socket Sandy-Bridge Xeon CPUs
e DDR3 DRAM

Bandwidth and network operation latencies in a simple request-response setup

- client sends a request for X’ bytes of data

- Server sends back X’ bytes of data

68

Performance

TCP vs RDMA performance

100000 = TCP = RDMA

75000

& 50000
o)
S
25000 /\/

100 1000 10000 100000 1000000

Request size

97.2 Gbps

33.2 Gbps

69

Performance
TCP vs RDMA performance
97.2 Gbps

100000 = TCP = RDMA

75000

& 50000
o)
S
25000 /\/

0
10 100 1000 10000 100000 1000000

33.2 Gbps

Req uest size
An order of magnitude gap for small requests

|

1000
100

10

1
100 1000

70

Performance

Mbps

TCP vs RDMA performance

100000 = TCP = RDMA
75000
50000
25000
0
1 10 100 1000 10000 100000 1000000

Request size

Time in microseconds

25

20

15

10

Round trip latencies

20.9

TCP/socket

4 6X

T10x

4.5

send/recv

2.1

READ

71

Where do the Performance Gains come from?

e (loser application network integration
o When, how, where of network processing
e Better(?), high-performance code
o Pushing setup at the beginning, resource allocation
e Offloading
o Hardware acceleration
e Bypassing the operating system
o Lot of boilerplate code skipped
o Processing close to the metal

e An active area of research - the RIGHT application/network integration framework

72

4—Remoete-birectMemor-AccessHRBMA)
—Pertornres
5. RDMA applications

6. Hands on experiments

73

Where can you use RDMA?

Data-Center Environment / Rack-scale computing

Over the Internet Inside a datacenter

- Mbps to Gbps - 100s of Gbps
- 1-10s of msec of RTT - 1-10s of usec RTTs 74

Where can you use RDMA?

Data-Center Environment / Rack-scale computing

- Shared memory
- Key-Value stores
- Caches

- RPGCs

- Sync/locking

- File systems

- Services

Over the Internet Inside a datacenter
- Mbps to Gbps - 100s of Gbps
- 1-10s of msec of RTT - 1-10s of usec RTTs 75

RDMA Design Space

Operations

Transport

Optimizations

READ WRITE ATOMIC SEND RECV
Connected Datagram Reliable Unreliable
. Polling/ Doorbell WQE]
Inline Unsignaled batching scheduling Olen-recvs

Paper: Design Guidelines for High Performance RDMA Systems, Usenix 2016

76

Example - Sequencer Throughput

Client

Server

87

,&;150
\2_/12005002(00000000000000000097.020000
88 ..g- 90
. > 60
Client 8 30
= 2.2

Atomics RPC (1 C) +4 Queues,
Dbell batching

+6 cores

122

+Header-only

The design space is large, and performance margins are 1-2 orders of magnitude

Paper: Design Guidelines for High Performance RDMA Systems, Usenix 2016

77

Workload-level Acceleration

Sorting 12.8 TB of data on 128 machines Network profile of vanilla Spark

£ 100
- 100 Gbps network 8§ sol-
- 4 x NVMe devices (source and sink) 200
- Apache Spark 2 oL
= 0
— = 0 100 200 300 400 500
Elapsed time (seconds)
6Xx o
o s Optimized Network profile of Spark
E 100 ‘ ; :
§ é BO [
E 200 421— iy Wi e R B g g 'g’.‘ e
& £ 40
E 20 =
. 0 \ I \ \ i i
0 Spark Spark+Crail 0 1000 2000 3000 4000 5000 6000

Task ID
78

Challenges with RDMA

e Debugging
o Operation failed, connection down, what went wrong?
o Logging and introspection can be hard, e.g., log4j, printf -> string manipulation@10s of
usec!
e Performance
o Takes a while to get used to the new way of writing code - event driven, lots of
resources
o Performance isolation (e.g., local PCle vs remote NIC traffic BUG)
o Quality of service, traffic management, firewall, filtering, compliance
e Fragility
o Inthe cloud (performance vs. flexibility, e.g. VM migration)
o Correctness and verification (e.g., 32 bit ADD circuit on 64-bit addresses in one RNIC)
o Small eco-system and vendors
79

End Summary

e NICs are getting faster, but the CPU is not

o CPU/software governs the performance, not the networking devices
o Next-generation of programmable devices are coming (NICs, GPUs, FPGAs, storage, etc.)

e New ways of doing network I/0 are being explored

o Theidea of User-space networking, kernel bypassing, and separating data from control paths
o New interfaces (not socket) and ways of doing networking - e.g., RDMA operations

e Applications of RDMA networking in distributed systems/data centers

o Large design space, and lots of new applications
o Apache Crail project - accelerating data sharing in distributed systems (www.crail.io)
o Challenges with deployments at scale

80

http://www.crail.io

Recommended Reading

Animesh Trivedi, End-to-End Considerations in the Unification of
High-Performance I/0, PhD thesis, ETH Zurich, January, 2016.

https://doi.org/10.3929/ethz-3-010651949

Chapter 2, Evolution of High-Performance I/0

Chapter 3, Remote Direct Memory Access (example and details)

81

https://doi.org/10.3929/ethz-a-010651949

Q Talk 1s cheap. Show me the code.

':"_' — Linus Torvalds

Things to Know about RDMA Programming

e There are more than one ways to get started with working with RDMA
o We are using the OFA OFED environment

e There is a bit of a setup involved before getting started
o Setting up the kernel modules and user-space libraries

e For historical reasons functions are (often) prefixed by ib_ or ibv_

® | recommend (for now) to stick with the RDMA CM interfaces (rdmacm)

o Butthere more, feel free to peak around or ask me

83

Setting up the VM

Follow instructions at : https://github.com/animeshtrivedi/blog/blob/master/post/2019-06-26-siw.md

84

https://github.com/animeshtrivedi/blog/blob/master/post/2019-06-26-siw.md

So How Do | Program RDMA?

You will need some resources (their usage will become clearer later)

Connection identifier : a connection identifier
A transmission and reception queue, or a queue pair (QP)
Work queue element (WQEs)

o Scatter gather elements (SGEs) - contains buffer description
Completion queue (CQ) : completion completion elements
Completion channel : work completion notifications
Memory regions : registered application buffers
Protection domain : a security container
Event channel : network event notification

85

Let's have a look at the code now

https://github.com/animeshtrivedi/rdma-example.git

86

https://github.com/animeshtrivedi/rdma-example.git

What the code is doing?

client

String buffer Setup

[][| register_mem

(post_recv /
*

connect

recv_srv_buf_info \

time

server

setup

wait_for_client

register_mem []

accept

(I8 pestwrite T sendbufin

@ [@] post_read

(@]

[0 [@] memcmp

disconnect

wait_for_disconnect

87

Your Goal

‘(mb_w\ Is to replicate the same “memcmp” steps at the server side

Can sockets be used over RDMA to hide its complexity?

88

